

A Thesis

Entitled

 A Neural Network Based Distributed Intrusion Detection System on Cloud Platform

By

Zhe Li

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the

Master of Science Degree in Engineering

 __
 Dr. Lingfeng Wang, Committee Chair

 __
 Dr. Weiqing Sun, Committee Co-Chair

 __
 Dr. Richard Molyet, Committee Member

 __
 Dr. Patricia R. Komuniecki, Dean
 College of Graduate Studies

The University of Toledo

May 2013

Copyright 2013, Zhe Li

This document is copyrighted material. Under copyright law, no parts of this document
may be reproduced without the expressed permission of the author.

iii

An Abstract of

A Neural Network Based Distributed Intrusion Detection System on Cloud Platform

By

Zhe Li

Submitted to the Graduate Faculty as partial fulfillment of the requirements for the
Masters of Science Degree in Engineering

The University of Toledo

May 2013

Intrusion detection system (IDS) is an important component to maintain network

security. Also, as the cloud platform is quickly evolving and becoming more popular in

our everyday life, it is useful and necessary to build an effective IDS for the cloud.

However, existing intrusion detection techniques will be likely to face challenges when

deployed on the cloud platform. The pre-determined IDS architecture may lead to

overloading of a part of the cloud due to the extra detection overhead. This thesis

proposes a neural network based IDS, which is a distributed system with an adaptive

architecture, so as to make full use of the available resources without overloading any

single machine in the cloud. Moreover, with the machine learning ability from the neural

network, the proposed IDS can detect new types of attacks with fairly accurate results.

Evaluation of the proposed IDS with the KDD dataset on a physical cloud testbed shows

that it is a promising approach to detecting attacks in the cloud infrastructure.

iv

Acknowledgements

This work would not be possible without the help and support of several people.

First, I would like to thank Dr. Lingfeng Wang and Dr. Weiqing Sun for their

guidance. Their attitude towards research and their insights in this field inspired me to

reach a new academic level. They taught me how to solve problems and analyze them in

an effective way. I believe the experience of being one of their students will have a big

influence in my life.

I would like to thank Dr. Richard Molyet for agreeing to serve on my committee.

I would also like to thank all the people who helped me to finish this project.

Finally, I would like to express my gratefulness and respect to my parents and

friends. Their encouragement are responsible for all that I have and will achieve.

v

Contents

An Abstract of .. iii

Acknowledgements .. iv

Contents .. v

List of Tables ... viii

List of Figures .. ix

List of Abbreviations .. x

Chapter 1 ... 1

1 Introduction .. 1

1.1 Background and Motivation ... 1

1.2 Existing IDS architectures and algorithms ... 6

1.3 Related Work .. 8

1.4 Objectives of Project ... 10

1.5 Synopsis of Thesis .. 11

1.6 Outline of Thesis ... 12

Chapter 2 ... 13

2 Literature Review... 13

2.1 Outline ... 13

vi

2.2 Neural Network Concepts and Applications ... 13

2.3 Backpropagation Algorithm .. 18

2.4 Backpropagation Algorithm in IDS .. 21

Chapter 3 ... 24

3 System Architecture ... 24

3.1 Outline ... 24

3.2 Cloud Computing .. 24

3.3 Building the Cloud .. 26

3.3.1 Ubuntu Enterprise Cloud ... 27

3.3.2 Eucalyptus .. 28

3.3.3 KVM .. 31

3.4 The Proposed IDS ... 31

3.5 Network Programming .. 35

3.6 Database .. 38

Chapter 4 ... 41

4 Results and Discussion .. 41

4.1 Outline ... 41

4.2 Basic IDS Performance ... 41

4.3 Detecting Result of IDS .. 44

4.4 IDS Performance in different Scenarios ... 47

Chapter 5 ... 54

5 Conclusion and Future work .. 54

vii

5.1 Summary and Conclusions ... 54

5.2 Future Work .. 54

References ... 56

viii

List of Tables

4. 1 Performance results of different IDS models... 43

4. 2 Results of the training phase .. 44

4. 3 Value intervals of different states .. 47

4. 4 Performance of IDS in different distributed structures .. 48

4. 5 Performance of IDS in different occupancy of CPU ... 49

4. 6 Comparison of Performances of IDS deployed in different number of VMs 50

4. 7 Performance of IDS with different size of large datasets .. 51

4. 8 Recovery time for proposed IDS ... 53

ix

List of Figures

2- 1 Biological neural network ... 15

2- 2 General architecture of the backpropagation algorithm based neural network 19

3- 1 The experimental cloud testbed based on Dell® PowerEdge® R710 and R610

Servers... 27

3- 2 Architecture of the Eucalyptus cloud .. 30

3- 3 Avalability of the cloud ... 30

3- 4 Architecture of the proposed IDS .. 33

3- 5 Process flowchart for the manager .. 35

4- 1 A screenshot demonstrating the testing results.. 46

file:///C:/Users/John%20Lee/Desktop/Microsoft%20Office%202007%20sp3/Draft.docx%23_Toc349172629
file:///C:/Users/John%20Lee/Desktop/Microsoft%20Office%202007%20sp3/Draft.docx%23_Toc349172630
file:///C:/Users/John%20Lee/Desktop/Microsoft%20Office%202007%20sp3/Draft.docx%23_Toc350529289
file:///C:/Users/John%20Lee/Desktop/Microsoft%20Office%202007%20sp3/Draft.docx%23_Toc350529289
file:///C:/Users/John%20Lee/Desktop/Microsoft%20Office%202007%20sp3/Draft.docx%23_Toc350529291
file:///C:/Users/John%20Lee/Desktop/Microsoft%20Office%202007%20sp3/Draft.docx%23_Toc350529292
file:///C:/Users/John%20Lee/Desktop/Microsoft%20Office%202007%20sp3/Draft.docx%23_Toc350529293

x

List of Abbreviations

ANN …………. Artificial Neural Network
API Application Program Interface

IDS ………....... Intrusion Detection System

UEC ………...... Ubuntu Enterprise Cloud

VM ………….... Virtual Machine

1

Chapter 1

1 Introduction

1.1 Background and Motivation

Cloud computing is developed based on the increasing demand of Internet using,

interacting and other related aspects; it usually involves providing dynamic expand

Internet service by virtualized resources. The cloud is a metaphor for describing networks

or Internet. In the past pictures of clouds are often used to represent telecommunication

network, and then it is also used to refer to abstraction of the Internet and the underlying

infrastructure. The narrow cloud computing concept refers to the rent and use mode of IT

infrastructure. It indicates the needed resources are obtained through the network, based

on rules like on-demand and easy to expand; Generalized cloud computing refers to the

rent and use mode of computing. This kind of service can be IT, software, Internet related,

or other services. It means computational ability can be treated as a kind of commodity

and be traded through the Internet just like other utilities such as water, gas, electricity

2

and so on. Cloud computing has the following main features:

1) Dynamic resource allocation. According to the real time demand of consumers,

cloud could dynamically divide or release different physical and virtual resources.

When a request is raised, cloud would match it rapidly by increasing the

available resources to realize elasticity of resources. If the user no longer needs

this part of the resources, it can release these resources for free. Thus, cloud

computing is regarded as infinite resources combined together which realizes the

scalability of IT resources.

2) On demand self-service. Cloud computing provides a self-service mode as

resources service, users can get resources automatically without interacting with

providers. At the same time, the cloud system provides a certain application

service directory; the customer can select the right service to meet their own

needs.

3) Convenience of network access. Users may access the network through different

terminal equipment which makes the network accessible from anywhere.

4) Measurable service. In cloud computing, according to different types of services,

resources can be automatically controlled and the allocation is optimized. It is a

kind of pay-as-you-go service model.

3

5) Virtualization. With the virtualization technology, it is possible to reorganize

computing resources distributed in different areas for realizing the sharing of

infrastructure.

 Nowadays, cloud computing is rapidly developed and known by more and more

people due to its advantages such as high scalability, high flexibility and low operational

cost. Cloud service users usually do not need to know how the cloud based software or

platform runs; instead, they only need to send the requests to the cloud provider and then

wait for the results, which is a much easier and more efficient way to access the needed

computing resources [1]. However, there are several issues for the current cloud

platforms. According to Ref. [2], security issues such as information leakage, unreliable

data and unauthorized access are the most concerning problems by the majority of cloud

users. Other issues such as stable operations, support systems and user friendliness have

received less attention.

