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Abstract

A data-driven approach called CaNN (Calibration Neural Network) is proposed to

calibrate financial asset price models using an Artificial Neural Network (ANN).

Determining optimal values of the model parameters is formulated as training hidden

neurons within a machine learning framework, based on available financial option

prices. The framework consists of two parts: a forward pass in which we train the

weights of the ANN off-line, valuing options under many different asset model

parameter settings; and a backward pass, in which we evaluate the trained

ANN-solver on-line, aiming to find the weights of the neurons in the input layer. The

rapid on-line learning of implied volatility by ANNs, in combination with the use of an

adapted parallel global optimization method, tackles the computation bottleneck

and provides a fast and reliable technique for calibrating model parameters while

avoiding, as much as possible, getting stuck in local minima. Numerical experiments

confirm that this machine-learning framework can be employed to calibrate

parameters of high-dimensional stochastic volatility models efficiently and accurately.

Keywords: Computational finance; Machine learning; Artificial neural networks;

Asset pricing model; Model calibration; Global optimization; Parallel computing

1 Introduction

Model calibration can be formulated as an inverse problem, where, based on observed

output results, the input parameters need to be inferred. Previous work on solving inverse

problems includes research on adjoint optimization methods [2, 8], Bayesian methods [4,

22], and sparsity regularization [7].

In a financial context, e.g., in the pricing and risk management of financial derivative

contracts, asset model calibration means recovering the model parameters of the under-

lying stochastic differential equations (SDEs) from observed market data. In other words,

in the case of stocks and financial options, the calibration aims to determine the stock

model parameters such that heavily traded, liquid option prices can be recovered by the

mathematical model. The calibrated asset models are subsequently used to either deter-

mine a suitable price for over-the-counter (OTC) exotic financial derivatives products, or

for hedging and risk management purposes.

Calibrating financial models is a critical subtask within finance, andmay need to be per-

formed numerous times every day. Relevant issues in this context include accuracy, speed

and robustness of the calibration. Real-time pricing and risk management require a fast

and accurate calibration process. Repeatedly computing the values using mathematical

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13362-019-0066-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13362-019-0066-7&domain=pdf
http://orcid.org/0000-0003-2697-1932
mailto:s.liu-4@tudelft.nl


Liu et al. Journal of Mathematics in Industry             ( 2019)  9:9 Page 2 of 28

models and at the same time fitting the parameters may be a computationally heavy bur-

den, especially when dealing with multi-dimensional asset price models.

The calibration problem is not necessarily a convex optimization problem, and it often

gives rise to multiple local minima. For example, the authors in [13] vary two parame-

ters of the Heston model (keeping the other parameters unchanged), and show that the

objective function exhibits multiple local minima. Also in [19] it is stated that multiple lo-

cal minimal are common for calibration in the foreign exchange or commodities markets.

A local optimization technique is generally relatively cheap and fast, but a key factor is to

choose an accurate initial guess. Otherwise, it may fail to converge and get stuck in a lo-

cal minimum. To address robustness, global optimizers are becoming popular to calibrate

financial models, like Differential Evolution (DE), Particle Swarm optimization and Sim-

ulated Annealing, as their convergence does not depend on specific initial values. Parallel

computing may help to reduce the computing time of global calibration problems.

A generic, robust calibration framework may be based on a global optimization tech-

nique in combination with a highly efficient pricing method, in a parallel computing en-

vironment. To meet these requirements, we will employ the machine learning technology

and develop an artificial neural network (ANN) method for a generic calibration frame-

work. The basic idea of our approach is to connect model calibration with machine learn-

ing from an optimization point of view. Estimating the model parameters is converted

into finding the values of the ANN’s hidden units, so that the network output matches the

observed option prices or volatility.

The proposed ANN-based framework comprises three phases, i.e., training, prediction

and calibration. During the training phase, the hidden layer parameters of the ANNs are

optimized bymeans of supervised learning. This training phase builds amapping between

the model parameters and the output of interest. During the prediction phase, the hidden

layers are kept unchanged (frozen) to compute the output quantities (e.g., option prices)

given various input parameters of the asset price model. The prediction phase can also be

used to evaluate the model performance (namely testing). Together these steps are called

the forward pass. Finally, during the calibration phase, given the observed output data (e.g.,

market option prices), the original input layer becomes a learnable layer again, whereas all

previously learned hidden layers are kept fixed. This latter stage, which is also called the

backward pass, inverts the already trained neural network conditional on certain known

input. The overall calibration framework we name CaNN (Calibration Neural Network)

here. The CaNN establishes a connection between machine learning and model calibra-

tion.

There are several interesting aspects to the proposed approach. First of all, the machine

learning approach may significantly accelerate classical option pricing techniques, partic-

ularly when involved asset price models are of interest. Recently there has been increas-

ing interest in applying machine-learning techniques for fast pricing and calibration, see

[9, 16, 18, 20, 26, 29, 32]. For example, the paper [32] used Gaussian process regression

methods for derivative pricing. Other work, including this paper, employs artificial neural

networks to learn the solution of the financial SDE system [18, 20, 26], that do not suffer

much from the curse of dimensionality.

Secondly, the CaNN is a generic ANN-based framework, and views the three phases,

training/prediction/calibration, as a whole, the difference between them being just to

change the learnable units. Furthermore, the proposed ANN approach can handle a flexi-
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ble number of inputmarket data. In other papers, like [9, 16], the number of input observed

samples had to be fixed in order to fit the employed Convolutional Neural Networks.

Moreover, there is inherent parallelism in ourANNapproach, sowewill also take advan-

tage of modern processing units (like GPUs). The paper [20] presented a neural network-

based method to compute and calibrate rough volatility models. Our CaNN however in-

corporates a parallel global search method for calibration, as calibrating financial models

often gives rise to non-convex optimization problems, for which local optimization algo-

rithms may have convergence issues. As a global searcher, DE has been used to calibrate

financial models [13, 34] and to train neural networks [31], making it also suitable in the

ANN-based calibration framework.

The contributions of this paper are three-fold. First, we design a generic ANN-based

framework for calibration. Apart from data generators, all the components and tasks

are implemented on a unified computing platform. Second, a parallel global searcher is

adopted based on a population-based optimization algorithm (here DE), an approach that

fits well within the ANN-based calibration framework. Both the forward and backward

passes run in parallel, tackling the computational bottleneck of global optimization and

making the calibration time reasonable, even in the case of employing a large neural net-

work. Third, the key components are robust and stable: using a robust data generator and

the global optimization technique makes sure that the ANN-based calibration method

does not get stuck in local minima.

The rest of the paper is organized as follows. In Sect. 2, the Heston and Bates stochastic

volatility models and their calibration requirements are briefly introduced. These mod-

els will be used in the numerical experiments. In Sect. 3, artificial neural networks are

introduced as function approximators, in the context of parametric financial models. Fur-

thermore, a generic machine learning framework for model calibration to find the global

solution is presented. In Sect. 4, numerical experiments are presented to demonstrate the

performance of the proposed calibration framework. Some details of the employed COS

option pricing method are given in the Appendix.

