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Intrusion detection system (IDS) is an important component to maintain network 

security. Also, as the cloud platform is quickly evolving and becoming more popular in 

our everyday life, it is useful and necessary to build an effective IDS for the cloud. 

However, existing intrusion detection techniques will be likely to face challenges when 

deployed on the cloud platform. The pre-determined IDS architecture may lead to 

overloading of a part of the cloud due to the extra detection overhead. This thesis 

proposes a neural network based IDS, which is a distributed system with an adaptive 

architecture, so as to make full use of the available resources without overloading any 

single machine in the cloud. Moreover, with the machine learning ability from the neural 

network, the proposed IDS can detect new types of attacks with fairly accurate results. 

Evaluation of the proposed IDS with the KDD dataset on a physical cloud testbed shows 

that it is a promising approach to detecting attacks in the cloud infrastructure.   
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Chapter 1 

1 Introduction 

1.1 Background and Motivation 

Cloud computing is developed based on the increasing demand of Internet using, 

interacting and other related aspects; it usually involves providing dynamic expand 

Internet service by virtualized resources. The cloud is a metaphor for describing networks 

or Internet. In the past pictures of clouds are often used to represent telecommunication 

network, and then it is also used to refer to abstraction of the Internet and the underlying 

infrastructure. The narrow cloud computing concept refers to the rent and use mode of IT 

infrastructure. It indicates the needed resources are obtained through the network, based 

on rules like on-demand and easy to expand; Generalized cloud computing refers to the 

rent and use mode of computing. This kind of service can be IT, software, Internet related, 

or other services. It means computational ability can be treated as a kind of commodity 

and be traded through the Internet just like other utilities such as water, gas, electricity 
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and so on. Cloud computing has the following main features: 

1) Dynamic resource allocation. According to the real time demand of consumers, 

cloud could dynamically divide or release different physical and virtual resources. 

When a request is raised, cloud would match it rapidly by increasing the 

available resources to realize elasticity of resources. If the user no longer needs 

this part of the resources, it can release these resources for free. Thus, cloud 

computing is regarded as infinite resources combined together which realizes the 

scalability of IT resources. 

2) On demand self-service. Cloud computing provides a self-service mode as 

resources service, users can get resources automatically without interacting with 

providers. At the same time, the cloud system provides a certain application 

service directory; the customer can select the right service to meet their own 

needs. 

3) Convenience of network access. Users may access the network through different 

terminal equipment which makes the network accessible from anywhere. 

4) Measurable service. In cloud computing, according to different types of services, 

resources can be automatically controlled and the allocation is optimized. It is a 

kind of pay-as-you-go service model. 
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5) Virtualization. With the virtualization technology, it is possible to reorganize 

computing resources distributed in different areas for realizing the sharing of 

infrastructure. 

 Nowadays, cloud computing is rapidly developed and known by more and more 

people due to its advantages such as high scalability, high flexibility and low operational 

cost. Cloud service users usually do not need to know how the cloud based software or 

platform runs; instead, they only need to send the requests to the cloud provider and then 

wait for the results, which is a much easier and more efficient way to access the needed 

computing resources [1]. However, there are several issues for the current cloud 

platforms. According to Ref. [2], security issues such as information leakage, unreliable 

data and unauthorized access are the most concerning problems by the majority of cloud 

users. Other issues such as stable operations, support systems and user friendliness have 

received less attention.  

To address the security problem with the cloud, it is a natural choice to deploy a 

distributed IDS (Intrusion Detection System) on the cloud to protect the virtual machines 

(VMs) and virtual networks against potential attacks. An intrusion detection system is a 

piece of software that is usually used to monitor system performance to avoid unintended 

behaviors and send report to the manager [3]. Intrusion detection system is a kind of 
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network transmission real-time monitoring system. It would raise an alarm or take the 

initiative reaction to protect the network from attacks when suspicious actions are found. 

The differences between intrusion detection system and other network security systems is 

that IDS provides an effective way to keep the whole network safe. And there are two 

main methods to build an IDS.  

The first method is intended for anomaly detection. Anomaly detection refers to 

the actions of looking up unexpected behaviors or data that do not meet the exist model. 

These behaviors or data that do not conform to the requirements of the model is often 

referred to as abnormalities, abnormal values, the disharmony of observation, exceptions, 

aberrations, surprise, peculiarities, or contaminants in different application areas [4]. In 

this approach, there is no established normal activities set into the IDS; instead, the IDS 

will be designed to learn what kind of actions are malicious and what kind of actions are 

normal based on a well-planned training program with plenty of data. The nature of 

entered data is an important aspect of any anomaly detection technology. General input 

data is always a collection of the data instance (also known as the object, record, point, 

vector, pattern, case, sample, observation, entity) [5]. The advantage of this method is it 

has the ability to explore new species of attacks; but on the other hand, it may cause a lot 

of inaccurate judgment, such as raising an alarm when the network is working normal or 
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ignoring an attack as it considers the attack as normal action. The second way to build an 

IDS is called signature-based detection which is dependent on a knowledge base. The 

signature-based detection method is very useful, because it is very effective to detect 

known threats through signatures of observed events to determine possible attacks [6]. 

This approach could accurately report and defend attacks which are already known in the 

knowledge base, but the disadvantage is it has a limited effect to new kinds of attack, and 

the knowledge base should be updated frequently to make sure the IDS has good 

performance.  

In this thesis, the first way is chosen to build the IDS. The major issue with 

building it on a cloud platform is that the IDS could overload some busy nodes in the 

cloud and slow down the detection efficiency if no special arrangements are made. On 

the one hand, the IDS should not use too many resources to affect the performance of the 

major computing tasks; on the other hand, the deployed IDS should detect attacks 

efficiently. Therefore, it is desirable to equip the distributed IDS with the flexibility 

feature in that it can dynamically adjust its architecture based on the real-time resource 

usage information across the cloud. Moreover, it is important for the IDS system to be 

capable of detecting unknown (new) attacks in the cloud. Hence, anomaly detection will 

be more suitable, but it can be more demanding for resources [7, 8]. Thus, a balance 
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needs to be achieved to satisfy cloud customers as well as provide the reasonable 

performance of intrusion detection simultaneously. 