To address the security problem with the cloud, it is a natural choice to deploy a

distributed IDS (Intrusion Detection System) on the cloud to protect the virtual machines

(VMs) and virtual networks against potential attacks. An intrusion detection system is a

piece of software that is usually used to monitor system performance to avoid unintended

behaviors and send report to the manager [3]. Intrusion detection system is a kind of

4

network transmission real-time monitoring system. It would raise an alarm or take the

initiative reaction to protect the network from attacks when suspicious actions are found.

The differences between intrusion detection system and other network security systems is

that IDS provides an effective way to keep the whole network safe. And there are two

main methods to build an IDS.

The first method is intended for anomaly detection. Anomaly detection refers to

the actions of looking up unexpected behaviors or data that do not meet the exist model.

These behaviors or data that do not conform to the requirements of the model is often

referred to as abnormalities, abnormal values, the disharmony of observation, exceptions,

aberrations, surprise, peculiarities, or contaminants in different application areas [4]. In

this approach, there is no established normal activities set into the IDS; instead, the IDS

will be designed to learn what kind of actions are malicious and what kind of actions are

normal based on a well-planned training program with plenty of data. The nature of

entered data is an important aspect of any anomaly detection technology. General input

data is always a collection of the data instance (also known as the object, record, point,

vector, pattern, case, sample, observation, entity) [5]. The advantage of this method is it

has the ability to explore new species of attacks; but on the other hand, it may cause a lot

of inaccurate judgment, such as raising an alarm when the network is working normal or

5

ignoring an attack as it considers the attack as normal action. The second way to build an

IDS is called signature-based detection which is dependent on a knowledge base. The

signature-based detection method is very useful, because it is very effective to detect

known threats through signatures of observed events to determine possible attacks [6].

This approach could accurately report and defend attacks which are already known in the

knowledge base, but the disadvantage is it has a limited effect to new kinds of attack, and

the knowledge base should be updated frequently to make sure the IDS has good

performance.

In this thesis, the first way is chosen to build the IDS. The major issue with

building it on a cloud platform is that the IDS could overload some busy nodes in the

cloud and slow down the detection efficiency if no special arrangements are made. On

the one hand, the IDS should not use too many resources to affect the performance of the

major computing tasks; on the other hand, the deployed IDS should detect attacks

efficiently. Therefore, it is desirable to equip the distributed IDS with the flexibility

feature in that it can dynamically adjust its architecture based on the real-time resource

usage information across the cloud. Moreover, it is important for the IDS system to be

capable of detecting unknown (new) attacks in the cloud. Hence, anomaly detection will

be more suitable, but it can be more demanding for resources [7, 8]. Thus, a balance

6

needs to be achieved to satisfy cloud customers as well as provide the reasonable

performance of intrusion detection simultaneously.

1.2 Existing IDS architectures and algorithms

In Ref. [9], the authors propose a hybrid intrusion detection system that combines

K-Means. They use K-nearest neighbor and Naive Bayes as the two key factors for

anomaly detection. An entropy based algorithm is used to select the important attributes

and removes the redundant attributes. In Ref. [10], a misuse intrusion detection system is

founded by a genetic algorithm that based on the knowledge of a set of intrusion behavior

classification rules. An adaptive network intrusion detection system is shown in Ref. [11],

which uses a two-stage architecture. In the first stage, some possible malicious

connections in the traffic are detected by a probabilistic classifier. In the second stage, the

authors try to minimize the possible IP addresses of attacks through an HMM based

traffic model. In Ref. [12], the researchers propose a distributed IDS by using multi-agent

methodology which is combined with accurate data mining techniques. Those intelligent

agents are responsible for collecting and analyzing the network connections, and the

performance is really good. The authors in Ref. [13] use evolution theory to explain the

evolution of data and connections in the network and thus reduce the complexity. The

7

proposed Intrusion Detection System (IDS) is based on this theory. Ref. [14] discusses an

IDS with a new alert clustering and analyzing facility. This mechanism could help all

cooperating nodes get a better understanding of whole system which helps them to find

false alarms and detect those damaged nodes in the system. Attacks in one node will

spread to the network to alert other cooperating nodes to update themselves about new

attack patterns. This will lead to early detection and prevention of attacks. In Ref. [15],

the authors choose 19 key features to describe all the various network visits. Then they

use a gradual feature removal method and combine it with a clustering method, ant

colony algorithm and support vector machine (SVM) to build an intrusion detection

system to determine whether a visit in the network is normal or not. It is shown in Ref.

[16] that a high-throughput intrusion detection system (IDS) is represented. This IDS is

based on a comparison architecture. It includes a bloom filter-based header comparison

and parallel pattern matching method which means it can parallel sequence compare

packet content with the Snort rules. Ref. [17] proposes an effective intrusion detection

system. It uses a Particle Swarm Optimization (PSO) as a feature selection algorithm and

a decision tree as a classifier. This would help accelerate the speed of detection and make

the result more accurate. In Ref. [18], authors claim that the Hidden Naïve Bayes (HNB)

is a data mining model that relaxes the Naïve Bayes method’s conditional independence

8

assumption which could help to solve intrusion detection problems as it has attributes

such as dimensionality, highly correlated features and large stream volumes.

1.3 Related Work

 Some approaches have been proposed to address the security issues in the

context of cloud computing. A multiple dimensional result [19] has been presented by

using an artificial neural network (ANN) based approach. The work was based on a

single machine instead of the cloud platform. In Ref. [20], the authors presented an

immune system based on both anomaly and misuse detection methods and compared the

two methods. The immune system is based on the combination of positive and negative

characterizations which come from several features defined as normal or abnormal states.

A trusted agent based approach was proposed in Ref. [21], which determines whether a

machine in a network is malicious based on the experiences and its previous operations.

In Ref. [22], Vieria and Schulter proposed an ANN based function to realize an IDS on

the cloud, and a feed-back structure ANN is used to create a behavior-based system and

an expert system to build a knowledge-based system. In Ref. [23] the authors

concentrated on alleviating the network traffic when realizing an IDS based on a

MapReduce framework. In Ref. [24], a framework of Collaborative Intrusion Detection

9

System is proposed to counter a variety of attacks, especially large-scale coordinated

attacks. In the proposed system, there are actually more than one IDS in the cloud

computing area, but the work is on one large and effective IDS. All the IDSs in the cloud

share information such as new kinds of attacks and send alert to each other so that the

users could get notifications in time. Thus, it could handle a variety of attacks even

attacks of large-scale very well. And in Ref. [25], an IDS module consisting of Snort and

a signature apriori algorithm is built which generates new rules from captured packets.

After the new rules are generated, they will be stored in the Snort configuration file to

improve the efficiency of Snort. This IDS exhibits a good performance in recognizing

known attacks and the attacks that are deduced from the original knowledge. Most kinds

of architectures of IDS today in the cloud environment are deployed on the network

periphery of each guest OS, this architecture will increase the threat of attacks and give

the hackers chance to compromise all guests from one compromised guest. In Ref. [26], a

hybrid architecture for deployment of an intrusion detection system is shown. This

architecture has a security mechanism on both sides of the cloud to ensure the “trustful

score” is good so that no compromised guest exists in the cloud. In Ref. [27], the authors

propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention

system (DCDIDP), which aims to provide whole protection and detection for all the

10

cloud providers that work together in different layers. This system is composed of three

layers: network, host and global so that it can be well distributed in different cloud

providers. In Ref. [28], cloud intrusion detection with a new statistical waveform based

classification is proposed, which records network connections in a period of time and

then draws a waveform based on them. Then it analyzes the waveform to find the

possible doubtful characteristics of the waveform and classifies intrusion type based on

features of the waveform.

1.4 Objectives of Project

 Based on the issues listed above, here a distributed IDS architecture is proposed

which consists of nodes running backpropagation (BP) based ANNs on the cloud

platform. By design, it is expected to achieve better flexibility, scalability and

performance. The proposed IDS system has two main characteristics:

1) It has a flexible distributed architecture which could adjust its configuration

based on real-time resource usage information to avoid overloading any node in

the cloud.

11

2) It provides multiple dimensional results which could be used to not only

recognize malicious activities but also find what malicious activities are taking

place.

After the IDS is built, it will be tested in different scenarios to see the

performance of it, which gives the information of whether this IDS is good enough and

how to improve it in the future.