2 Financial model calibration

We start by explaining the stochasticmodels for the asset prices, the corresponding partial

differential equations for the option valuation and the standard ways of calibrating these

models. The open parameters in these models, that need to be calibrated with the help of

an objective function, are also discussed.

2.1 Asset pricing models

In the following subsections we present the financial asset pricingmodels that will be used

in this paper, theHeston and Bates stochastic volatilitymodels. European option contracts

are used as examples to derive the pricingmodels, however, other types of financial deriva-

tives can be taken into consideration in a similar way.

2.1.1 The Heston model

Oneof themost popular stochastic volatility asset pricingmodels is theHestonmodel [17],

for which the system of stochastic equations under the risk-neutral measure Q reads,

dSt = rSt dt +
√

νtSt dW
s
t , St0 = S0, (1a)
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dνt = κ(ν̄ – νt)dt + γ
√

νt dW
ν
t , νt0 = ν0, (1b)

dW s
t dW

ν
t = ρx,ν dt, (1c)

with νt the instantaneous variance, r the risk-free interest rate andW
s
t ,W

ν
t are twoWiener

processes with correlation coefficient ρx,ν .
a To avoid negative volatilities, the asset’s vari-

ance in Equations (1a)–(1c) ismodeled by aCIR process, which is proposed in [5] tomodel

interest rates. It precludes negative values for ν(t), so that when ν(t) reaches zero it subse-

quently becomes positive. The process can be characterized as a mean reverting square-

root process, with as the parameters ν̄ the long term variance, κ the reversion speed; γ is

the volatility of the variance. An additional parameter is ν0, the t0-value of the variance.

By the martingale approach, the following two-dimensional Heston option pricing PDE

is found,

∂V

∂t
+ rS

∂V

∂S
+ κ(ν̄ – ν)

∂V

∂ν
+
1

2
νS2

∂2V

∂S2

+ ργ Sν
∂2V

∂S∂ν
+
1

2
γ 2ν

∂2V

∂ν2
– rV = 0, (2)

with the given terminal condition V (T ,S,ν;T ,K), where V = V (t,S,ν;T ,K) is the option

price at time t.

2.1.2 The Bates model

Next to the Heston model, we will also consider its generalization, the Bates model [1], by

adding jumps to the Heston stock price process. The model is described by the following

system of SDEs:

dSt

St
=

(

r – λJE
[

eJ – 1
])

dt +
√

νt dW
x
t +

(

eJ – 1
)

dXP

t , (3a)

dνt = κ(ν̄ – νt)dt + γ
√

νt dW
ν
t , νt0 = ν0, (3b)

dW s
t dW

ν
t = ρx,ν dt, (3c)

with XP (t) a Poisson process with intensity λJ , and J being normally distributed jump

sizes with expectation μJ and variance ν2
J , i.e. J ∼ N (μJ ,ν

2
J ). The Poisson process XP (t)

is assumed to be independent of the Brownian motions and of the jump sizes. Clearly, we

have three more parameters, λJ , μJ and ν2
J , to calibrate in this case. The corresponding

option pricing equation is a so-called Partial Integro-Differential Equation (PIDE),

∂V

∂t
+
1

2
νS2

∂2V

∂S2
+ ργ νS

∂2V

∂S∂ν
+
1

2
γ 2ν

∂2V

∂ν2
+

(

r –
1

2
νt – λJ

(

eμJ – 1
)

)

∂V

∂S

+ κ(ν̄ – ν)
∂V

∂ν
– (r + λJ )V + λJ

∫ ∞

0

V (x)PJ (x)dx = 0, (4)

with the given terminal condition V (T ,S,ν;T ,K), where PJ (x) is the log-normal probabil-

ity density function of the jump magnitudes.

Both the Heston and Batesmodels do not give rise to analytic option value solutions and

the governing P(I)DEs thus have to be solved numerically. There are several possibilities



Liu et al. Journal of Mathematics in Industry             ( 2019)  9:9 Page 5 of 28

for this, like by means of finite difference PDE techniques, Monte Carlo, or numerical in-

tegration methods.We will employ a Fourier-type method, the COSmethod from [10], to

obtain highly accurate option values, for the details we refer to the Appendix. A prerequi-

site to using Fourier methods is the availability of the asset price’s characteristic function.

From the resulting option values, the corresponding Black–Scholes’ implied volatilities

will be determined by means of a robust root-finding iteration known as Brent’s method

[3].

2.2 The calibration procedure

Calibration refers to estimating the model parameters (i.e., the constant coefficients in the

PDEs) given the samples of the market data. The market value of either option prices or

implied volatilities, with moneynessm := S0/K and time to maturity τ := T – t, is denoted

by Q∗(τ ,m), and the corresponding model-based value is Q(τ ,m;Θ), with the parameter

vector Θ ∈ Rn, where n denotes the number of parameters to calibrate. For the Heston

model,Θ := [ρ,κ ,γ , ν̄,ν0], while for the Bates model we have,Θ := [ρ,κ ,γ , ν̄,ν0,λJ ,μJ ,σJ ].

The difference between the observed values and the ones given by themodel is indicated

by an error measure,

ei :=
∥

∥Q(τi,mi;Θ) –Q∗(τi,mi)
∥

∥, i = 1, . . . ,N , (5)

where ‖ · ‖ measures the distance, and N is the number of available calibration instru-

ments. The total difference is represented by the following target function,

J(Θ) :=

N
∑

i=1

ωiei + λ̄‖Θ‖, (6)

where ωi are the corresponding weights and λ̄ is a regularization parameter. When ωi =
1
N

and λ̄ = 0 with squared errors in Equation (6), we obtain a well-known error measure,

the MSE (Mean Squared Error). When people wish to guarantee perfect calibration for

ATM options (the options are most liquid in the market), the corresponding weight value

ωi is sometimes increased. Usually calibrating financial models reduces to the following

minimization problem,

arg min
Θ∈Rn

J(Θ), (7)

which gives us a set of parameter values making the difference between the market and

the model quantities as small as possible.

The above formula is over-determined in the sense that N > n, i.e., the number of data

samples is larger than the number of to-calibrate parameters. Equation (7) is usually solved

iteratively to minimize the residual. Initially a set of parameter values is assigned and the

correspondingmodel values are determined; these values are compared withmarket data,

and the corresponding error is computed, after which a search direction is determined to

find a next parameter set. The above steps are repeated until a stopping criterion is met.

While evaluating Equation (6), an array of options with different strikes and maturities

need to be valued thousands of times and therefore this valuation should be performed

highly efficiently.Here, we will employ ANNs that can deal with a complete array of option

prices in parallel.
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2.3 Choices within calibration

Usually the objective function is highly nonlinear and even non-convex. The authors in

[15] discuss the impact of the objective function and the calibrationmethod for theHeston

model. This issue becomes worse when being faced with a high-dimensional optimization

problem. A way to address this problem is to smooth the objective function and employ

traditional local optimization methods. Another difficulty when calibrating the model is

that the set Θ includes multiple parameters that need to be determined, and that these

model parameters are not completely “independent”, for example, the effect of different

parameters on the shape of the implied volatility smilemay be quite similar. For this reason,

one may encounter several “local minima” when searching for optimal parameter values.