1.2 Existing IDS architectures and algorithms 

In Ref. [9], the authors propose a hybrid intrusion detection system that combines 

K-Means. They use K-nearest neighbor and Naive Bayes as the two key factors for 

anomaly detection. An entropy based algorithm is used to select the important attributes 

and removes the redundant attributes. In Ref. [10], a misuse intrusion detection system is 

founded by a genetic algorithm that based on the knowledge of a set of intrusion behavior 

classification rules. An adaptive network intrusion detection system is shown in Ref. [11], 

which uses a two-stage architecture. In the first stage, some possible malicious 

connections in the traffic are detected by a probabilistic classifier. In the second stage, the 

authors try to minimize the possible IP addresses of attacks through an HMM based 

traffic model. In Ref. [12], the researchers propose a distributed IDS by using multi-agent 

methodology which is combined with accurate data mining techniques. Those intelligent 

agents are responsible for collecting and analyzing the network connections, and the 

performance is really good. The authors in Ref. [13] use evolution theory to explain the 

evolution of data and connections in the network and thus reduce the complexity. The 
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proposed Intrusion Detection System (IDS) is based on this theory. Ref. [14] discusses an 

IDS with a new alert clustering and analyzing facility. This mechanism could help all 

cooperating nodes get a better understanding of whole system which helps them to find 

false alarms and detect those damaged nodes in the system. Attacks in one node will 

spread to the network to alert other cooperating nodes to update themselves about new 

attack patterns. This will lead to early detection and prevention of attacks. In Ref. [15], 

the authors choose 19 key features to describe all the various network visits. Then they 

use a gradual feature removal method and combine it with a clustering method, ant 

colony algorithm and support vector machine (SVM) to build an intrusion detection 

system to determine whether a visit in the network is normal or not. It is shown in Ref. 

[16] that a high-throughput intrusion detection system (IDS) is represented. This IDS is 

based on a comparison architecture. It includes a bloom filter-based header comparison 

and parallel pattern matching method which means it can parallel sequence compare 

packet content with the Snort rules. Ref. [17] proposes an effective intrusion detection 

system. It uses a Particle Swarm Optimization (PSO) as a feature selection algorithm and 

a decision tree as a classifier. This would help accelerate the speed of detection and make 

the result more accurate. In Ref. [18], authors claim that the Hidden Naïve Bayes (HNB) 

is a data mining model that relaxes the Naïve Bayes method’s conditional independence 



8 
 

assumption which could help to solve intrusion detection problems as it has attributes 

such as dimensionality, highly correlated features and large stream volumes. 

1.3 Related Work 

 Some approaches have been proposed to address the security issues in the 

context of cloud computing. A multiple dimensional result [19] has been presented by 

using an artificial neural network (ANN) based approach. The work was based on a 

single machine instead of the cloud platform. In Ref. [20], the authors presented an 

immune system based on both anomaly and misuse detection methods and compared the 

two methods. The immune system is based on the combination of positive and negative 

characterizations which come from several features defined as normal or abnormal states. 

A trusted agent based approach was proposed in Ref. [21], which determines whether a 

machine in a network is malicious based on the experiences and its previous operations. 

In Ref. [22], Vieria and Schulter proposed an ANN based function to realize an IDS on 

the cloud, and a feed-back structure ANN is used to create a behavior-based system and 

an expert system to build a knowledge-based system. In Ref. [23] the authors 

concentrated on alleviating the network traffic when realizing an IDS based on a 

MapReduce framework. In Ref. [24], a framework of Collaborative Intrusion Detection 
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System is proposed to counter a variety of attacks, especially large-scale coordinated 

attacks. In the proposed system, there are actually more than one IDS in the cloud 

computing area, but the work is on one large and effective IDS. All the IDSs in the cloud 

share information such as new kinds of attacks and send alert to each other so that the 

users could get notifications in time. Thus, it could handle a variety of attacks even 

attacks of large-scale very well. And in Ref. [25], an IDS module consisting of Snort and 

a signature apriori algorithm is built which generates new rules from captured packets. 

After the new rules are generated, they will be stored in the Snort configuration file to 

improve the efficiency of Snort. This IDS exhibits a good performance in recognizing 

known attacks and the attacks that are deduced from the original knowledge. Most kinds 

of architectures of IDS today in the cloud environment are deployed on the network 

periphery of each guest OS, this architecture will increase the threat of attacks and give 

the hackers chance to compromise all guests from one compromised guest. In Ref. [26], a 

hybrid architecture for deployment of an intrusion detection system is shown. This 

architecture has a security mechanism on both sides of the cloud to ensure the “trustful 

score” is good so that no compromised guest exists in the cloud. In Ref. [27], the authors 

propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention 

system (DCDIDP), which aims to provide whole protection and detection for all the 
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cloud providers that work together in different layers. This system is composed of three 

layers: network, host and global so that it can be well distributed in different cloud 

providers. In Ref. [28], cloud intrusion detection with a new statistical waveform based 

classification is proposed, which records network connections in a period of time and 

then draws a waveform based on them. Then it analyzes the waveform to find the 

possible doubtful characteristics of the waveform and classifies intrusion type based on 

features of the waveform. 

1.4 Objectives of Project 

 Based on the issues listed above, here a distributed IDS architecture is proposed 

which consists of nodes running backpropagation (BP) based ANNs on the cloud 

platform. By design, it is expected to achieve better flexibility, scalability and 

performance. The proposed IDS system has two main characteristics: 

1) It has a flexible distributed architecture which could adjust its configuration 

based on real-time resource usage information to avoid overloading any node in 

the cloud.  
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2) It provides multiple dimensional results which could be used to not only 

recognize malicious activities but also find what malicious activities are taking 

place.  

After the IDS is built, it will be tested in different scenarios to see the 

performance of it, which gives the information of whether this IDS is good enough and 

how to improve it in the future. 

1.5 Synopsis of Thesis 

This thesis describes and discusses the creation and testing of the IDS on a cloud 

platform. It begins by reviewing a neural network based algorithm which is called 

backpropagation algorithm to provide the basic information, knowledge and ideas about 

how the IDS could distinguish normal or malicious actions so that it would work in cloud 

platform to defend attacks from network. 

In the next step, the architecture of the IDS is designed, which includes details of 

how the IDS would react to different requests under different situations in complex 

network. This is done by first figuring out the concept of cloud and how a cloud works so 

that a cloud could be built right to develop an IDS on it. Then it is time to think about 

how many functional parts are needed in this IDS based on backpropagation algorithm. 