1.5 Synopsis of Thesis

This thesis describes and discusses the creation and testing of the IDS on a cloud

platform. It begins by reviewing a neural network based algorithm which is called

backpropagation algorithm to provide the basic information, knowledge and ideas about

how the IDS could distinguish normal or malicious actions so that it would work in cloud

platform to defend attacks from network.

In the next step, the architecture of the IDS is designed, which includes details of

how the IDS would react to different requests under different situations in complex

network. This is done by first figuring out the concept of cloud and how a cloud works so

that a cloud could be built right to develop an IDS on it. Then it is time to think about

how many functional parts are needed in this IDS based on backpropagation algorithm.

12

The next thing to do is considering the real time contexts that could happen to a cloud

and modify the IDS architecture gradually until it could react properly, corresponding to

each of the contexts so that it could protect cloud in most cases. Next, a cloud is built

using 4 Dell Poweredge servers, then IDS is embedded on it and several different

scenarios are simulated to test it. After that, the test results are collected and analyzed to

draw a conclusion of the research and then the probable future work is pointed out.

1.6 Outline of Thesis

The remainder of the thesis is organized as follows. In Section 2, the BP-based

neural network is introduced. The design of ANN based intrusion detection in a cloud

environment is detailed in Section 3. The implementation of the proposed algorithm in a

physical cloud experimental testbed is discussed in Section 4, coupled with the related

experimental results and analysis. Conclusions and future work are given in the final

section.

13

Chapter 2

2 Literature Review

2.1 Outline

This chapter consists of three parts. The first two present the knowledge of neural

network and backpropagation algorithm, which are important to help understand this

study. Backpropagation algorithm is one of the most popular neural network based

algorithms that include feedbacks in the network. The third part indicates how to adjust

backpropagation algorithm in IDS on cloud platform.

2.2 Neural Network Concepts and Applications

The computer can learn knowledge through experience, which is called machine

learning. This learning process constitutes of learning by examples and learning by

analogy. Machine learning researches are often independent from the practical

applications. A researcher might develop a new classification method, and then compare

14

its performance (such as accuracy or AUC) with existing publicly available data set of

classification models to assess its effectiveness [29]. With machine learning ability, a

computer can automatically adapt itself to the complex environments, this machine

learning ability can be improved along with the time increase and more cases study. At

present the most popular machine learning algorithms are based on neural network or

genetic algorithm. This thesis is committed to neural network.

Artificial neural networks are designed to simulate biological neural networks.

Every neuron in the network is well programmed based on their properties and works

together to solve artificial intelligence problems without creating a model of a real system

[30]. A neural network can be defined as a system based on human brain structure model.

Human brain is composed by intensive nerve cells with mutual communication capacity.

These nerve cells are the basic units of the information processing mechanism of brain,

which are called neurons. A normal human brain can contain nearly 10 billion neurons

and 60 trillion connections and synapses between these neurons. The brain processes

information through these neurons, the information processing ability of human brain is

much faster and stronger than any computer existing today. Even though each neuron has

a very simple structure, a large number of neurons together can form a huge and mature

15

processing mechanism. As is shown in figure 2-1 [31], a neuron has cell body, soma, a lot

of fiber called dendritic, and a long fiber called axon.

Human brain can be thought as a highly complex, nonlinear, parallel information

processing system. The information process and information store procedures in the brain

are not completely separated, instead, they could happen simultaneously in the same

neural network. In other words, in the neural network, these two procedures happen

globally, not locally. Learning ability is the biggest characteristic of a biological neural

network, based on this idea, computers are used to simulate biological learning processes

so as to realize the functions that needed.

Figure 2- 1: Biological neural network [31]

16

An artificial neural network consists of a number of very simple processors which

are called neurons that are similar to the biological neurons in the brain. Between neurons,

there are weighted links combining them together as a whole network. The signals thus

transfer from one neuron to another. The output signal of the neurons will be split into

many branches that transmit the same signal. The outgoing branches terminate at the

incoming connections of other neurons in the network.

Neural network has been widely used thus far. There are various kinds of

algorithms and work based on neural network in computer science area that were applied

to many different aspects. As long as there are multiple variables randomly coming and

the user wants to determine or clarify something according to them, neural network

would be a good choice due to its self-learning and organizing ability. Here are some

instances. As shown in Ref. [32], an interesting research is done by inputting variables

such as moisture, titratable acidity, free fatty acids, tyrosine, and peroxide value into an

ANN and helping to develop the model of radial basis (exact fit) artificial neural network

for estimating the shelf life of burfi stored at 30ºC; the output value of this model will be

the acceptability, and the results turn out quite well. Another relevant job is done in Ref.

[33] that presents the potential of Cascade Backpropagation algorithm based ANN

17

models in detecting the shelf life of processed cheese stored at 30 ºC. The authors

accelerate learning in ANNs by using the Cascade backpropagation algorithm (CBA),

and the Bayesian regularization algorithm was used for training the network. In Ref. [34],

the authors describe a new approach to analyzing road images which often contain

vehicles and extract license plate (LP) from natural properties by finding vertical and

horizontal edges. An algorithm based on artificial neural network (ANN) is used for

recognition of Korean plate characters in this paper. Ref. [35] introduces a radial basis

function artificial neural network, in which a multilayer feed forward network is used to

deal with hydrological data. In RBFANN, spread and center values are the model

parameters which are estimated by inducing the suitable weight values. In Ref. [36], the

authors are aiming at the problem of the uncertainty of the calorific value of coal; a soft

measurement model for the calorific value of coal is proposed based on the RBF neural

network. And combined with the thought of k-cross validation, the genetic algorithm

constructed a fitness function to optimize the RBF network parameters. An BP based

neural network method is distributed in Ref. [37] which is efficient for solving the traffic

flow problem--a complex non-linear prediction of a large-scale system. This is effective

because Neural Network Model has adaptive and self-learning ability. Also Ref. [38]

shows classification of different types of targets (vehicles) in an Intelligent Transport

18

System. Supervised Artificial Neural Network is used as the soft computing tool for

classification, and here targets are classified on the basis of returned energy to the Radar

or Radar Cross Section (RCS) values taken at different aspect angles. In Ref. [39], the

authors analyze and determine the factors influencing the lifeless-repairable spares

consumption. They use the BP neural network to forecast the consumption and combine

it with a genetic algorithm which could optimize the weights and thresholds of the BP

neural network. In Ref. [40], the research aims to develop, reference image quality

measurement algorithms for JPEG images, and to classify the image based on its quality

an Elman neural network has been developed. A new approach using the Modular Radial

Basis Function Neural Network (M–RBF–NN) technique is presented in Ref. [41] to

improve rainfall forecasting performance coupled with appropriate data–preprocessing

techniques by Singular Spectrum Analysis (SSA) and Partial Least Square (PLS)

regression. Like these listed examples, IDS is also a promising direction to adopting the

neural network approach. In this thesis, a backpropagation algorithm will be discussed in

the next section, which is based on neural network and applied in IDS.

2.3 Backpropagation Algorithm

19

As shown in Figure 2-2 [31], the whole neural network is composed of three

layers: input layer, hidden layer and output layer.

The following procedure will show how the ANN (Artificial Neural Network)

algorithm works. Here are some notations used in introducing the algorithm: x, y, w

represent the input data, output result, weight value respectively, θ is correction needed

only in the hidden and output layer, it will be continuously updated after each iteration, e

is the error value, σ is error gradient and p is the number of iterations:

Input
layer

xi

x1

x2

xn

1

2

i

n

Output
layer

1

2

k

l

yk

y1

y2

yl

Input signals

Error signals

wjk

Hidden
layer

wij

1

2

j

m

Figure 2- 2: General architecture of the backpropagation algorithm based neural network

20

1) Initialization, set all the weights and threshold levels of the network to random

numbers uniformly distributed inside a small range (-2.4/Fi, 2.4/Fi), where Fi is

the total number of inputs of a neuron i in the network.

2) Calculate the outputs of the neurons in the hidden layer:

 yj(p)=sigmoid [xi p ∗ wij

n

i=1

 p − θj]

where n is the number of inputs of neuron j in the hidden layer, and sigmoid is

sigmoid activation function (sigmoid(s)=1 +
1

e−s
 , here e is the base of the natural

logarithm).

3) Calculate the actual outputs of the neurons in the output layer:

 yk(p)=sigmoid [xjk p ∗ wjk

m

j=1

 p − θk]

where m is the number of inputs of neuron k in the output layer.