In most cases, a global optimization algorithm should be preferred during calibration.

Regarding the target objective function, there are two popular choices in the financial

context, namely either based on observed option prices or based on computed implied

volatilities. Option prices can be collected directly from the market, and implied volatility

should be computed based on the collected option prices. The most common choices

without regularization terms include,

min
Θ

∑

i

∑

j

ωi,j

(

V ∗
c (Tj – t0,S0/Ki) –Vc(Tj – t0,S0/Ki;Θ)

)2
, (8)

and

min
Θ

∑

i

∑

j

ωi,j

(

σ ∗
imp(Tj – t0,S0/Ki) – σimp(Tj – t0,S0/Ki;Θ)

)2
, (9)

where V ∗
c (Tj – t0,S0/Ki) is the call option price for strike Ki and maturity Tj with instan-

taneous stock price S0 at time t0 as observed in the market; Vc(Tj – t0,S0/Ki;Θ) is the

call option value computed from the model using model parameters Θ ; similarly σ ∗
imp(·),

σimp(·) are the implied volatilities from the market and from the Heston/Bates model, re-

spectively; ωi,j is some weighting function. The notation i and j is to distinguish the two

factors impacting the target quantity. A third approach is to calibrate the model to both

prices and implied volatility. For option prices, weighting the target quantity by Vega (the

derivative of the option price with respect to the volatility) is a technique to remedymodel

risk. When taking implied volatility into account, a numerical root-finding method is of-

ten employed to invert the Black–Scholes formula in addition to computing option prices.

That is to say, two numerical methods are required, one for pricing options, the other one

for calculating the Black–Scholes implied volatility. Nevertheless, calibrating to an im-

plied volatility surface can help to specify prices of all vanilla options regardless of their

types (e.g., call or put), given the current term structure of interest rates. This is one of

the reasons why the practitioners prefer implied volatility during calibration. Besides, we

will mathematically discuss the difference between calibrating to option prices and im-

plied volatilities in Sect. 4.3.2.Moreover, it is well known that OTM instruments are liquid

or heavily traded in the market. Calibrating the financial models to OTM instruments is

common practice in reality.

The calibration performance (e.g., speed and accuracy) is also influenced by the em-

ployed method while solving the financial models. An analytic solution is not necessarily

available for the model to be calibrated, and different numerical methods have therefore
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been developed to solve the corresponding option pricing models. Alternatively, based on

some existing solvers, ANNs can be used as a numerical method to learn the solution [26].

3 An ANNs-based approach to calibration

This section presents the framework to calibrate a financial model by means of machine

learning. Training the ANNs and calibrating financial models both boil down to optimiza-

tion problems, which motivates the present machine learning-based approach to model

calibration.

3.1 Artificial neural networks

This section introduces the ANNs. In general, ANNs are built using three components:

neurons, layers and the complete architecture from bottom to top. As the fundamental

unit, a neuron consists of three consecutive operations, summing up the weighted input,

adding a bias to the summation, and computing the output via an activation function. This

activation function determines whether and by howmuch a particular neuron is active. A

number of neurons make up a hidden layer. Stacking different layers then defines the full

architecture of the ANNs.With signals travelling from the input layer through the hidden

layers to the output layer, the ANN builds a mapping among input-output pairs.

The basic ANN is the multi-layer perceptron (MLP), which can be written as a compos-

ite function,

F(x|θ ) = f (L)
(

. . . f (2)
(

f (1)
(

x; θ (1)
)

; θ (2)
)

; . . . θ (L)
)

, (10)

where θ
(i) = (wi,bi),

b
wi is a weight matrix and bi is a bias vector. A one hidden layer MLP

can, for example, be written as follows,

⎧

⎨

⎩

y(x) = ϕ(2)(
∑

jw
(2)
j z

(1)
j + b(2)),

z
(1)
j = ϕ(1)(

∑

iw
(1)
ij xi + b

(1)
j ),

(11)

with wj the unknown weights, ϕ(w1jxj + b1j) the neuron’s basis function, ϕ(·) an activation

function (m is the number of neurons in a hidden layer).

The loss function is equivalent to a distance in the case of supervised learning,

L(θ ) :=D
(

f (x),F(x|θ )
)

, (12)

where f (x) is the target function. Training the ANNs is learning the optimal weights and

biases in Equation (10) tomake the loss function as small as possible. The process of train-

ing neural networks can be formulated as an optimization problem,

arg min
θ

L
(

θ |(X,Y)
)

, (13)

given the input-output pairs (X,Y) and a user-defined loss function L(θ ). Assuming the

training data set (X,Y) can define the true function on a domainΩ , ANNswith sufficiently

many neurons can approximate this function in a certain norm, e.g., the l2-norm. ANNs

are thus powerful universal function approximators and can be used without assuming

any pre-specified relation between the input and the output.
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Quantitative theoretical error bounds for ANNs to approximate any function are not

yet available. For continuous functions, in the case of a single hidden layer, the number

of neurons should grow exponentially with the input dimensionality [28]. In the case of

two hidden layers, the number of neurons should grow polynomially. The authors in [27]

proved that any continuous function defined on the unit hypercube C[0, 1]d can be uni-

formly approximated to arbitrary precision by a two hidden layerMLP, with 3d and 6d+3

neurons in the first and second hidden layer, respectively. In [35] the error bounds for ap-

proximating smooth functions by ANNs with adaptive depth architectures are presented.

The theory gets complicated when the ANN structure goes deeper, however, these deep

neural networks have recently significantly increased the power of ANNs, see, for example

the Residual Neural Networks [25].

In order to perform the optimization in Equation (13), the composite function from

Equation (10) is differentiated using the chain rule. The first- and second-order partial

derivatives of the loss function with respect to any weight w (or bias b) are easily com-

putable; for more details we refer to [14]. This differentiation enables us to not only train

ANNs with gradient-based methods, but also the sensitivity of the approximated func-

tions using the trained ANN can be investigated. For this latter task, the Hessian matrix

will be derived in Sect. 4 to study the sensitivity of the objective function with respect to

the calibrated parameters.

3.2 The forward pass: learning the solution with ANNs

The first part of the CaNN, the forward pass, employs an ANN, in the form of an MLP, to

learn the solution generated by different numerical methods and subsequently maps the

input to the output of interest (i.e., neglecting the intermediate variables). For example,

in order to approximate the Black–Scholes implied volatilities based on the Heston input

parameters, two numerical methods are required, i.e., the COS method to calculate the

Heston option prices and Brent’s root-finding algorithm to determine the corresponding

implied volatility, as presented in Fig. 1. Using two separate ANNs to map the Heston

parameters to implied volatility has been applied in [26]. In the present paper, we merge

these two ANNs, see Fig. 1. In other words, the Heston–IV–ANN is used as the forward

pass to learn the mapping between the model parameters and the implied volatility. Note

that a similar model is employed for the Bates model, however then based on the Bates

model parameters.