12 
 

The next thing to do is considering the real time contexts that could happen to a cloud 

and modify the IDS architecture gradually until it could react properly, corresponding to 

each of the contexts so that it could protect cloud in most cases. Next, a cloud is built 

using 4 Dell Poweredge servers, then IDS is embedded on it and several different 

scenarios are simulated to test it. After that, the test results are collected and analyzed to 

draw a conclusion of the research and then the probable future work is pointed out. 

1.6 Outline of Thesis 

The remainder of the thesis is organized as follows. In Section 2, the BP-based 

neural network is introduced. The design of ANN based intrusion detection in a cloud 

environment is detailed in Section 3. The implementation of the proposed algorithm in a 

physical cloud experimental testbed is discussed in Section 4, coupled with the related 

experimental results and analysis. Conclusions and future work are given in the final 

section. 
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Chapter 2 

2 Literature Review 

2.1 Outline  

This chapter consists of three parts. The first two present the knowledge of neural 

network and backpropagation algorithm, which are important to help understand this 

study. Backpropagation algorithm is one of the most popular neural network based 

algorithms that include feedbacks in the network. The third part indicates how to adjust 

backpropagation algorithm in IDS on cloud platform. 

2.2 Neural Network Concepts and Applications 

The computer can learn knowledge through experience, which is called machine 

learning. This learning process constitutes of learning by examples and learning by 

analogy. Machine learning researches are often independent from the practical 

applications. A researcher might develop a new classification method, and then compare 
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its performance (such as accuracy or AUC) with existing publicly available data set of 

classification models to assess its effectiveness [29]. With machine learning ability, a 

computer can automatically adapt itself to the complex environments, this machine 

learning ability can be improved along with the time increase and more cases study. At 

present the most popular machine learning algorithms are based on neural network or 

genetic algorithm. This thesis is committed to neural network. 

Artificial neural networks are designed to simulate biological neural networks. 

Every neuron in the network is well programmed based on their properties and works 

together to solve artificial intelligence problems without creating a model of a real system 

[30]. A neural network can be defined as a system based on human brain structure model. 

Human brain is composed by intensive nerve cells with mutual communication capacity. 

These nerve cells are the basic units of the information processing mechanism of brain, 

which are called neurons. A normal human brain can contain nearly 10 billion neurons 

and 60 trillion connections and synapses between these neurons. The brain processes 

information through these neurons, the information processing ability of human brain is 

much faster and stronger than any computer existing today. Even though each neuron has 

a very simple structure, a large number of neurons together can form a huge and mature 
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processing mechanism. As is shown in figure 2-1 [31], a neuron has cell body, soma, a lot 

of fiber called dendritic, and a long fiber called axon. 

Human brain can be thought as a highly complex, nonlinear, parallel information 

processing system. The information process and information store procedures in the brain 

are not completely separated, instead, they could happen simultaneously in the same 

neural network. In other words, in the neural network, these two procedures happen 

globally, not locally. Learning ability is the biggest characteristic of a biological neural 

network, based on this idea, computers are used to simulate biological learning processes 

so as to realize the functions that needed. 

 

Figure 2- 1: Biological neural network [31] 
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An artificial neural network consists of a number of very simple processors which 

are called neurons that are similar to the biological neurons in the brain. Between neurons, 

there are weighted links combining them together as a whole network. The signals thus 

transfer from one neuron to another. The output signal of the neurons will be split into 

many branches that transmit the same signal. The outgoing branches terminate at the 

incoming connections of other neurons in the network.  

Neural network has been widely used thus far. There are various kinds of 

algorithms and work based on neural network in computer science area that were applied 

to many different aspects. As long as there are multiple variables randomly coming and 

the user wants to determine or clarify something according to them, neural network 

would be a good choice due to its self-learning and organizing ability. Here are some 

instances. As shown in Ref. [32], an interesting research is done by inputting variables 

such as moisture, titratable acidity, free fatty acids, tyrosine, and peroxide value into an 

ANN and helping to develop the model of radial basis (exact fit) artificial neural network 

for estimating the shelf life of burfi stored at 30ºC; the output value of this model will be 

the acceptability, and the results turn out quite well. Another relevant job is done in Ref. 

[33] that presents the potential of Cascade Backpropagation algorithm based ANN 
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models in detecting the shelf life of processed cheese stored at 30 ºC. The authors 

accelerate learning in ANNs by using the Cascade backpropagation algorithm (CBA), 

and the Bayesian regularization algorithm was used for training the network. In Ref. [34], 

the authors describe a new approach to analyzing road images which often contain 

vehicles and extract license plate (LP) from natural properties by finding vertical and 

horizontal edges. An algorithm based on artificial neural network (ANN) is used for 

recognition of Korean plate characters in this paper. Ref. [35] introduces a radial basis 

function artificial neural network, in which a multilayer feed forward network is used to 

deal with hydrological data. In RBFANN, spread and center values are the model 

parameters which are estimated by inducing the suitable weight values. In Ref. [36], the 

authors are aiming at the problem of the uncertainty of the calorific value of coal; a soft 

measurement model for the calorific value of coal is proposed based on the RBF neural 

network. And combined with the thought of k-cross validation, the genetic algorithm 

constructed a fitness function to optimize the RBF network parameters. An BP based 

neural network method is distributed in Ref. [37] which is efficient for solving the traffic 

flow problem--a complex non-linear prediction of a large-scale system. This is effective 

because Neural Network Model has adaptive and self-learning ability. Also Ref. [38] 

shows classification of different types of targets (vehicles) in an Intelligent Transport 
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System. Supervised Artificial Neural Network is used as the soft computing tool for 

classification, and here targets are classified on the basis of returned energy to the Radar 

or Radar Cross Section (RCS) values taken at different aspect angles. In Ref. [39], the 

authors analyze and determine the factors influencing the lifeless-repairable spares 

consumption. They use the BP neural network to forecast the consumption and combine 

it with a genetic algorithm which could optimize the weights and thresholds of the BP 

neural network. In Ref. [40], the research aims to develop, reference image quality 

measurement algorithms for JPEG images, and to classify the image based on its quality 

an Elman neural network has been developed. A new approach using the Modular Radial 

Basis Function Neural Network (M–RBF–NN) technique is presented in Ref. [41] to 

improve rainfall forecasting performance coupled with appropriate data–preprocessing 

techniques by Singular Spectrum Analysis (SSA) and Partial Least Square (PLS) 

regression. Like these listed examples, IDS is also a promising direction to adopting the 

neural network approach. In this thesis, a backpropagation algorithm will be discussed in 

the next section, which is based on neural network and applied in IDS. 