4) Calculate the error gradient for the neurons in the output layer:

 σk(p)=yk(p)*[1-yk(p)]* ek(p)

where ek(p)=yd,k(p)- yk(p). yd,k is the desired output value.

5) Calculate the weight corrections:

Δwjk (p)=α*yj(p)* σk(p) then update

 wjk (p+1)=wjk (p)+Δwjk (p)

where α is termed learning rate.

21

6) Calculate the error gradient for the neurons in the hidden layer:

 σj(p)=yj(p) ∗ [1 − yj(p)] wjk p ∗ σk

I

k=1

(p)

7) Calculate the weight corrections:

 Δ𝑤𝑖𝑗 (p)=α*𝑥𝑖(p)* 𝜎𝑗 (p) then update

 wij (p+1)=wij (p)+Δwij (p)

8) Increase iteration p by one, go back to step 2 and repeat the process until the

selected error criterion is satisfied.

Next section includes a discussion about how to apply this algorithm in an IDS.

2.4 Backpropagation Algorithm in IDS

Now, a cloud can be regarded as many virtual machines which offer services to

users. Each machine can be used to simulate a couple of nodes in a neural network so that

several virtual machines in the same cluster will constitute a neural network.

The trained ANN acquired the knowledge of normal activities and attacks for

performing anomaly detection tasks. In this research, the KDD data package is used in

the training phase. This data package is designed and collected by MIT Lincoln Labs.

The objective was to survey and evaluate research in intrusion detection. A standard set

of data to be audited, which includes a wide variety of intrusions simulated in a military

22

network environment, was provided. In their design, for each network connection, 41

different quantitative and qualitative features were extracted. Here are some data samples

that are contained in KDD:

'0', 'icmp', 'ecr_i', 'SF', '1032', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0',

'0', '0', '511', '511', '0.00', '0.00', '0.00', '0.00', '1.00', '0.00', '0.00', '255', '255', '1.00', '0.00',

'1.00', '0.00', '0.00', '0.00', '0.00', '0.00', 'smurf.'

'0', 'tcp', 'http', 'SF', '307', '468', '0', '0', '0', '0', '0', '1', '0', '0', '0', '0', '0', '0', '0', '0', '0',

'0', '9', '14', '0.00', '0.00', '0.00', '0.00', '1.00', '0.00', '0.14', '255', '255', '1.00', '0.00', '0.00',

'0.00', '0.00', '0.00', '0.00', '0.00', 'normal.'

'0', 'tcp', 'http', 'SF', '54540', '8314', '0', '0', '0', '2', '0', '1', '1', '0', '0', '0', '0', '0', '0', '0',

'0', '0', '5', '5', '0.00', '0.00', '0.20', '0.20', '1.00', '0.00', '0.00', '220', '220', '1.00', '0.00', '0.00',

'0.00', '0.00', '0.00', '0.06', '0.06', 'back.'

where the 42nd record determines the status of the connection.

So after training, ANN learns what all the feature values are like in normal

activities and in various attack scenarios. When any event is coming into the network, it

will be treated as at least 41 input values corresponding to 41 different features of the

event; then all these inputs will pass through the hidden layer and output layer in the

ANN, and the output node will get the result. When a malicious activity is detected, the

23

output layer will raise an alarm and disallow the malicious activity. Every activity

followed will be recorded in case the origin of the attack needs to be tracked. The

supervisor of the cloud will fetch this information from the output layer. The output layer

resides in the cluster leader machine, and the leader is the only machine which is allowed

to communicate with the outside world. These 41 dimensional vectors make the

detections more accurate in the complex cyber environment.

24

Chapter 3

3 System Architecture

3.1 Outline

 At first, An introduction about cloud computing and some tools that are used to

build cloud on the servers, such as Ubuntu Enterprise Cloud, Eucalyptus, and KVM are

given. Then in the third subsection, details of architecture of the proposed IDS are

presented to show the protecting mechanism and working principles of the intrusion

detection system which was built for the cloud. The last two sections discuss about the

programming language and database that are used to realize the IDS.

3.2 Cloud Computing

Cloud computing is the way to use computing resources as an utility. Both

hardware and software can be delivered as a service over a network (typically the Internet)

[42]. According to Ref. [43], there are two types of cloud: public cloud and private cloud.

25

A public cloud is designed to apply a pay-as-you-go manner to the general public to

provide services. In Ref. [44], Adobe Creative cloud is a good instance of this: the users

pay a certain amount to get the resources and tools they want. And a private cloud is

usually used to deal with the inside data of an organization which are not open to the

public. For example, Ref. [45] shows that the IBM smart cloud can provide private cloud

service by giving threat protection for every layer of virtual infrastructure, limiting access

to critical data, tracking user access and getting virtual infrastructure reports. Three

classic services are provided in cloud computing right now [46]----HaaS, SaaS, DaaS.

HaaS stands for hardware as a service which supports users to buy infrastructure in a

pay-as-you-go manner so that users can get the computing resource they desire. A good

example of this service is the Amazon EC2 cloud [47]. Amazon Elastic Compute Cloud

(Amazon EC2) is a web service that provides flexible compute resources in the cloud. It

is designed to make web-scale computing easier for developers. SaaS means software as

a service. In this mode, software or an application is hosted as a service and provided to

customers across the Internet. Good examples of this service are Microsoft

“Software+Service” cloud service [48] and the Google cloud platform [49]. The

Microsoft cloud service called Windows Azure enables the user to quickly build, deploy

and manage applications across a global network of Microsoft-managed datacenters. The

26

user can build applications using any operating system, language or tool. And the Google

App Engine is a platform for traditional web applications in Google-managed data

centers which support multiple languages. It handles deploying code to a cluster,

monitoring, failover, and launching application instances as necessary. Developers have

read only access to the file system on App Engine. DaaS denotes data as a service. Many

applications such as Adobe Buzzwords are interested to use it to get data from the cloud

wherever and whenever is necessary. Also, two kinds of open source software are

popularly used to realize all these functions in cloud: OpenStack [50] and Eucalyptus

[51]. Openstack aims to deliver solutions for all types of clouds by being simple to

implement, massively scalable, and feature rich. Details of Eucalyptus are introduced

later in this chapter because it is used to build cloud in this research.

3.3 Building the Cloud

As shown in Figure 3-1, the servers used to build the cloud platform are two Dell

PowerEdge R710 server machines and two Dell PowerEdge R610 server machines with

Quad-core Intel® Xeon® CPU, 20 GB RAM and 500GB hard disk. 45 virtual machines

were created each with 256MB RAM to emulate a cloud environment. Ubuntu Enterprise

Cloud is used to build the cloud platform, and KVM to create instances in the cloud.

27

3.3.1 Ubuntu Enterprise Cloud

Ubuntu Enterprise Cloud (UEC) is a new type of open source tool powered by

Eucalyptus proposed by the Ubuntu company. The UEC is used to further simplify the

Eucalyptus based cloud infrastructure for its deployment, configuration, and use.

Figure 3- 1: The experimental cloud testbed based on Dell® PowerEdge® R710
and R610 Servers

28

The following contents are the aspects that UEC has simplified:

1) Create the Eucalyptus public cloud that could run on the Amazon EC2

infrastructure.

2) Build a private cloud which could run on the internal data center infrastructure

under the firewall.

So far, it is easy to install and use Eucalyptus. The users just need to download a

CD version of the cloud server and install it in any place they want to. UEC is also the

first open source item that allow the users to create cloud services in a local environment

and then utilize the powerful functions of the cloud easily.

3.3.2 Eucalyptus

Elastic Utility Computing Architecture for Linking Your Programs To Useful

Systems (Eucalyptus) is one of the most popular cloud platforms which is well developed

and feature-rich. Also it is designed to provide an Amazon EC2 compatible API. The

Eucalyptus cloud platform is composed of five major components as shown in Figure

3-2:

1) The CLC (Cloud controller) is used to manage the underlying virtualized

resources. This is the main controller that responsible for managing the whole

29

system. It is the main access entrance to the cloud for all users and administers.

CLC will help transfer the requests to the right components, then collect the

responses from those components and send them back to clients. CLC is the

window which connects Eucalyptus cloud and outside world.

2) The Walrus provides an S3-like service to perform scalability and access control

of virtual machines.