The forward pass consists of training and prediction, and in order to do so the network

architecture and optimization method have to be defined. Generally, an increasing num-

Figure 1 The Heston-implied volatility ANN
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ber of neurons, or a deeper structure, may lead to better approximations, but may also

result in a computationally heavy optimization and evaluation of the network. In [24] it is

proved that a deepNNcan approximate a function forwhich a shallowNNmayneed a very

large number of neurons to reach the same accuracy. Different residual neural networks

have been trained and tested as a validation of our work. They may improve the predic-

tive power while using a similar number of weights as in an MLP, but they typically take

significantly more computing time during the training and testing phases. Very deep net-

work structures may reduce the parallel efficiency, because the operations within a layer

have to wait for the output of previous layers. With the limitation of computing resources

available, a trade-off between ANN’s computation speed and approximation capacity may

be considered.

Many techniques have been put forward to train ANNs, especially for deep networks.

Most of the neural network training relies on gradient-based methods. A proper random

initialization may ensure the network to start with suitable initial weight values. Batch

normalization scales the output of a layer by subtracting the batch mean and dividing it

by the batch standard deviation. This can often speed up the training process. A dropout

operation randomly selects a proportion of the neurons anddeactivates them,which forces

the network to learnmore generalized features and prevents over-fitting. The dropout rate

p refers to the proportion of deactivated neurons in a layer. In the testing phase, in order

to take into account the missing activation during training, each activation in the entire

network is reduced by a factor p. As a consequence, the ANNs prediction slows down,

which has been verified during experiments on GPUs. We found that our ANNs model

did not encounter over-fitting even when using a zero dropout rate, as long as sufficient

training data were provided. In our neural network we employ the Stochastic Gradient

Descent method, as further described in Sect. 3.4.

3.3 The backward pass: calibration using ANNs

This section discusses the connection between training the ANN and calibrating the fi-

nancial model. First of all, both Equations (7) and (13) aim at estimating a set of param-

eters to minimize a particular objective function. For the calibration problem, these are

the parameters of the financial model and the objective function is the error measure be-

tween the market quantity and the model-based quantity. For the neural networks, the

parameters correspond to the learnable weights and biases in the artificial neurons, and

the objective function is the user-defined loss. This connection forms an inspiration for

the machine learning-based approach to calibrate financial models.

As mentioned before, the ANN approach comprises three phases, training, prediction

and calibration. During training, given the input-output pairs and a loss function as in

Equation (13), the hidden layers are optimized to determine the appropriate values of the

weights and biases, as shown in Fig. 2(a), which results in a trained ANN approximating

the option solutions of the financial model (the forward pass, as explained in the previous

section).

During the prediction phase, the hidden layers of the trainedANNare fixed (frozen), and

new input parameters enter the ANN to yield the output quantities of interest. This phase

is used to evaluate the performance of the trained ANN (the so-called model testing) or

to accelerate option pricing by replacing the original solver.

During the calibration phase (or the backward pass), the original input layer of the ANN

is transformed into a learnable layer, while all hidden layers remain unchanged. These
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Figure 2 The different phases of the CaNN

layers are theANN layers obtained from the forward pass with the already trainedweights,

as shown in Fig. 2(b). By providing the output data, here consisting of market-observed

option prices and implied volatilities, and changing to an objective function for model

calibration, see Equation (7), the ANN can be used to find the input values that match the

given output. The task is thus to solve the inverse problemby learning a certain set of input

values, here the model parameters Θ , either for the Heston or Bates model. The option’s

strike price K , as an example, belongs to the input layer, but is not estimated in this phase.

Note that the training phase in the forward pass is time-consuming but done off-line and

only once. The calibration phase is computationally cheap, and is performed on-line. The

calibration phase thus results in model parameters that best match the observed market

data, provided the model has been trained sufficiently.

The gradients of the objective function, with respect to the input parameters, can be de-

rived based on Formula (10). This is useful when employing gradient-based optimization

algorithms to conduct model calibration with the trained ANNs. Compared to the classi-

cal calibration methods, in the ANN-based approach it is also possible to incorporate the

gradient information from the trainedANNs to compute the search direction (without ex-

ternal numerical techniques). As mentioned, we focus on a general calibration framework

in which we can integrate both gradient-based and gradient-free algorithms. Importantly,

within the proposed calibration framework we may insert any number of market quotes,

without requiring a fixed structure of input parameters.

3.4 Optimization

The optimizationmethod plays a key role in training ANNs and calibrating financial mod-

els, but there are different requirements on the solutions for different phases.When train-

ing the neural network to learn the mapping between input and output values, we aim for

a good performance on a test data set while optimizing the model on a training data set

(this concept is called generalization). Calibration is regarded as an optimization problem

with only a training data set, where the objective is to fit the market-observed prices as

well as possible. In this work, the Stochastic Gradient Descent (SGD) is used when train-

ing the ANN, and Differential Evolution is preferred in the phase of calibration to address

the problem of multiple local minima.c
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3.4.1 Stochastic gradient descent

A popular optimizer to train ANNs is SGD [30]. Neural networks contain thousands of

weights, which gives rise to a high-dimensional, non-convex optimization problem. The

local minima appear not to be problematic for this involved black-box system, as long as

the cost function reaches a sufficiently low value. Optimization of Equation (6) based on

SGD is computed using,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

W
(i+1) ←W

(i) – η(i) ∂L
∂W

,

b
(i+1) ← b

(i) – η(i) ∂L
∂b
,

for i = 0, 1, . . . ,NT ,

where L is a loss function as in Equation (12) and NT is the number of training iterations.

The bias and weights parameters are denoted by θ = (W,b). The loss function of training

the ANN solver is based on MSE in this paper.

In practice, the gradients are computed overmini-batches because of computermemory

limitations. Instead of all input samples, a portion is randomly selected within each itera-

tion to calculate an approximation of the gradient of the objective function. The size of the

mini-batch is used to determine the portion. Due to the architecture of the GPUs, batch

sizes of powers of two can be efficiently implemented. Several variants of SGD have been

developed in the past decades, e.g., RMSprop and Adam [23], where the latter method

handles an optimization problem adaptively by adjusting the involved parameters over

time.

3.4.2 Differential evolution

Differential Evolution (DE) [33] is a population-based, derivative-free optimization algo-

rithm, which does not require any specific initialization. With DE, a global optimum can

be found, even when the objective function is non-convex. The general form of the DE

algorithm usually comprises the following four steps:

1. Initialization: Generate the population with Np individuals and locate each member

with random positions in the search space,

(θ1, θ2, . . . , θNp ).

2. Mutation: Once initialized, a randomly sampled difference is added to each

individual, named differential mutation.