2.3 Backpropagation Algorithm 
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As shown in Figure 2-2 [31], the whole neural network is composed of three 

layers: input layer, hidden layer and output layer. 

 

 

 

 

 

 

 

 

 

 

The following procedure will show how the ANN (Artificial Neural Network) 

algorithm works. Here are some notations used in introducing the algorithm: x, y, w 

represent the input data, output result, weight value respectively, θ is correction needed 

only in the hidden and output layer, it will be continuously updated after each iteration, e 

is the error value, σ is error gradient and p is the number of iterations: 
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Figure 2- 2: General architecture of the backpropagation algorithm based neural network 
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1) Initialization, set all the weights and threshold levels of the network to random 

numbers uniformly distributed inside a small range (-2.4/Fi, 2.4/Fi), where Fi is 

the total number of inputs of a neuron i in the network. 

2) Calculate the outputs of the neurons in the hidden layer: 

      yj(p)=sigmoid [xi p ∗ wij

n

i=1

 p − θj] 

where n is the number of inputs of neuron j in the hidden layer, and sigmoid is 

sigmoid activation function (sigmoid(s)=1 +
1

e−s
 , here e is the base of the natural 

logarithm). 

3) Calculate the actual outputs of the neurons in the output layer: 

 yk(p)=sigmoid [xjk p ∗ wjk

m

j=1

 p − θk] 

where m is the number of inputs of neuron k in the output layer.  

4) Calculate the error gradient for the neurons in the output layer: 

         σk(p)=yk(p)*[1-yk(p)]* ek(p) 

where ek(p)=yd,k(p)- yk(p).  yd,k  is the desired output value. 

5) Calculate the weight corrections: 

Δwjk (p)=α*yj(p)* σk(p) then update 

         wjk (p+1)=wjk (p)+Δwjk (p) 

where α is termed learning rate. 



21 
 

6) Calculate the error gradient for the neurons in the hidden layer: 

 σj(p)=yj(p) ∗ [1 − yj(p)]  wjk  p ∗ σk

I

k=1

(p) 

7) Calculate the weight corrections: 

 Δ𝑤𝑖𝑗 (p)=α*𝑥𝑖(p)* 𝜎𝑗 (p) then update 

         wij (p+1)=wij (p)+Δwij (p) 

8) Increase iteration p by one, go back to step 2 and repeat the process until the 

selected error criterion is satisfied. 

Next section includes a discussion about how to apply this algorithm in an IDS. 

2.4 Backpropagation Algorithm in IDS 

Now, a cloud can be regarded as many virtual machines which offer services to 

users. Each machine can be used to simulate a couple of nodes in a neural network so that 

several virtual machines in the same cluster will constitute a neural network. 

The trained ANN acquired the knowledge of normal activities and attacks for 

performing anomaly detection tasks. In this research, the KDD data package is used in 

the training phase. This data package is designed and collected by MIT Lincoln Labs. 

The objective was to survey and evaluate research in intrusion detection. A standard set 

of data to be audited, which includes a wide variety of intrusions simulated in a military 
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network environment, was provided. In their design, for each network connection, 41 

different quantitative and qualitative features were extracted. Here are some data samples 

that are contained in KDD: 

'0', 'icmp', 'ecr_i', 'SF', '1032', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', 

'0', '0', '511', '511', '0.00', '0.00', '0.00', '0.00', '1.00', '0.00', '0.00', '255', '255', '1.00', '0.00', 

'1.00', '0.00', '0.00', '0.00', '0.00', '0.00', 'smurf.' 

'0', 'tcp', 'http', 'SF', '307', '468', '0', '0', '0', '0', '0', '1', '0', '0', '0', '0', '0', '0', '0', '0', '0', 

'0', '9', '14', '0.00', '0.00', '0.00', '0.00', '1.00', '0.00', '0.14', '255', '255', '1.00', '0.00', '0.00', 

'0.00', '0.00', '0.00', '0.00', '0.00', 'normal.' 

'0', 'tcp', 'http', 'SF', '54540', '8314', '0', '0', '0', '2', '0', '1', '1', '0', '0', '0', '0', '0', '0', '0', 

'0', '0', '5', '5', '0.00', '0.00', '0.20', '0.20', '1.00', '0.00', '0.00', '220', '220', '1.00', '0.00', '0.00', 

'0.00', '0.00', '0.00', '0.06', '0.06', 'back.' 

where the 42nd record determines the status of the connection. 

So after training, ANN learns what all the feature values are like in normal 

activities and in various attack scenarios. When any event is coming into the network, it 

will be treated as at least 41 input values corresponding to 41 different features of the 

event; then all these inputs will pass through the hidden layer and output layer in the 

ANN, and the output node will get the result. When a malicious activity is detected, the 
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output layer will raise an alarm and disallow the malicious activity. Every activity 

followed will be recorded in case the origin of the attack needs to be tracked. The 

supervisor of the cloud will fetch this information from the output layer. The output layer 

resides in the cluster leader machine, and the leader is the only machine which is allowed 

to communicate with the outside world. These 41 dimensional vectors make the 

detections more accurate in the complex cyber environment. 
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Chapter 3 

3 System Architecture 

3.1 Outline 

 At first, An introduction about cloud computing and some tools that are used to 

build cloud on the servers, such as Ubuntu Enterprise Cloud, Eucalyptus, and KVM are 

given. Then in the third subsection, details of architecture of the proposed IDS are 

presented to show the protecting mechanism and working principles of the intrusion 

detection system which was built for the cloud. The last two sections discuss about the 

programming language and database that are used to realize the IDS. 

3.2 Cloud Computing 

Cloud computing is the way to use computing resources as an utility. Both 

hardware and software can be delivered as a service over a network (typically the Internet) 

[42]. According to Ref. [43], there are two types of cloud: public cloud and private cloud. 
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A public cloud is designed to apply a pay-as-you-go manner to the general public to 

provide services. In Ref. [44], Adobe Creative cloud is a good instance of this: the users 

pay a certain amount to get the resources and tools they want. And a private cloud is 

usually used to deal with the inside data of an organization which are not open to the 

public. For example, Ref. [45] shows that the IBM smart cloud can provide private cloud 

service by giving threat protection for every layer of virtual infrastructure, limiting access 

to critical data, tracking user access and getting virtual infrastructure reports. Three 

classic services are provided in cloud computing right now [46]----HaaS, SaaS, DaaS. 