3) The CC (Cluster controller) controls the whole cluster by managing executions

and networking. CC maintenance the information of all the related Node

Controller that are running in the cluster, and is responsible for controlling life

cycle of instances on those nodes. It will pass virtual instances’ requests to the

Node Controller with available resources.

4) The SC (Storage controller) handles storage in a cluster. SC and Walrus work

together to store and access the virtual machine images, kernel images, RAM

disk images and user data.

5) At least one NC (Node controller) controls activities in VM instances. NC

controls operation system on the host machine and the corresponding hypervisor,

such as KVM or Xen. In this thesis, KVM is used as the hypervisor.

30

~/.euca/eucarc
euca-describe-availability-zones verbose
AVAILABILITYZONE myowncloud 192.168.1.1
AVAILABILITYZONE |- vm types free / max cpu ram disk
AVAILABILITYZONE |- m1.small 0048 / 0048 1 128 2
AVAILABILITYZONE |- c1.medium 0048 / 0048 1 256 5
AVAILABILITYZONE |- m1.large 0024 / 0024 2 512 10
AVAILABILITYZONE |- m1.xlarge 0024 / 0024 2 1024 20
AVAILABILITYZONE |- c1.xlarge 0012 / 0012 4 2048 20

Figure 3- 3: Availability of the cloud

Figure 3- 2: Architecture of the Eucalyptus cloud

31

Figure 3-3 shows the availability of the cloud that how many virtual machines it

could support after a cloud is created successfully.

3.3.3 KVM

KVM is the abbreviation for Kernel-based Virtual Machine. It is an open source

system virtualization module. It uses Linux’s own scheduler to realize management, so

when compared to Xen, its core source code is small. KVM has become one of the most

popular options to build virtual machines in academic circles. The KVM virtualization

needs hardware support (such as Intel VT technology or AMD SVM technology). It is the

full virtualization based on hardware.

3.4 The Proposed IDS

Based on the cloud platform has been introduced above, the ANN-based IDS will

be established. In the architecture, there is one manager VM and multiple worker VMs in

the network. The manager VM monitors the load information for the worker VMs and

decides the mapping of ANN on the worker VMs dynamically. That is, those worker

VMs having certain amounts of resources available will be chosen to perform the

intrusion detection task, and the worker VMs are assigned to the input layer, hidden layer

and output layer to form an ANN.

32

The input layer in the proposed ANN structure is responsible for collecting data

from the network. All the requests or data flow in the network should first be collected by

those nodes and then be passed through the whole neural network for any malicious

activities. The hidden layer receives the raw data from the input layer and processes them

based on the ANN mechanism discussed in Section 2, and forwards the results to the

output layer. This layer will also modify weight values of the input layer after each

iteration and pass those updated values to the input layer. The output layer derives the

final result based on the intermediate results received from the hidden layer. It also

updates weight values for the hidden layer and sends them to the hidden layer to improve

the overall network behavior.

As mentioned previously, the architecture shown in Figure 3-4 is proposed for

improving the system flexibility, which is also important to enhance the robustness of

IDS [52-54]. When one node in the IDS is unavailable due to situations such as deadlock,

poweroff, and scarce resources, the IDS is able to adjust itself accordingly to form a new

capable architecture.

33

input

input

hidden

hidden

outputmanager

 Figure 3-5 shows the process flow for the multi-threaded manager process. When

a client joins the IDS, it will raise a thread and connect to the server, the server will then

store the thread into the queue with the address and port number. Once the network

connection is established, all the clients will send the resource usage information

periodically to the manager so as to select the most appropriate nodes to construct the

IDS. After the IDS is built, all the other IDS nodes will receive the message from the

manager and run the corresponding (input, hidden, output or wait) function based on the

conditional statement. In addition, the IDS nodes will update the resource usage

information to the manager every 10 seconds, and all other nodes will do the same every

10 minutes.

Figure 3- 4: Architecture of the proposed IDS

34

When some nodes in the IDS become unavailable (busy or power off), the

manager will be informed of this event within 10 seconds based on the system design.

The manager will then choose new nodes based on the most recent resource usage

information. It will send messages to stop the old connections and ask to build new ones.

Thus, the whole IDS could continue to function. Also, when some nodes outside the IDS

become unavailable, the manager will be notified of this change within 10 minutes. So

the manager will not choose them as candidates for IDS nodes. Further, the structure of

the IDS can be adjusted through the manager, which sends messages to the candidate

nodes to build a new IDS structure as requested. All the models are trained off-line before

they are deployed.

35

manager

Conditional statements

wait

Stop connection

Send address and

port number back

Build connection

Read data

…….

Build connection

Do the computing

…….

Stop connection

Build new

connection

…….

Build server

Do the computing

Propagation

…….

wait

stop

update

output

hidden

input

Send

message

Update

every 10

seconds

for nodes

in IDS

Update

every 10

minutes

for nodes

not in IDS

3.5 Network Programming

Network programming could be simply understood as communicating and

transmitting data between different computers. To the programmers, it is important to

Figure 3- 5: Process flowchart for the manager

36

master a program interface and use it in a network programming model. Java SDK

provides some relatively simple API to do this.

These API exist in the Java.net package. So as long as this package is imported,

network programming can be started. The basic model of network programming is the

Client-Server model. Simply put, it is a communication between two processes, and one

of them has to provide a fixed socket, while the other one only needs to know this socket

and to establish a connection between them. Then, data communication can be set up by

using this connection. Here, the provider of the fixed socket is usually referred to as the

server, and the connection-builder is often called the client. Based on this simple model,

the network programming can be realized properly.

There are many APIs in Java which support this model. Here, only the

Java-Socket programming is introduced which is used in the IDS. Java has quite a simple

socket programming interface. First, the permanent socket provider and the server are

introduced. Java provides the ServerSocket class to support this function. Actually, when

the user creates an object of this class and provides the port number of the socket, the

user, in fact, has already set up a permanent interface for other computers to let them

access the server.

Here, let’s see a simple example of it:

37

“ServerSocket ssock1=new ServerSocket(30002);”

Every port is unique, which means that allocating the same port twice to different

servers is not allowed. A port is a unique mark on each individual computer that provides

different services. In addition, the port number is between 0 to 65535, and the first 1024

numbers have been reserved for Tcp/Ip connections, so the user has to assign port

numbers after 1024.

Next, a link needs to be established. The link is always requested by the client

first, and Java also provides a socket object to support this task. As long as the client

creates an instance of socket, the link is built:

“ssock =new Socket("127.0.0.1",30000);”

As can be seen in the example, the client must know the server's IP address. Here,

“127.0.0.1” means the server host is the same computer itself.

After the connection is built between computers, Input and Output streams are

needed to receive or send data through the network. Two methods from socket:

getInputStream() and getOutputStream() are needed. With all of the basic knowledge and

methods introduced so far, a simple sample of socket programming could be built and

tested.

38

 But there is still a problem. When the server accepts the first request from a

client, the client will occupy the port after the link is built, thus the subsequent clients can

no longer connect to the same server. There will be an exception popped up when more

than one client is running at the same time. So the server needs to be adjusted to fix this

problem because in the design of the IDS, there will always be many clients running

simultaneously. The way to solve this problem is to use the technology of “thread.” Every

time a server finds a connecting request from a client, it will assign the processes that

deal with the request to an individual thread. That way the server can deal with multiple

requests from clients.

3.6 Database

Database is an indispensable component in modern IT systems. Without advanced

database technologies, tedious work will be needed, and some tasks would be difficult to

accomplish, especially in big organizations such as banks, colleges and libraries.

In this work, as the KDD data package is used to test the IDS, those data in the

KDD package have to be stored first into a database so that it could be read and then sent

into the cloud to simulate network connections or requests in the network. Thus, MySQL

database is chosen to realize it.

39

Generally speaking, MySQL has the following chief characteristics:

1) There is no limit on the number of clients that can access the database at the same

time.

2) It can store more than 50,000,000 records.

3) It is one of the fastest database systems at present.

4) It is simple to set up the permissions of users.

Because here the IDS is used to provide protection for a Ubuntu Enterprise Cloud

which is powered by Eucalyptus under the Ubuntu system, the database is deployed the

under linux command-line environment. Below are the major steps:

First of all, MySQL should be installed by typing in a command like:

“sudo apt-get install mysql-server”

The second step is to log in by a command like:

 “mysql -h hostname -u username -p[password]”

Then some information will be displayed on the screen like the following:

shell> mysql -h host -u user -p

Enter password: ********

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 25338 to server version: 5.1.2-alpha-standard

40

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

When the above information is displayed, it indicates the user has logged in the

database successfully, and can then start to use it. The instructions in mysql are the same

as SQL database query language.