θ
′

i = θa + F · (θb – θ c), (14)

where i represents the ith candidate, and the indices a, b, c are randomly selected

from the population with a 	= i. The resulting θ
′ is called a mutant. The differential

weight F ∈ [0,∞) determines the step size of the evolution. Generally, large F values

increase the search radius, but may cause DE to converge slowly. There are several

mutation strategies, for example, when θa is always the best candidate of the previous

population, the mutation strategy is called best1bin, which will be used in the

following numerical experiments; when θa is randomly chosen, it is called rand1bin.

After this step, an intermediary (or donor) population, consisting of Np mutant

candidates, is generated.
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3. Crossover: During the crossover stage, mutated candidates that may enter the next

evaluation stage are determined. For each i ∈ {1, . . . ,Np}, a uniformly distributed

random number pi ∼U(0, 1) is selected. Some samples are filtered out by setting a

user-defined crossover possibility Cr ∈ [0, 1],

θ
′′
i =

⎧

⎨

⎩

θ
′
i, if pi ≤ Cr,

θ i, otherwise.
(15)

If the probability is greater than Cr, the donor candidate will be discarded. Increasing

Cr allows more mutants to enter the next generation, but at the expense of

population stability. Here, a trial population (θ ′′
1 , θ

′′
2 , . . . , θ

′′
Np
) has been defined.

4. Selection: Comparing each new trial candidate with the corresponding target

individual on the objective function,

θ i ←

⎧

⎨

⎩

θ
′′
i , if g(θ ′′

i )≤ g(θ i),

θ i, otherwise.
(16)

If the trail individual has improved performance, the selected individual is replaced.

Otherwise, the offspring individual inherits the parameters from its parent. This

gives birth to a next generation population.

The Steps (2)–(4) are repeated until the algorithm converges or until a pre-defined crite-

rion is satisfied. Adjusting the control parameters may impact the performance of DE. For

example, a large population size and mutation rate can increase the probability of finding

the global minimum. An additional parameter, convergence tolerance, is used to measure

the diversity within a population, and determines when to stop DE. The control parame-

ters can also change over time, which is out of our scope here.

3.4.3 Acceleration of calibration

In this section we develop DE into a parallel version which is beneficial within the ANNs.

Generally, matrix multiplications and element-wise operations in a neural network can be

implemented in parallel to reduce the computing time, especially when a large number of

arguments is involved. As a result, several components of the calibration procedure can

be accelerated. For the ANN solver in the forward pass, all observed market samples can

be evaluated at once. Furthermore, in the selection stage of the DE, an entire population

can be treated simultaneously. Note that the ANN solver runs in parallel, especially on any

GPU.

An example of the parameter settings for DE is shown in Table 1, where the population

of one generation comprises 50 vector candidates for the calibrated parameters (e.g., a

Table 1 The setting of DE

Parameter Option

Population size 50

Strategy best1bin

Mutation (0.5, 1.0)

Crossover recombination 0.7

Convergence tolerance 0.01
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vector candidate contains five parameters to calibrate in the Heston model), and each

candidate produces a number of market samples (here 35, i.e., 7 strike prices K and 5 time

points). So, there are 50× 35 = 1650 input samples for the Heston model each generation.

Traditionally, all these input samples (here 1650) are computed individually, except for

those with the same maturity time T . The first speed-up is achieved because 35 sample

output quantities from each parameter candidate can be computed by the ANN solver at

the same time, even if these samples have different maturity times and strike prices. The

second speed-up is based on the parallel DE combinedwith the ANN, where all parameter

candidates in one generation enter the ANN solver at once, that is, all 1650 input samples

in one generation can be included in the ANN solver simultaneously, giving 1650 output

values (e.g., implied volatilities). Note that the batch size of the ANN solver should be

adapted to the limitations of the specific processor, here 2048 in our used processor. We

find that with the population size being around 50, the parallel CaNN is at least 10 times

faster than the conventional CaNN, on either a CPU or a GPU. It is believed that a larger

population size should lead to a higher parallel computing performance, especially on a

GPU.

Remark There are basically two error sources in this framework. One is a consistency

error which comes from the employed numerical methods to solve the financial model,

and it is found while generating the training data set. The other is an optimization error

during training and calibration. These errors will influence the performance of the CaNN.

4 Numerical results

In this sectionwe show the performance of the proposedCaNN.We beginwith calibrating

the Heston model, a special case of the Bates model. Some insights into the effect of the

Heston parameters on the implied volatility are discussed to give some intuition on the re-

lation, since no explicit mapping between them exists. Then, the forward pass is presented

where an ANN is trained to build a mapping between the model parameters and implied

volatilities. It is also demonstrated that the trained forward pass can be used as a tool for

performing the sensitivity analysis of the model parameters. After that, we implement the

backward pass of the Heston–CaNN to calibrate the model and evaluate the CaNN per-

formance. We end this section by considering the calibration of the Bates model, a model

that consists of more parameters than the Heston model, using the Bates–CaNN.

4.1 Parameter sensitivities for Hestonmodel

This section discusses the sensitivity of the implied volatility to the Heston coefficients.

This sensitivity analysis can be used to estimate a set of initial parameters, as is used in tra-

ditional calibrationmethods. In our calibrationmethod this will not be required, however,

we can gain some insights in the case of no explicit formulas.

The typically observed implied volatility shapes in the market, e.g., the implied volatility

smile or skew, can be reproduced by varying the above parameters {κ ,ρ,γ ,ν0, ν̄}. We will

give some intuition about the parameter values and their impact on the implied volatil-

ity shape. From a PDE viewpoint, the calibration problem consists of finding appropriate

values of PDE coefficients {κ ,ρ,γ ,ν0, ν̄} to make the Heston model to reproduce the ob-

served option/implied volatility data. The authors in [12] reduce the calibration time by

giving smart initial values for asset models, whereas in [11] an approximation formula for
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the Heston dynamics was employed to determine a satisfactory initial set of parameters,

followed by a local optimization to reach the final parameters. The paper [6] derived a

Heston model characteristic function to analytically obtain gradient information of the

option prices during the search for an optimal solution. In Sect. 4.3.2 we will use the ANN

to extract gradient information of the implied volatility with respect to the Heston param-

eters.

4.1.1 Effect of individual parameters

To analyze the parameter effects numerically, we use the following set of reference param-

eters,

T = 2, S0 = 100, κ = 0.1, γ = 0.1,

ν̄ = 0.1, ρ = –0.75, ν0 = 0.05, r = 0.05.

A numerical study is performed by varying individual parameters while keeping the oth-

ers fixed. For each parameter set, Heston stochastic volatility option prices are computed

(by means of the numerical solution of the Heston PDE) and the Black–Scholes implied

volatilities are subsequently determined.

Two important parameters that are varied are the correlation parameter ρ and the

volatility-of-variance parameter γ . Figure 3 (left side) shows that, when ρ = 0%, an in-

creasing value of γ gives a more pronounced implied volatility smile. A higher volatility-

of-variance parameter thus increases the implied volatility curvature.We also see, in Fig. 3

(right side), that when the correlation between stock and variance process gets increas-

ingly negative, the slope of the skew in the implied volatility curve increases. Furthermore,

it is found that parameter κ has a limited effect on the implied volatility smile or skew, up

to 1%–2% only. It determines the speed at which the volatility converges to the long-term

volatility ν̄ .