HaaS stands for hardware as a service which supports users to buy infrastructure in a 

pay-as-you-go manner so that users can get the computing resource they desire. A good 

example of this service is the Amazon EC2 cloud [47]. Amazon Elastic Compute Cloud 

(Amazon EC2) is a web service that provides flexible compute resources in the cloud. It 

is designed to make web-scale computing easier for developers. SaaS means software as 

a service. In this mode, software or an application is hosted as a service and provided to 

customers across the Internet. Good examples of this service are Microsoft 

“Software+Service” cloud service [48] and the Google cloud platform [49]. The 

Microsoft cloud service called Windows Azure enables the user to quickly build, deploy 

and manage applications across a global network of Microsoft-managed datacenters. The 
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user can build applications using any operating system, language or tool. And the Google 

App Engine is a platform for traditional web applications in Google-managed data 

centers which support multiple languages. It handles deploying code to a cluster, 

monitoring, failover, and launching application instances as necessary. Developers have 

read only access to the file system on App Engine. DaaS denotes data as a service. Many 

applications such as Adobe Buzzwords are interested to use it to get data from the cloud 

wherever and whenever is necessary. Also, two kinds of open source software are 

popularly used to realize all these functions in cloud: OpenStack [50] and Eucalyptus 

[51]. Openstack aims to deliver solutions for all types of clouds by being simple to 

implement, massively scalable, and feature rich. Details of Eucalyptus are introduced 

later in this chapter because it is used to build cloud in this research. 

3.3 Building the Cloud 

As shown in Figure 3-1, the servers used to build the cloud platform are two Dell 

PowerEdge R710 server machines and two Dell PowerEdge R610 server machines with 

Quad-core Intel® Xeon® CPU, 20 GB RAM and 500GB hard disk. 45 virtual machines 

were created each with 256MB RAM to emulate a cloud environment. Ubuntu Enterprise 

Cloud is used to build the cloud platform, and KVM to create instances in the cloud. 
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3.3.1 Ubuntu Enterprise Cloud 

Ubuntu Enterprise Cloud (UEC) is a new type of open source tool powered by 

Eucalyptus proposed by the Ubuntu company. The UEC is used to further simplify the 

Eucalyptus based cloud infrastructure for its deployment, configuration, and use. 

Figure 3- 1: The experimental cloud testbed based on Dell® PowerEdge® R710 
and R610 Servers 
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The following contents are the aspects that UEC has simplified: 

1) Create the Eucalyptus public cloud that could run on the Amazon EC2 

infrastructure. 

2) Build a private cloud which could run on the internal data center infrastructure 

under the firewall. 

So far, it is easy to install and use Eucalyptus. The users just need to download a 

CD version of the cloud server and install it in any place they want to. UEC is also the 

first open source item that allow the users to create cloud services in a local environment 

and then utilize the powerful functions of the cloud easily. 

3.3.2 Eucalyptus 

Elastic Utility Computing Architecture for Linking Your Programs To Useful 

Systems (Eucalyptus) is one of the most popular cloud platforms which is well developed 

and feature-rich. Also it is designed to provide an Amazon EC2 compatible API. The 

Eucalyptus cloud platform is composed of five major components as shown in Figure 

3-2:  

1) The CLC (Cloud controller) is used to manage the underlying virtualized 

resources. This is the main controller that responsible for managing the whole 



29 
 

system. It is the main access entrance to the cloud for all users and administers. 

CLC will help transfer the requests to the right components, then collect the 

responses from those components and send them back to clients. CLC is the 

window which connects Eucalyptus cloud and outside world. 

2) The Walrus provides an S3-like service to perform scalability and access control 

of virtual machines.  

3) The CC (Cluster controller) controls the whole cluster by managing executions 

and networking. CC maintenance the information of all the related Node 

Controller that are running in the cluster, and is responsible for controlling life 

cycle of instances on those nodes. It will pass virtual instances’ requests to the 

Node Controller with available resources. 

4) The SC (Storage controller) handles storage in a cluster. SC and Walrus work 

together to store and access the virtual machine images, kernel images, RAM 

disk images and user data. 

5) At least one NC (Node controller) controls activities in VM instances. NC 

controls operation system on the host machine and the corresponding hypervisor, 

such as KVM or Xen. In this thesis, KVM is used as the hypervisor. 
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~/.euca/eucarc 
euca-describe-availability-zones verbose 
AVAILABILITYZONE   myowncloud                 192.168.1.1 
AVAILABILITYZONE   |- vm types                free / max   cpu   ram  disk 
AVAILABILITYZONE   |- m1.small               0048 / 0048  1    128     2 
AVAILABILITYZONE   |- c1.medium              0048 / 0048  1    256     5 
AVAILABILITYZONE   |- m1.large               0024 / 0024  2    512    10 
AVAILABILITYZONE   |- m1.xlarge              0024 / 0024  2   1024    20 
AVAILABILITYZONE   |- c1.xlarge              0012 / 0012  4   2048    20 

Figure 3- 3: Availability of the cloud 

Figure 3- 2: Architecture of the Eucalyptus cloud 
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Figure 3-3 shows the availability of the cloud that how many virtual machines it 

could support after a cloud is created successfully. 

3.3.3 KVM 

KVM is the abbreviation for Kernel-based Virtual Machine. It is an open source 

system virtualization module. It uses Linux’s own scheduler to realize management, so 

when compared to Xen, its core source code is small. KVM has become one of the most 

popular options to build virtual machines in academic circles. The KVM virtualization 

needs hardware support (such as Intel VT technology or AMD SVM technology). It is the 

full virtualization based on hardware.  

3.4 The Proposed IDS 

Based on the cloud platform has been introduced above, the ANN-based IDS will 

be established. In the architecture, there is one manager VM and multiple worker VMs in 

the network. The manager VM monitors the load information for the worker VMs and 

decides the mapping of ANN on the worker VMs dynamically. That is, those worker 

VMs having certain amounts of resources available will be chosen to perform the 

intrusion detection task, and the worker VMs are assigned to the input layer, hidden layer 

and output layer to form an ANN.  
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The input layer in the proposed ANN structure is responsible for collecting data 

from the network. All the requests or data flow in the network should first be collected by 

those nodes and then be passed through the whole neural network for any malicious 

activities. The hidden layer receives the raw data from the input layer and processes them 

based on the ANN mechanism discussed in Section 2, and forwards the results to the 

output layer. This layer will also modify weight values of the input layer after each 

iteration and pass those updated values to the input layer. The output layer derives the 

final result based on the intermediate results received from the hidden layer. It also 

updates weight values for the hidden layer and sends them to the hidden layer to improve 

the overall network behavior.  