41

Chapter 4

4 Results and Discussion

4.1 Outline

In this chapter, the basic performance of the IDS based on some simple tests is

given to examine the accuracy and time efficiency of the IDS. Then some detection

results from a running IDS are presented and analyzed. After that, testing results from

different scenarios are discussed to understand the proposed IDS more comprehensively

and deeply.

4.2 Basic IDS Performance

The first step in the experiment is to train the neural network. As a flexible IDS is

desired, six different models are pre-trained (the number of models could be more

depending upon the specific applications) by the 10 percent of KDD dataset with

respective 3, 5, 7, 13, 19, 45 nodes to achieve the intrusion detection function. Actually

42

there is a data package in KDD called “corrected” which not only has the 41 features of a

network connection, but also has the “answer” indicating the status of this collection.

This “corrected” package is the one used to train the IDS. After that, the IDS is tested

with a package called “unlabel” which has the exactly same data as the “corrected”

package in same order, but only it does not have the “answers” indicating the status of

collections. As the “unlabel” package is used, the IDS can determine the status of the

connections and compare them with the right “answers” in the “corrected” package so

that knowledge can be gained to evaluate the performance. There are more than 300,000

records in these two packages. The IDS receives instructional signals from the manager,

and then forms the corresponding architecture for the intrusion detection tasks. Table 4.1

shows the performance results for different models/structures of the IDS in terms of

training time, detection time and detection accuracy. The numbers reported are the

average across 10 runs. As can be seen from the table, the average detection accuracy is

around 99% for all the three models, and the training detection time increases as the

number of IDS nodes increases because of additional communication overhead.

Here the 5-node architecture is chosen as an example and some resultant

experiment results will be discussed. In this 5-node neural network, the ANN is

distributed as a 2-2-1 structure, which means there are 2 nodes in both input and hidden

43

layers and 1 node in the output layer. The learning rate chosen is 0.1 and correction in the

two hidden node machines are 0.8 and -0.1 respectively and correction in the output node

machine is 0.3.

Table 4. 1: Performance results of different IDS models

Number of damaged nodes

Average recovery Time

1 3.6s

2 5.3s

3 6.1s

10 15.4s

In the input layer, those weight values keep changing in the training phase to

adapt to the training data so that the performance of the whole IDS will be constantly

improved. As there are 41 inputs (based on KDD dataset, every data flow in the network

has 41 different feature values), after the training phase each input will have a

corresponding weight value. In total 41 weights will be saved in the input layer, which

are ready to be used to conduct the detection task.

44

In the output layer, the iteration numbers and the error between the real result and

desired result can be obtained. In the whole training process, it was found that though the

error value did not keep decreasing after each single training circle, the general trend did

decrease which means the IDS performance is being improved. Technically speaking,

when the error becomes less than 0.001, the ANN is considered ready to be used.

The total time consumed in the training phase is between 5 to 12 minutes. As an

example, Table 4.2 below shows the value change in one of the 41 input weights (W1),

one of the hidden weights (H1) and the error value in the output layer (Error).

Table 4. 2: Results of the training phase

 Before training During training After training

W1 0.028706280142065916 0.02872633591204304 0.028755497556997633

H1 0.2163137261439795 0.2162864389576207 0.21626300081037786

Error 0.24707742093260648 5.738612462453663E-4 1.017146810110198E-15

4.3 Detecting Result of IDS

Following the training phase, ANN performance is evaluated using KDD no-label

dataset and corrected dataset. From the experimentation results, it was found that every

45

different state corresponds to a small range of values. Thus, according to the value

obtained from the output layer, the IDS can not only determine whether there are

malicious actions but also know what kind of attack is transpiring.

The sample results from a test are shown in Figure 4-1, and it can be seen that the

IDS is able to classify every abnormal activity and normal activity without any wrong

detection. The accuracy is 100% in this case. But it does not mean the accuracy can

always be this high. Initial values like weights, corrections, learning rate are randomly

generated and picked so every time when the ANN is trained, different results and value

intervals of the system states may be yielded. According to all the tests carried out, a 99%

or higher accuracy can be oftentimes achieved.

46

Figure 4- 1: A screenshot demonstrating the testing results

To illustrate the result more clearly, Table 4.3 is used to show multiple

dimensional results with different value intervals based on the same test shown in Figure

4-1.

47

Only two sets of states (i.e., smurf and xtem, Neptune and back) fall in the

overlapped intervals. So the overall performance is satisfactory.

Table 4. 3: Value intervals of different states

Value interval State
0.17~0.181 Ipsweep
0.062~0.067 Normal
0.81~0.82 snmpgetattack
0.093~0.094 Xsnoop
0.048~0.051 Satan
0.024~0.027 smurf or xterm
0.61~0.63 Warezmaster
0.076~0.079 apache2
0.182~0.185 neptune or back
0.156~0.159 Nmap
0.41~0.43 Portsweep
0.037~0.039 Xlock
>1 buffer_overflow
0.71~0.73 guess_passwd
0.29~0.31 Multihop
0.25~0.27 Mailbomb
0.055~0.057 Mscan
0.067~0.069 Named

4.4 IDS Performance in different Scenarios

As can be seen in the performance table given in the previous section, the average

training time and detection time increase when the model becomes larger. That maybe

48

due to two principal reasons: the first reason is that when there are more VMs involved in

the IDS, there are more communications needed to be established which increases the

running time of the system. And the second reason is the cross-server communications.

Hence some more tests related to this topic are presented for trying to address this

problem. Table 4.4 proves that communications between the same or different physical

machines are not closely associated with the time increase. There is no big difference of

time efficiency between the same structure with different distributions in physical servers.

So the main reason for the time increase should be the communication cost itself.

Table 4. 4: Performance of IDS in different distributed structures

Model

structure

Average

training

time

Average

detect time

Average

detect

accuracy

Server 1 Server2 Server3

3 1 1 1 3m32.6s 12.64s 99%
3 1 1-1 3m39.0 13.44s 99.2%
3 1-1-1 3m35.1s 13.53s 99.1%
5 2 2 1 4m01.9s 26.65s 99.1%
5 2-2 1 3m57.2s 23.74s 99.7%
5 2-2-1 4m00.8s 24.75s 99.4%
7 3 3 1 4m21.8s 36.33s 99.5%
7 3 3-1 4m27.9s 37.28s 99.1%
7 3-3-1 4m25.0s 36.02s 98.9%
15 7 7 1 6m16.8s 83.58s 99.3%
15 7 7-1 6m20.2s 80.99s 99.6%
15 7-7-1 6m15.1s 82.20s 99.5%

49

As can be seen in Table 4.5, when the CPU is very busy, the time required increases

dramatically. For instance, in the case that the usage of CPU is 70%, 3-node structure

spends 53.72s to accomplish the detection which is longer than 7- node structure spends

in the case of 30% usage of CPU. This makes sense for distributing IDS in large scale

some time since the IDS is distributed in larger structure by involving more VMs to avoid

high CPU usage in each VM which dominates the time consumption more than the

communication does.

Table 4. 5: Performance of IDS in different occupancy of CPU

Model

Structure

Average Detect time

Different VMs ALL in one VM

idle 30% 50% 70% 98% Idle 30% 50% 70% 98%

3 1-1-1 13.53s 17.54s 24.20s 53.72s 134.33

s

10.04s 13.01s 17.81s 42.20s 101.10s

5 2-2-1 24.75s 32.08s 44.27s 98.64s 246.65

s

20.03s 39.35s 54.01s 120.34s 300.91s

7 3-3-1 36.02s 46.69s 64.43s 143.03s 357.58

s

39.23s 50.89s 70.23s 155.90s 389.76s

13 6-6-1 69.79s 90.45s 124.82s 277.1s 692.75

s

110.51s 142.91s 197.21s 437.82s 1094.55

s

19 9-9-1 102.58s 132.96s 183.48s 407.32s 1018.2

5s

252.28s 327.08s 451.36 1002.01

s

2504.90

s

45 22-22-1 248.68s 318.33s 439.29s 975.22s 2438.0

5s

983.85s 1260.58

s

1581.44

s

3510.79

s

8776.98

s

50

Table 4. 6: Comparison of Performances of IDS deployed in different number of
VMs

Model

Structure

Average training time(different structure)

Different VMs ALL in one VM

3 1-1-1 3m35.1s

1m36s

5 2-2-1 3m58.3s

3m02s

7 3-3-1 4m25.0s

4m56s

13 6-6-1 5m48.8s

9m21s

19 9-9-1 7m11.4s

17m40s

45 22-22-1 12m.58.8s

51m18s

Table 4.6 shows different training time when the same structure is used but is

distributed in only one VM compared with that when it is distributed in different VMs.