The optimization can be accelerated by a reduction of the set of parameters to be opti-

mized. By comparing the impact of the speed of mean reversion parameter κ and the cur-

vature parameter γ , it is observed that these two parameters have a similar effect on the

shape of the implied volatility. It is therefore common (industrial) practice to prescribe (or

Figure 3 Impact of variation of the Heston parameter γ (left side), and correlation parameter ρ (right side),

on the implied volatility which varies as a function of strike price K
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fix) one of them. Practitioners often fix κ and optimize parameter γ , for example κ = 0.5.

By this, the optimization reduces to four parameters.

Another parameter which may be determined in advance, using heuristics, is the initial

value of the variance process ν0. For maturity time T “close to today” (i.e., T → 0), one

expects the stock price to behave like in the Black–Scholes case. The impact of a stochastic

variance process should reduce to zero, in the limit T → 0. For options with short matu-

rities, the process may therefore be approximated by a process of the following form:

dS(t) = rS(t)dt +
√

ν0S(t)dWx(t). (17)

This suggests that for initial variance ν0 onemay use the square of theATM implied volatil-

ity of an optionwith the shortestmaturity, ν0 ≈ σ 2
imp, forT → 0, as an accurate approxima-

tion for the initial guess for the parameter. Onemay also use the connection of the Heston

dynamics to the Black–Scholes dynamics with a time-dependent volatility function. In the

Heston model we may, for example, project the variance process onto its expectation, i.e.,

dS(t) = rS(t)dt +E
[

√

ν(t)
]

S(t)dWx(t).

By this projection the parameters of the variance process ν(t) may be calibrated similar

to the case of the time-dependent Black–Scholes model. The Heston parameters are then

determined, such that

σATM(Ti) =

√

∫ Ti

0

(

E
[

√

ν(t)
])2

dt,

where σATM(Ti) is the ATM implied volatility for maturity Ti.

Another classical calibration technique for the Heston parameters is to use VIX index

market quotes. With different market quotes for different strike prices Ki and for different

maturities Tj, we may determine the optimal parameters by solving the following equali-

ties, for all pairs (i, j),

Ki,j = ν̄ +
ν0 – ν̄

κ(Tj – t0)

(

1 – e–κ(Ti–t0)
)

. (18)

When the initial values of the parameters have been determined, one can use the whole

implied volatility surface to determine the optimal model parameters. To conclude, the

number of the Heston parameter to be calibrated depends on different scenarios. The

flexibility of our CaNN is that it can handle varying numbers of to-calibrate parameters.

4.1.2 Effect of two combined parameters

In this section, two parameters are varied simultaneously in order to understand the joint

impact on the objective function. Figure 4(a) presents the landscape of the objective func-

tion, here the logarithm of theMSE, when varying ν0 and κ but keeping the other parame-

ters fixed in the Hestonmodel. It is observed that the valley is narrow in the direction of ν0

but flat in the direction of κ . Several values of these parameters thus result in similar val-

ues of the objective function, which means that there may be no unique global minimum
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Figure 4 Landscape of the objective function for the implied volatility. The true values are κ∗ = 1.0 and

ν∗
0 = 0.2 in the left plot, and κ∗ = 1.0 and ν̄∗ = 0.2 in the right plot. There are 35 market samples. The objective

function is MSE. The contour plot is rendered by a log-transformation

Figure 5 The objective function when varying γ

and κ . The true values are κ∗ = 1.0 and γ ∗ = 0.25

above a certain error threshold. Furthermore, for ν̄ and κ we observe also a flat minimum,

with multiple local minima giving rise to similar MSEs, see Fig. 4(b).

A similar observation holds for κ and γ : small values of κ and large γ values will, in

certain settings, give essentially the same option prices as large values of κ and small γ

values. This may give rise to multiple local minima for the objective function, as shown in

Fig. 5.

For higher-dimensional objective functions, the structure becomes evenmore complex.

This is a preliminary study of the sensitivities, and advanced tools are required for studying

the effect of more than two parameters. We will show that the ANN can be used to obtain

the sensitivities for more than two parameters to present the bigger picture of the depen-

dencies and sensitivities. For this task the Hessian matrix of the five Heston parameters

will be extracted (see Sect. 4.3.2).
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4.2 The forward pass

In this section,we discuss the forward pass, i.e., Heston–IV–ANN.A relatively large neural

network is chosen so that in the forward pass the network is overparametrized in terms

of its expressive power and should be able to fit the pricing model well enough. This in

turn comes at the cost of a more expensive computation, but provides a suitable forward

pass to demonstrate that the parallel backward pass, in Sect. 4.3, can handle computation-

intensive model calibration in a fast way. The selected hyper-parameters are listed in Ta-

ble 2. Please note that increasing the number of neurons or using a deeper structure may

lead to better approximations, but gives rise to an expensive-to-compute network. With

our computing resources, we choose to employ 200 neurons each hidden layer to balance

the calibration speed and accuracy. We use 4 hidden layers and a linear output (regres-

sion) layer, so that the network contains 122,601 trainable parameters. MSE is used as the

loss function measure to train the forward pass. The global structure is depicted in Fig. 6.

More details on the ANN solver can be founded in [26].

As a data-driven method, the samples from the parameter set for which the ANN is

trained are randomly generated for the pricing of European options. The input contains

eight variables, and Table 3 presents the range of six Heston input parameters (r, ρ , κ , ν̄ , γ ,

ν0) as well as two option contract-related parameters (τ ,m), with a fixed strike priceK = 1.

There are around one million data points. The complete data set is randomly divided into

three parts, with 10% as the testing set, 10% as validation and 80% as the training data set.

After sampling the parameters, a robust version of the COSmethod is used to determine

the option prices under the Heston model numerically. The default setting with LCOS = 50

and NCOS = 1500 will provide highly accurate option solutions for most of the samples,

but it may end up with insufficient precision in some extreme parameter cases. In such

cases, the integration interval [a,b] will be enlarged automatically, by increasing LCOS until

Table 2 Details and parameters of the selected ANN

Parameters Options

Hidden layers 4

Neurons(each layer) 200

Activation ReLu

Dropout rate 0.0

Batch-normalization No

Initialization Glorot_uniform

Optimizer Adam

Batch size 1024

Figure 6 The structure of the ANN



Liu et al. Journal of Mathematics in Industry             ( 2019)  9:9 Page 18 of 28

Table 3 Sampling range for the Heston parameters. LHS means Latin Hypercube Sampling, COS

stands for the COS method (see the Appendix) and Brent for the root-finding iteration