As mentioned previously, the architecture shown in Figure 3-4 is proposed for 

improving the system flexibility, which is also important to enhance the robustness of 

IDS [52-54]. When one node in the IDS is unavailable due to situations such as deadlock, 

poweroff, and scarce resources, the IDS is able to adjust itself accordingly to form a new 

capable architecture. 
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outputmanager

      Figure 3-5 shows the process flow for the multi-threaded manager process. When 

a client joins the IDS, it will raise a thread and connect to the server, the server will then 

store the thread into the queue with the address and port number. Once the network 

connection is established, all the clients will send the resource usage information 

periodically to the manager so as to select the most appropriate nodes to construct the 

IDS. After the IDS is built, all the other IDS nodes will receive the message from the 

manager and run the corresponding (input, hidden, output or wait) function based on the 

conditional statement. In addition, the IDS nodes will update the resource usage 

information to the manager every 10 seconds, and all other nodes will do the same every 

10 minutes. 

Figure 3- 4: Architecture of the proposed IDS 
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When some nodes in the IDS become unavailable (busy or power off), the 

manager will be informed of this event within 10 seconds based on the system design. 

The manager will then choose new nodes based on the most recent resource usage 

information. It will send messages to stop the old connections and ask to build new ones. 

Thus, the whole IDS could continue to function. Also, when some nodes outside the IDS 

become unavailable, the manager will be notified of this change within 10 minutes. So 

the manager will not choose them as candidates for IDS nodes. Further, the structure of 

the IDS can be adjusted through the manager, which sends messages to the candidate 

nodes to build a new IDS structure as requested. All the models are trained off-line before 

they are deployed. 
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3.5 Network Programming 

Network programming could be simply understood as communicating and 

transmitting data between different computers. To the programmers, it is important to 

Figure 3- 5: Process flowchart for the manager 
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master a program interface and use it in a network programming model. Java SDK 

provides some relatively simple API to do this. 

These API exist in the Java.net package. So as long as this package is imported, 

network programming can be started. The basic model of network programming is the 

Client-Server model. Simply put, it is a communication between two processes, and one 

of them has to provide a fixed socket, while the other one only needs to know this socket 

and to establish a connection between them. Then, data communication can be set up by 

using this connection. Here, the provider of the fixed socket is usually referred to as the 

server, and the connection-builder is often called the client. Based on this simple model, 

the network programming can be realized properly. 

There are many APIs in Java which support this model. Here, only the 

Java-Socket programming is introduced which is used in the IDS. Java has quite a simple 

socket programming interface. First, the permanent socket provider and the server are 

introduced. Java provides the ServerSocket class to support this function. Actually, when 

the user creates an object of this class and provides the port number of the socket, the 

user, in fact, has already set up a permanent interface for other computers to let them 

access the server. 

Here, let’s see a simple example of it: 
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“ServerSocket ssock1=new ServerSocket(30002);” 

Every port is unique, which means that allocating the same port twice to different 

servers is not allowed. A port is a unique mark on each individual computer that provides 

different services. In addition, the port number is between 0 to 65535, and the first 1024 

numbers have been reserved for Tcp/Ip connections, so the user has to assign port 

numbers after 1024. 

Next, a link needs to be established. The link is always requested by the client 

first, and Java also provides a socket object to support this task. As long as the client 

creates an instance of socket, the link is built: 

“ssock =new Socket("127.0.0.1",30000);” 

As can be seen in the example, the client must know the server's IP address. Here, 

“127.0.0.1” means the server host is the same computer itself. 

After the connection is built between computers, Input and Output streams are 

needed to receive or send data through the network. Two methods from socket: 

getInputStream() and getOutputStream() are needed. With all of the basic knowledge and 

methods introduced so far, a simple sample of socket programming could be built and 

tested. 
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 But there is still a problem. When the server accepts the first request from a 

client, the client will occupy the port after the link is built, thus the subsequent clients can 

no longer connect to the same server. There will be an exception popped up when more 

than one client is running at the same time. So the server needs to be adjusted to fix this 

problem because in the design of the IDS, there will always be many clients running 

simultaneously. The way to solve this problem is to use the technology of “thread.” Every 

time a server finds a connecting request from a client, it will assign the processes that 

deal with the request to an individual thread. That way the server can deal with multiple 

requests from clients. 

3.6 Database 

Database is an indispensable component in modern IT systems. Without advanced 

database technologies, tedious work will be needed, and some tasks would be difficult to 

accomplish, especially in big organizations such as banks, colleges and libraries.  

In this work, as the KDD data package is used to test the IDS, those data in the 

KDD package have to be stored first into a database so that it could be read and then sent 

into the cloud to simulate network connections or requests in the network. Thus, MySQL 

database is chosen to realize it. 
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Generally speaking, MySQL has the following chief characteristics: 

1) There is no limit on the number of clients that can access the database at the same 

time. 

2) It can store more than 50,000,000 records. 

3) It is one of the fastest database systems at present. 

4) It is simple to set up the permissions of users. 

Because here the IDS is used to provide protection for a Ubuntu Enterprise Cloud 

which is powered by Eucalyptus under the Ubuntu system, the database is deployed the 

under linux command-line environment. Below are the major steps: 

First of all, MySQL should be installed by typing in a command like: 

“sudo apt-get install mysql-server” 

The second step is to log in by a command like: 

 “mysql -h hostname -u username -p[password]” 

Then some information will be displayed on the screen like the following: 

shell> mysql -h host -u user -p 

Enter password: ******** 

Welcome to the MySQL monitor.  Commands end with ; or \g. 

Your MySQL connection id is 25338 to server version: 5.1.2-alpha-standard  
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Type 'help;' or '\h' for help. Type '\c' to clear the buffer. 

mysql> 

When the above information is displayed, it indicates the user has logged in the 

database successfully, and can then start to use it. The instructions in mysql are the same 

as SQL database query language. 
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Chapter 4 

4 Results and Discussion 

4.1 Outline 

In this chapter, the basic performance of the IDS based on some simple tests is 

given to examine the accuracy and time efficiency of the IDS. Then some detection 

results from a running IDS are presented and analyzed. After that, testing results from 

different scenarios are discussed to understand the proposed IDS more comprehensively 

and deeply. 