And during training, usage of CPU is not a key factor.

When there are bigger data packages passing through the IDS, it doesn’t affect the

IDS a lot since the time spent with respect to the size of data package exhibits a linear

growth. It is shown in the Table 4.7. So this result does not support the view for

distributing the IDS in large scale in real time, although it was supported by the previous

test results.

51

Table 4. 7: Performance of IDS with different size of large datasets

Model

structure

Average Detect time

100000 data 200000 data 400000 data

3 1-1-1 13.53s 25.70s 46.26s

5 2-2-1 24.75s 47.02s 84.63s

7 3-3-1 36.02s 68.44s 123.20s

13 6-6-1 69.79s 132.60s 238.68s

19 9-9-1 102.58s 194.90s 350.82

45 22-22-1 248.68s 472.49 850.48s

So in summary, when the cloud is not busy, communication is the most important

factor that dominates the time usage; but if the VMs are very busy (usage of CPU higher

than 50%), it seems that computation starts to dominate the time consumption. This also

explains why when a lot of nodes are embedded in one VM, the training time exceeds

that in the case when those nodes are distributed in different VMs (see the training time

52

of 7 or 13 nodes in table 4.6). Thus, it is not recommended to simulate more than 5 nodes

in a single VM.

The proposed IDS is tested in several different scenarios. There are three points to

be claimed here:

1) In an extreme case, when all the VMs are considered busy, the IDS uses every

VM in the cloud while occupying fewer resources in each VMs than usual cases.

2) The system could handle somehow serious damage in the cloud with 10 VMs

(1/4 of the total number) being unavailable. The recovery time is dependent on

how many VMs are damaged. The more new VMs that need to be found to

substitute the unavailable VMs, the more communications and new connections

needed to establish. Therefore, more time will be consumed.

3) When a lot of VMs are busy, the manager prefers to make the IDS size smaller

This is different from what it did in the extreme case when all the VMs are busy.

However, when the size is too small such that all the VMs involved are busy, the

manager starts to enlarge the IDS to involve more VMs so that each VM could

contribute fewer resources to the IDS.

53

Table 4. 8: Recovery time for proposed IDS

Number of damaged
nodes

Average recovery Time

1 3.6s

2 5.3s

3 6.1s

10 15.4s

The recovery cost is also evaluated when a number of IDS nodes become

unavailable. The results shown in Table 4.8 are based on the 45-node model with a

22-22-1 architecture.

The more the new VMs needed to find to substitute the unavailable VMs, the

more communications and new connections needed to establish; therefore, more time is

consumed.

54

Chapter 5

5 Conclusion and Future work

5.1 Summary and Conclusions

Advanced soft computing and artificial intelligence methods/techniques are being

used widely in Intrusion. Detection Systems (IDS) for acquiring the ability to learn and

evolve, which makes them more accurate and efficient in the presence of enormous

number of unpredictable attacks. In this thesis, a neural network based IDS is built on a

cloud platform. The accuracy of the implemented IDS is shown to be high and the time

expense is acceptable. Implementation of the neural network in the cloud for intrusion

detection is a promising direction.

5.2 Future Work

There is still much room left for further improvement of the current work. For

example, the KDD dataset used is based on every message passing through a single

55

machine in the network. In fact, there are various ways to attack a network such as by

compromising several machines simultaneously [55] or starting an attack inside the

network by a compromised node. So an enhanced algorithm should be developed to

detect those kinds of attacks. Also, larger data sets and more complex and realistic

scenarios should be developed and tested.

 And there is another slight complication that ANN lacks in certain areas, which

are detection precision for low frequent attacks and detection stability. So it is necessary

to think about a way to address this problem [56]. Also, the anomaly detection algorithm

can be further enhanced by adding misuse detection functions. The idea is to build an

expert database to achieve knowledge based detection.

56

References

[1] Ramgovind, S. Eloff and M.M. Smith, E., “The management of security in Cloud
computing”, in Information Security for South Asia, 2010, pp. 1-7.

[2] M. Okuhara, T. Shiozaki, T. Suzuki, Security architectures for cloud computing,
FUJITSU Sci. Tech. J., vol. 46, no. 4, (2010) October, pp. 397-402.

[3] Wikipedia, http://en.wikipedia.org/wiki/Intrusion_detection_system.

[4] Varun Chandola, Arindam Banerjee, Vipin Kumar, Anomaly Detection : A
Survey, ACM Computing Surveys, September 2009.

[5] Tan, P.-N., Steinbach, M., and Kumar, Introduction to Data Mining,
Addison-Wesley, V. 2005, Charper 2.

[6] Ankita Tuteja, Ravi Shanker, Optimization of Snort for Extrusion and Intrusion
Detection and Prevention, International Journal of Engineering Research and
Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 3, May-Jun 2012,
pp.1768-1774.

[7] A. K. Ghosh and A. Schwartzbard, a study of using neural network for anomaly
and misuse detection, Proceedings of the 8th USENIX Security Symposium, page 12,
Washington, D.C., USA, August, 1999.

[8] W. Lee and D. Xiang, Information-Theoretic Measures for Anomaly Detection,
Proceedings of 2001 IEEE Symposium on Security and Privacy, page 130.

57

[9] Om Hari, Kundu Aritra, A hybrid system for reducing the false alarm rate of
anomaly intrusion detection system, Information Technology (RAIT), 2012 1st
International Conference on, pp.131-136.

[10] Mayank Kumar Goyal, Alok Aggarwal, Composing Signatures for Misuse
Intrusion Detection System Using Genetic Algorithm in an Offline Environment,
Intelligent Systems and Computing Volume 176, 2012, pp 151-157.

[11] Karthick, R. Rangadurai, Adaptive network intrusion detection system using a
hybrid approach, Communication Systems and Networks (COMSNETS), 2012 Fourth
International Conference, pp.1-7.

[12] Imen Brahmi, Sadok Ben Yahia, Hamed Aouadi, Pascal Poncelet, Towards a
Multiagent-Based Distributed Intrusion Detection System Using Data Mining
Approaches, 7th International Workshop on Agents and Data Mining Interation, ADMI
2011, Taipei, Taiwan, May 2-6, 2011, pp. 173-194.

[13] Mohammad Sazzadul Hoque, Md. Abdul Mukit, Md. Abu Naser Bikas, An
Implementation of Intrusion Detection System Using Genetic Algorithm, International
Journal of Network Security & Its Applications, Volume 4, Number 2, pages 109 - 120,
March 2012.

[14] Deepa Krishnan, Madhumita Chatterjee, An Adaptive Distributed Intrusion
Detection System for Cloud Computing Framework, International Conference, SNDS
2012, Trivandrum, India, October 11-12, 2012. Proceedings, pp. 466-473.

[15] Yinhui Li, Jingbo Xia, Silan Zhang, Jiakai Yan, Xiaochuan Aj, Kuobin Da, An
efficient intrusion detection system based on support vector machines and gradually
feature removal method, Expert Systems with Applications Volume 39, Issue 1, January
2012, Pages 424–430.

[16] Yi-Mao Hsiao, Ming-Jen Chen, Yuan-Sun Chu, Chung-Hsun Huang,
High-throughput intrusion detection system with parallel pattern matching, IEICE
Electronics Express Vol. 9 2012, pp. 1467-1472.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6188804
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6188804
http://link.springer.com/bookseries/11156
http://www.sciencedirect.com/science/journal/09574174

58

[17] Levent Koc, Thomas A. Mazzuchi, Shahram Sarkani, A network intrusion
detection system based on a Hidden Naïve Bayes multiclass classifier, Expert Systems
with Applications Volume 39, Issue 18, 15 December 2012, Pages 13492–13500

[18] Ahmed A. Elngar, Dowlat A. El A. Mohamed, Fayed F. M. Ghaleb, A Fast
Accurate Network Intrusion Detection System, International Journal of Computer
Science and Information Security Volume 10, Issue 9, 2012, pp. 29-35.