ANN Parameters Value range Generating method

ANN Input Moneyness,m = S0/K [0.6, 1.4] LHS

Time to maturity, τ [0.05, 3.0] (year) LHS

Risk free rate, r [0.0%, 5%] LHS

Correlation, ρ [–0.90, 0.0] LHS

Reversion speed, κ (0, 3.0] LHS

Volatility of volatility, γ (0.01, 0.8] LHS

Long average variance, ν̄ (0.01, 0.5] LHS

Initial variance, ν0 (0.05, 0.5] LHS

– European put price, V (0, 0.6) COS

ANN Output Black–Scholes IV, σ (0, 0.76) Brent

Table 4 The trained forward pass performance. The default float type is float32 on the GPU. The

measures are defined as follows: MSE = 1
n

∑

(yi – ŷi)
2 , MAE = 1

n

∑

|yi – ŷi|, MAPE = 1
n

∑ |yi–ŷi|
yi

, where y

represents the true value, and ŷ represents the predicted value with n being the number of samples

Heston–IV–ANN MSE MAE MAPE R2

Training 8.07× 10–8 2.15× 10–4 5.83× 10–4 0.9999936

Testing 1.23× 10–7 2.40× 10–4 7.20× 10–4 0.9999903

the lower bound a and the upper bound b have different signs. Subsequently, the Black–

Scholes implied volatility is calculated by Brent’s method.

The option prices are just intermediate variables during training in the forward pass.

The overall Heston–IV–ANN solver does not depend on the type of European option

(e.g., call or put), since during the computation of the Black–Scholes implied volatilities the

European options with identical Heston parameters should give rise to the same implied

volatilities, independent of call or put prices. The forward pass can handle both call and

put implied volatilities without requiring additional efforts. Here we are using European

put options, since the COS method is more robust for pricing put than call options.

The ANN takes as input parameters (r,ρ,κ , ν̄,γ ,ν0, τ ,m), and approximates the Black–

Scholes implied volatility σ . As mentioned in Table 2, the optimizer Adam is used to train

the ANN on the generated data set. The learning rate is halved every 500 epochs. The

training consists of 8000 epochs, both the training and validation losses have converged.

The performance of the trained model is shown in Table 4.

We observe that the forward pass is able to obtain a very good accuracy and therefore

learns the mapping between model parameters and implied volatility in a robust and ac-

curate manner. The test performance is very similar to the train performance, showing

that the ANN is able to generalize well.

4.3 The backward pass

Wewill perform calibration using the CaNN based on the trained ANN from the previous

section and evaluate its performance. We will work with the full set of Heston parameters

to calibrate, but we will also study the impact of reducing the number of parameters to

calibrate, as discussed in Sect. 4.1.1.

The aim is to check how accurately and efficiently the ANN approach can recover the in-

put values. In order to investigate the performance of the proposed calibration approach,

as shown in Fig. 7, we generate synthetic samples by means of Heston–IV/COS–Brent,
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Figure 7 The Calibration Neural Network for the Heston model

Table 5 The range of market quotes

– Parameters Range Samples

Market data Moneyness,m = S0/K [0.85, 1.15] 5

Time to maturity, τ [0.5, 2.0](year) 7

Risk free rate, r 0.03 Fixed

European call/put price, V/K (0.0, 0.6) –

Black–Scholes Implied Volatility (0.2, 0.5) 35

where the ‘true’ values of the parameters are known in advance. In other words, the pa-

rameters used to obtain the IV’s from the COS-Brent’s method, are now taken as out-

put of the backward pass of the neural network, with σimp being the input conditional

on (K , τ ,S0, r). Different financial models correspond to different CaNNs. Here we distin-

guish the Heston–CaNN (based on the Heston model, studied in this section), from the

Bates–CaNN (based on the Bates model, studied in Sect. 4.3.3).

There are 5 × 7 = 35 ‘observed’ European option prices, that are made up of European

OTM puts and calls. As shown in Table 5, the moneyness ranges from 0.85 to 1.15, and

the maturity times vary from 0.5 to 2.0. Each implied volatility surface contains money-

ness levels (85%, 90%, 95%, 100%, 110%, 115%) and maturities (0.5, 0.75, 1, 1.25, 1.5, 1.75,

2.0) with a prescribed risk-free interest rate of 3%. The samples withm < 1 correspond to

European call OTM options, while those ones with m > 1 and m = 1 are OTM and ATM

put options, respectively.

We use the total squared error measure J(Θ) as the objective function during the cali-

bration,

J(Θ) =
∑

ω
(

σANN
imp – σ ∗

imp

)2
+ λ̄‖Θ‖, (19)

where σANN
imp is the ANN-model-based value and σ ∗

imp is the observed one. We give a

small penalty parameter λ̄ depending on the dimensionality of the calibration.d The for-

ward pass has been trained with implied volatility as the output quantity, as described in

Sect. 4.1.2. The parameter settings of the DE optimization is shown in Table 1.

4.3.1 Calibration to Heston option quotes

In this section we focus on two scenarios for the Heston model, calibrating either three

parameters, with a fixed κ and a known ν0, or calibrating five parameters. In order to cre-

ate synthetic calibration data, we choose five equally-spaced points between the lower and

upper bound for each parameter, and there are 55 = 3125 combination cases in total, as

shown in Table 6. For each experiment, five different random seeds of DE are tested, be-
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Table 6 Uniformly distributed points between the lower and upper bounds of the Heston

parameters

Parameter Lower Upper Points CaNN search space

ρ –0.75 –0.25 5 [–0.85, –0.05]

ν̄ 0.15 0.35 5 [0.05, 0.45]

γ 0.3 0.5 5 [0.05, 0.75]

ν0 0.15 0.35 5 [0.05, 0.45]

κ 0.5 1.0 5 [0.1, 2.0]

Table 7 Averaged performance of the backward pass of the Heston–CaNN, calibrating 3 parameters

on a CPU (Intel i5, 3.33 GHz with cache size 4 MB) and on a GPU (NVIDIA Tesla P100), over 3125× 5

(random seeds) test cases, where † stands for CaNN estimated value, and ∗ stands for the true value,

with MJ = J(Θ )/N

Absolute deviation from Θ∗ Error measure Computational cost

|v̄† – v̄∗| 1.60× 10–3 J(Θ ) 1.45× 10–6 CPU time (seconds) 0.29

|γ † – γ ∗| 1.79× 10–2 MJ 4.14× 10–8 GPU time (seconds) 0.15

|ρ† – ρ∗| 2.44× 10–2 Data points 35 Function evaluations 59,221

Table 8 Performance of Heston–CaNN calibrating 5 parameters on a GPU over 3125× 5 (random

seeds) test cases

Absolute deviation from Θ∗ Error measure Computational cost

|ν†
0 – ν∗

0 | 4.39× 10–4 J(Θ ) 2.52× 10–6 CPU time (seconds) 0.85

|ν̄† – ν̄∗| 4.54× 10–3 MJ 7.18× 10–8 GPU time (seconds) 0.48

|γ † – γ ∗| 3.28× 10–2 Function evaluations 193249

|ρ† – ρ∗| 4.84× 10–2 Data points 35

|κ† – κ∗| 4.88× 10–2

cause the DE optimization involves random operations whichmay cause the performance

to fluctuate. In addition, all quotes have the equal weight ω = 1 in this section.