4.2 Basic IDS Performance 

The first step in the experiment is to train the neural network. As a flexible IDS is 

desired, six different models are pre-trained (the number of models could be more 

depending upon the specific applications) by the 10 percent of KDD dataset with 

respective 3, 5, 7, 13, 19, 45 nodes to achieve the intrusion detection function. Actually 
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there is a data package in KDD called “corrected” which not only has the 41 features of a 

network connection, but also has the “answer” indicating the status of this collection. 

This “corrected” package is the one used to train the IDS. After that, the IDS is tested 

with a package called “unlabel” which has the exactly same data as the “corrected” 

package in same order, but only it does not have the “answers” indicating the status of 

collections. As the “unlabel” package is used, the IDS can determine the status of the 

connections and compare them with the right “answers” in the “corrected” package so 

that knowledge can be gained to evaluate the performance. There are more than 300,000 

records in these two packages. The IDS receives instructional signals from the manager, 

and then forms the corresponding architecture for the intrusion detection tasks. Table 4.1 

shows the performance results for different models/structures of the IDS in terms of 

training time, detection time and detection accuracy. The numbers reported are the 

average across 10 runs. As can be seen from the table, the average detection accuracy is 

around 99% for all the three models, and the training detection time increases as the 

number of IDS nodes increases because of additional communication overhead.  

Here the 5-node architecture is chosen as an example and some resultant 

experiment results will be discussed. In this 5-node neural network, the ANN is 

distributed as a 2-2-1 structure, which means there are 2 nodes in both input and hidden 
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layers and 1 node in the output layer. The learning rate chosen is 0.1 and correction in the 

two hidden node machines are 0.8 and -0.1 respectively and correction in the output node 

machine is 0.3. 

Table 4. 1: Performance results of different IDS models 

 
Number of damaged nodes 

 
Average recovery Time 

1 3.6s 

2 5.3s 

3 6.1s 

10 15.4s 

In the input layer, those weight values keep changing in the training phase to 

adapt to the training data so that the performance of the whole IDS will be constantly 

improved. As there are 41 inputs (based on KDD dataset, every data flow in the network 

has 41 different feature values), after the training phase each input will have a 

corresponding weight value. In total 41 weights will be saved in the input layer, which 

are ready to be used to conduct the detection task.  
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In the output layer, the iteration numbers and the error between the real result and 

desired result can be obtained. In the whole training process, it was found that though the 

error value did not keep decreasing after each single training circle, the general trend did 

decrease which means the IDS performance is being improved. Technically speaking, 

when the error becomes less than 0.001, the ANN is considered ready to be used.  

The total time consumed in the training phase is between 5 to 12 minutes. As an 

example, Table 4.2 below shows the value change in one of the 41 input weights (W1), 

one of the hidden weights (H1) and the error value in the output layer (Error). 

Table 4. 2: Results of the training phase 

 Before training During training After training 

W1 0.028706280142065916 0.02872633591204304 0.028755497556997633 

H1 0.2163137261439795 0.2162864389576207 0.21626300081037786 

Error 0.24707742093260648 5.738612462453663E-4 1.017146810110198E-15 

4.3 Detecting Result of IDS 

Following the training phase, ANN performance is evaluated using KDD no-label 

dataset and corrected dataset. From the experimentation results, it was found that every 



45 
 

different state corresponds to a small range of values. Thus, according to the value 

obtained from the output layer, the IDS can not only determine whether there are 

malicious actions but also know what kind of attack is transpiring.  

The sample results from a test are shown in Figure 4-1, and it can be seen that the 

IDS is able to classify every abnormal activity and normal activity without any wrong 

detection. The accuracy is 100% in this case. But it does not mean the accuracy can 

always be this high. Initial values like weights, corrections, learning rate are randomly 

generated and picked so every time when the ANN is trained, different results and value 

intervals of the system states may be yielded. According to all the tests carried out, a 99% 

or higher accuracy can be oftentimes achieved.  
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Figure 4- 1: A screenshot demonstrating the testing results 

To illustrate the result more clearly, Table 4.3 is used to show multiple 

dimensional results with different value intervals based on the same test shown in Figure 

4-1. 
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Only two sets of states (i.e., smurf and xtem, Neptune and back) fall in the 

overlapped intervals. So the overall performance is satisfactory. 

Table 4. 3: Value intervals of different states 

Value interval State 
0.17~0.181 Ipsweep 
0.062~0.067 Normal 
0.81~0.82 snmpgetattack 
0.093~0.094 Xsnoop 
0.048~0.051 Satan 
0.024~0.027 smurf or xterm 
0.61~0.63 Warezmaster 
0.076~0.079 apache2 
0.182~0.185 neptune or back 
0.156~0.159 Nmap 
0.41~0.43 Portsweep 
0.037~0.039 Xlock 
>1 buffer_overflow 
0.71~0.73 guess_passwd 
0.29~0.31 Multihop 
0.25~0.27 Mailbomb 
0.055~0.057 Mscan 
0.067~0.069 Named 

4.4 IDS Performance in different Scenarios 

As can be seen in the performance table given in the previous section, the average 

training time and detection time increase when the model becomes larger. That maybe 



48 
 

due to two principal reasons: the first reason is that when there are more VMs involved in 

the IDS, there are more communications needed to be established which increases the 

running time of the system. And the second reason is the cross-server communications. 

Hence some more tests related to this topic are presented for trying to address this 

problem. Table 4.4 proves that communications between the same or different physical 

machines are not closely associated with the time increase. There is no big difference of 

time efficiency between the same structure with different distributions in physical servers. 

So the main reason for the time increase should be the communication cost itself. 

Table 4. 4: Performance of IDS in different distributed structures 

 

Model 

 

structure 

 

Average 

training 

time 

Average 

detect time 

Average 

detect 

accuracy 

Server 1 Server2 Server3 

3 1 1 1 3m32.6s 12.64s 99% 
3 1 1-1  3m39.0 13.44s 99.2% 
3 1-1-1   3m35.1s 13.53s 99.1% 
5 2 2 1 4m01.9s 26.65s 99.1% 
5 2-2  1 3m57.2s 23.74s 99.7% 
5 2-2-1   4m00.8s 24.75s 99.4% 
7 3 3 1 4m21.8s 36.33s 99.5% 
7 3 3-1  4m27.9s 37.28s 99.1% 
7  3-3-1  4m25.0s 36.02s 98.9% 
15 7 7 1 6m16.8s 83.58s 99.3% 
15  7 7-1 6m20.2s 80.99s 99.6% 
15 7-7-1   6m15.1s 82.20s 99.5% 
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As can be seen in Table 4.5, when the CPU is very busy, the time required increases 

dramatically. For instance, in the case that the usage of CPU is 70%, 3-node structure 

spends 53.72s to accomplish the detection which is longer than 7- node structure spends 

in the case of 30% usage of CPU. This makes sense for distributing IDS in large scale 

some time since the IDS is distributed in larger structure by involving more VMs to avoid 

high CPU usage in each VM which dominates the time consumption more than the 

communication does. 