[19] S. Mukkamala, G. Janoski, and A. Sung, Intrusion Detection Using Neural
Networks and Support Vector Machines, Neural Networks, Proc. of the 2002
International Joint Conference, pp. 1702-1707.

[20] D. Dasgupta and F. Gonz´alez, An Immunity-Based Technique to Characterize
Intrusions in Computer Networks, IEEE Transactions on Evolutionary Computation, 6(3),
pp. 1081-1088, June 2002.

[21] S. Pal, S. Khatua, N. Chaki, and S. Sanyal, A New Trusted and Collaborative
Agent Based Approach for Ensuring Cloud Security, Annals of Faculty Engineering
Hunedoara International Journal of Engineering, Vol. 10, Issue 1, February, 2012.

[22] K. Vieira, A. Schulter, C. Westphall, and C. Westphall, “Intrusion detection
techniques in grid and cloud computing environment,” IT Professional, vol. 99, 2009.

[23] M. D. Holtz, B. M. David, and R. T. de Sousa Junior, “Building Scalable
Distributed Intrusion Detection Systems Based on the MapReduce Framework”,
REVISTA Telecomunicacoes, no. 2, pp. 22-31, 2011.

[24] Nguyen Doan Man, Eui-Nam Huh, A Collaborative Intrusion Detection System
Framework for Cloud Computing, Proceedings of the International Conference on IT
Convergence and Security 2011, Lecture Notes in Electrical Engineering Volume 120,
2012, pp 91-109.

[25] Chirag N. Modi, Dhiren R. Patel, Avi Patel, Muttukrishnan Rajarajan,
Integrating Signature Apriori based Network Intrusion Detection System (NIDS) in
Cloud Computing, Procedia Technology Volume 6, 2012, Pages 905–912.

http://www.sciencedirect.com/science/journal/09574174
http://www.sciencedirect.com/science/journal/09574174
http://www.doaj.org/doaj?func=issues&jId=70222&uiLanguage=en
http://www.doaj.org/doaj?func=issues&jId=70222&uiLanguage=en
http://www.sciencedirect.com/science/journal/22120173

59

[26] Sanchika Gupta, Susmita Horrow, Anjali Sardana, A Hybrid Intrusion Detection
Architecture for Defense against DDoS Attacks in Cloud Environment, 5th International
Conference, IC3 2012, Noida, India, August 6-8, 2012. pp. 498-499.

[27] Taghavi Zargar, Saman, Takabi, Hassan, Joshi, James B.D., DCDIDP: A
Distributed, Collaborative, And Data-Driven Intrusion Detection And Prevention
Framework For Cloud Computing Environments, CollaborateCom 2011, October 15-18,
2011.

[28] Liu Yiming, Tseng Kuo-Kun, Pan Jeng-Shyang, Statistical Based Waveform
Classification for Cloud Intrusion Detection, Computing, Measurement, Control and
Sensor Network (CMCSN), 2012 International Conference, pp 225-228.

[29] Carla E. Brodley, Umaa Rebbapragada, Kevin Small, Byron Wallace,
Challenges and Opportunities in Applied Machine Learning, AI Magazine Vol 33, No 1,
2013.

[30] Wikipedia, http://en.wikipedia.org/wiki/Neural_network.

[31] N. Michael, Artificial Intelligence - A Guide to Intelligent Systems-2nd edition,
Addison Wesley, 2005.

[32] Sumit Goyal, Gyanendra Kumar Goyal, Radial Basis (Exact Fit) Artificial Neural
Network Technique for Estimating Shelf Life of Burfi, Advances in Computer Science
and its Applications (ISSN 2166-2924) 93 Vol. 1, No. 2, June 2012.

[33] Sumit Goyal , Gyanendra Kumar Goyal, A Novel Method for Shelf Life
Detection of Processed Cheese Using Cascade Single and Multi-Layer Artificial Neural
Network Computing Models, ARPN Journal of Systems and Software, VOL. 2, NO. 2,
February 2012.

[34] Kaushik Deb, Ibrahim Khan, Anik Saha, Kang-Hyun Jo, An Efficient Method of
Vehicle License Plate Recognition Based on Sliding Concentric Windows and Artificial
Neural Network, 2nd International Conference on Computer, Communication, Control
and Information Technology(C3IT-2012) on February 25 - 26, 2012.

60

[35] K.S. Kasiviswanathan, Avinash Agarwal, Radio Basis Function Artificial Neural
Network: Spread Selection, International Journal of Advanced Computer Science, Vol. 2,
No.11, pp. 394-398, 2012.

[36] Yuan Jing, Minfang, Qi, Zhongguang, Fu, Prediction of coal calorific value based
on the RBF neural network optimized by genetic algorithm, Natural Computation (ICNC),
2012 Eighth International Conference, pp. 440-443, 2012.

[37] Anuja Nagare, Shalini Bhatia, Traffic Flow Control using Neural Network,
International Journal of Applied Information Systems (IJAIS), Volume 1– No.2, January
2012.

[38] Priyabrata Karmakar, Bappaditya Roy, Tirthankar Paul, Shreema Manna,
Target Classification: An application of Artificial Neural Network in Intelligent
Transport System, International Journal of Advanced Research in Computer Science and
Software Engineering, Volume 2, Issue 6, June 2012.

[39] Feng Guo, Su-qin Zhang, Deng-bin Zhang, Wei Gao, Application of Genetic
Neural Network on Lifeless-Repairable Spares Consumption Forecasting, Computer
Science & Service System (CSSS), 2012 International Conference, pp.1313-1315, 2012.

[40] Paulraj M. P, Mohd Shuhanaz Zanar Azalan, Hema C.R., Rajkumar
Palaniappan, Image Quality Assessment using Elman Neural Network Model and
Interleaving Method, International Journal of Human Computer Interaction (IJHCI),
Volume 3, Issue 3, 2012.

[41] Jiansheng Wu Yu, Jimin Yu, Rainfall time series forecasting based on Modular
RBF Neural Network model coupled with SSA and PLS, Journal of Theoretical and
Applied Computer Science, Vol. 6, No. 2, 2012, pp. 3–12.

[42] Wikipedia, http://en.wikipedia.org/wiki/Cloud_computing.

[43] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, Dav id Patterson, Ariel Rabkin, Ion Stoica,
Matei Zaharia, A View of Cloud Computing, Communications of the ACM, Vol. 53 No.
4, Pages 50-58.

61

[44] Adobe Creative Cloud, http://www.adobe.com/products/creativecloud.

[45] IBM Smart Cloud, http://www.ibm.com/cloud-computing.

[46] Yadong Gong, Zongquan Ying, Meihong Lin, A Survey of Cloud Computing,
Proceedings of the 2nd International Conference on Green Communications and
Networks 2012 (GCN 2012): Volume 3, 2013.

[47] Amazon EC2, http://aws.amazon.com/ec2/.

[48] Windows Azure, http://www.windowsazure.com.

[49] Google Cloud Platform, https://cloud.google.com/products/cloud-storage.

[50] OpenStack, http://www.openstack.org.

[51] Eucalyptus, http://www.eucalyptus.com.

[52] V. Kotov, V. Vasilyev, “A Survey of Modern Advances in Network Intrusion
Detection”, 13th International Workshop on Computer Science and Information
Technologies (CSIT’2011), pp. 18-21, 2011.

[53] P. Guan and X. Li, “Minimizing distribution cost of distributed neural networks,”
Scalable Software Systems Laboratory, Department of Computer Science, Oklahoma
State University, Stillwater, pp. 1-5, 2007.

[54] Y. Chen, V. Paxson, and R. Katz, "What’s New About Cloud Computing
Security?" Technical Report No. UCB/EECS-2010-5.

[55] S. Bharadwaja, W. Sun, M. Niamat, F. Shen, Collabra: A Xen Hypervisor based
Collaborative Intrusion Detection System, Eighth International Conference Information
Technology: New Generations (ITNG), pp. 695-700, 2011.

[56] D.P. Gaikwad, Sonali Jagtap, Kunal Thakare, Vaishali Budhawant, Anomaly
Based Intrusion Detection System Using Artificial Neural Network and Fuzzy Clustering,
International Journal of Engineering Research & Technology, Vol. 1, Issue 9, Nov. 2012.