Table 4. 5: Performance of IDS in different occupancy of CPU 

 

 

 

Model 

 

 

 

 

 

Structure 

 

 

Average Detect time 

 

Different VMs ALL in one VM 

 

idle 30% 50% 70% 98% Idle 30% 50% 70% 98% 

3 1-1-1 13.53s 17.54s 24.20s 53.72s 134.33

s 

10.04s 13.01s 17.81s 42.20s 101.10s 

5 2-2-1 24.75s 32.08s 44.27s 98.64s 246.65

s 

20.03s 39.35s 54.01s 120.34s 300.91s 

7 3-3-1 36.02s 46.69s 64.43s 143.03s 357.58

s 

39.23s 50.89s 70.23s 155.90s 389.76s 

13 6-6-1 69.79s 90.45s 124.82s 277.1s 692.75

s 

110.51s 142.91s 197.21s 437.82s 1094.55

s 

19 9-9-1 102.58s 132.96s 183.48s 407.32s 1018.2

5s 

252.28s 327.08s 451.36 1002.01

s 

2504.90

s 

45 22-22-1 248.68s 318.33s 439.29s 975.22s 2438.0

5s 

983.85s 1260.58

s 

1581.44

s 

3510.79

s 

8776.98

s 



50 
 

Table 4. 6: Comparison of Performances of IDS deployed in different number of 
VMs 

 

 

Model 

 

 

 

 

Structure 

 

 

Average training time(different structure) 

Different VMs ALL in one VM 

3 1-1-1 3m35.1s 

 

1m36s 

5 2-2-1 3m58.3s 

 

3m02s 

7 3-3-1 4m25.0s 

 

4m56s 

13 6-6-1 5m48.8s 

 

9m21s 

19 9-9-1 7m11.4s 

 

17m40s 

45 22-22-1 12m.58.8s 

 

51m18s 

Table 4.6 shows different training time when the same structure is used but is 

distributed in only one VM compared with that when it is distributed in different VMs. 

And during training, usage of CPU is not a key factor.  

When there are bigger data packages passing through the IDS, it doesn’t affect the 

IDS a lot since the time spent with respect to the size of data package exhibits a linear 

growth. It is shown in the Table 4.7. So this result does not support the view for 

distributing the IDS in large scale in real time, although it was supported by the previous 

test results. 
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Table 4. 7: Performance of IDS with different size of large datasets 

 

Model 

 

structure 

 

Average Detect time 

 

 

 

 

100000 data 200000 data 400000 data 

 

3 1-1-1 13.53s 25.70s 46.26s 

5 2-2-1 24.75s 47.02s 84.63s 

7 3-3-1 36.02s 68.44s 123.20s 

13 6-6-1 69.79s 132.60s 238.68s 

19 9-9-1 102.58s 194.90s 350.82 

45 22-22-1 248.68s 472.49 850.48s 

So in summary, when the cloud is not busy, communication is the most important 

factor that dominates the time usage; but if the VMs are very busy (usage of CPU higher 

than 50%), it seems that computation starts to dominate the time consumption. This also 

explains why when a lot of nodes are embedded in one VM, the training time exceeds 

that in the case when those nodes are distributed in different VMs (see the training time 
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of 7 or 13 nodes in table 4.6). Thus, it is not recommended to simulate more than 5 nodes 

in a single VM.  

The proposed IDS is tested in several different scenarios. There are three points to 

be claimed here: 

1) In an extreme case, when all the VMs are considered busy, the IDS uses every 

VM in the cloud while occupying fewer resources in each VMs than usual cases.  

2) The system could handle somehow serious damage in the cloud with 10 VMs 

(1/4 of the total number) being unavailable. The recovery time is dependent on 

how many VMs are damaged. The more new VMs that need to be found to 

substitute the unavailable VMs, the more communications and new connections 

needed to establish. Therefore, more time will be consumed. 

3) When a lot of VMs are busy, the manager prefers to make the IDS size smaller 

This is different from what it did in the extreme case when all the VMs are busy. 

However, when the size is too small such that all the VMs involved are busy, the 

manager starts to enlarge the IDS to involve more VMs so that each VM could 

contribute fewer resources to the IDS. 
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Table 4. 8: Recovery time for proposed IDS 

Number of damaged 
nodes 

Average recovery Time 

1 3.6s 

2 5.3s 

3 6.1s 

10 15.4s 

The recovery cost is also evaluated when a number of IDS nodes become 

unavailable. The results shown in Table 4.8 are based on the 45-node model with a 

22-22-1 architecture. 

The more the new VMs needed to find to substitute the unavailable VMs, the 

more communications and new connections needed to establish; therefore, more time is 

consumed. 
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Chapter 5 

5 Conclusion and Future work 

5.1 Summary and Conclusions  

Advanced soft computing and artificial intelligence methods/techniques are being 

used widely in Intrusion. Detection Systems (IDS) for acquiring the ability to learn and 

evolve, which makes them more accurate and efficient in the presence of enormous 

number of unpredictable attacks. In this thesis, a neural network based IDS is built on a 

cloud platform. The accuracy of the implemented IDS is shown to be high and the time 

expense is acceptable. Implementation of the neural network in the cloud for intrusion 

detection is a promising direction. 

5.2 Future Work 

There is still much room left for further improvement of the current work. For 

example, the KDD dataset used is based on every message passing through a single 
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machine in the network. In fact, there are various ways to attack a network such as by 

compromising several machines simultaneously [55] or starting an attack inside the 

network by a compromised node. So an enhanced algorithm should be developed to 

detect those kinds of attacks. Also, larger data sets and more complex and realistic 

scenarios should be developed and tested. 

 And there is another slight complication that ANN lacks in certain areas, which 

are detection precision for low frequent attacks and detection stability. So it is necessary 

to think about a way to address this problem [56]. Also, the anomaly detection algorithm 

can be further enhanced by adding misuse detection functions. The idea is to build an 

expert database to achieve knowledge based detection. 
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