First, the scenario of three parameters is studied, fixing κ and ν0 during calibration.

We compare the averaged results by implementing each test case five times. The wording

“function evaluation” refers to how many times the model has been compared to the ob-

served implied volatility. The population size in theDE is 15×Nv, that is, 15×3 = 45.With

the population ratio increasing further, no significant benefits were observed. As shown

in Table 7, the time on the GPU is around half of that on the CPU.

In the case of five parameters (ρ, ν̄,γ ,ν0,κ), the calibration problem ismore likely to give

rise to a many-to-one problem; that is, many sets of parameter values may correspond to

the same volatility surface. A regularization factor λ̄ = 1.0× 10–6 is added to guide CaNN

to a set of values for which the sum of their magnitude is the smallest among the feasible

solutions, as shown in Equation (6). Here theDE population size is 50 = 10×5 parameters.

As shown in Table 8, the Heston–CaNN finds the values of these parameters in approxi-

mately 0.5 seconds on a GPU, with around 20,000 function evaluations. There are several

reasons why theCaNNwithDEperforms fast and efficiently. One reason is that the forward

pass runs faster compared to a two-step computation from the Heston parameters to the

implied volatilities, since an iterative root-finding algorithm for the implied volatility takes

some computing time. In addition, the entire group of observed data can be evaluated at

once in the framework. Other benefits come from the acceleration due to the parallelized

DE optimization, where the whole population is computed simultaneously in the selection

stage.
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Table 9 A Hessian matrix at the true value set Θ∗

∂ρ ∂κ ∂γ ∂ν̄ ∂ν0

∂ρ 2.79× 10–2 – – – –

∂κ 1.14× 10–2 8.20× 10–3 – – –

∂γ –2.88× 10–2 –1.76× 10–2 4.11× 10–2 – –

∂ν̄ 7.45× 10–2 5.51× 10–2 –1.19× 10–1 3.76× 10–1 –

∂ν0 2.16× 10–1 1.27× 10–1 –3.10× 10–1 8.77× 10–1 2.66

4.3.2 Sensitivity analysis based on ANNs

The gradients of the objective function can be extracted from the trained model, as men-

tioned in Sect. 3.1. These can be used to gain some insights into the complex structure of

the loss surface and thus into the complexity of the optimization problem for calibration.

We use here the Hessian matrix, which describes the local curvature of the loss function.

No explicit formula is available for the relations the neural network learns between the

implied volatilities and the model parameters, however, it is feasible to extract the Hes-

sian from the trained ANN, giving insight into this relation and the sensitivities. Table 9

shows a Hessian matrix, where the Hessian is defined as ∂yiyjL(Θ), where yi and yj are

output of the neural network (y ∈ Θ , the to-be calibrated parameters). The Hessian is

computed by differentiating the Heston–IV–ANN loss for computing the Black–Scholes

implied volatility with respect to the Heston parameters on 35 market data points based

on the parameter ranges in Table 5. Here the objective function is the MSE to exclude the

effects of a regularization factor.

We can understand how the parameters affect the loss surface around the optimumwith

help of the Hessian matrix, by analyzing the sensitivities of the implied volatility with re-

spect to the five parameters. Observe that the value of the Hessian with respect to κ is

the smallest among the sensitivities. As shown in Table 9, the ratio between ∂2J(Θ∗)/∂ν2
0

and ∂2J(Θ∗)/∂κ2 is around 323, which suggests that changing 1 unit of ν0 is approximately

equivalent to changing 323 units of κ for the objective function. When the Hessian value

is small in absolute value, the loss surface at that point exhibits flatness in the correspond-

ing direction. As visible in Fig. 4, the ground-truth loss surface gets increasingly stretched

along the axiswith κ , resulting in a narrow valleywith a flat bottom.This also indicates that

there is no unique global minimum above a certain non-zero convergence tolerance, since

multiple values of κ would result in similar values of the loss function. In addition, the con-

vergence performance, especially for the steepest descent method, depends on the ratio

of the smallest to the largest eigenvalue of the Hessian; this ratio is also known as the con-

dition number in the case of symmetric positive matrices. The ratio between ∂2J(Θ∗)/∂ν̄2

and ∂2J(Θ∗)/∂κ2 is around 45, as visible in Fig. 4(b). From the results in [6], when the tar-

get quantity is based on the option prices, this ratio between ∂2J(Θ∗)/∂ν̄2 and ∂2J(Θ∗)/∂κ2

is sometimes found to be of order 106, which makes the calibration problem increasingly

complex due to a great disparity in sensitivity. Calibrating to the implied volatility appears

to reduce the ratio between different Hessian entries compared to the option prices, thus

decreasing Hessian’s condition number and resulting in a more efficient and accurate cal-

ibration performance.

Table 9 also suggests that the entries |∂2J(Θ∗)/∂κ2| and |∂2J(Θ∗)/∂ρ2| are among the

smallest ones around the optimum. These two parameters thus have the smallest effect

on the objective function. Therefore, the DE method can converge to values that are in

a wide area of the search space, since these parameters do not impact the error measure
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significantly. A straightforward way to address this issue is by adding a regularization term

to choose a particular solution, for example, like Equation (19). Another way is to take

advantage of the population-based algorithm DE. Since there are several candidates in

each generation, we can select the top few candidates to get an averaged solution when

DE converges. This averaged solution may lead to wider optima and better robustness.

Some recent papers, like [21] have used similar ideas to improve the generalization of the

neural network. The parameter ν0 is the most sensitive one and it appears to dominate

the ANN calibration process. Therefore, the predicted parameter ν0 is the most precise

among all parameters in order to achieve the desired accuracy.

The above analysis explains the behavior of the absolute deviation of the five parameters

as shown in Table 8. The error measure MJ can not drop significantly below 7.18× 10–8,

as this value is close to the testing accuracy, MSE = 1.23× 10–7, of the Heston–IV–ANN

model. In other words, any further exploration of the DE optimization can not distinguish

the parameters impact on the loss anymore.

4.3.3 Calibration to Bates quotes

In this section, we use the Bates model to create the synthetic market data, in order to

generate a more realistic (complex) volatility shape by adding some ‘perturbations’ to the

previous Heston data. It is then followed by a calibration based on the Heston model. The

aim is to check whether the resulting implied volatilities can be recovered by the machine

learning calibration framework.

So, the observed data set in Table 10 is from the Bates option prices. During the calibra-

tion, we will employ the backward pass based on the Heston model to determine a set of

parameter values which approximate the generated implied volatility function.

There are two sets of experiments, based on either rare jumps or common jumps in the

stock price process. Figure 8 compares the implied volatility from the Bates model (for-

ward) computations and the CaNN-based Heston implied volatilities. Clearly, when the

impact of the jumps is small, the Hestonmodel can accurately mimic the implied volatility

generated by the Bates parameters. In this case, many different input parameters for the

Table 10 The Heston parameters are estimated with the CaNN by calibrating to a data set generated

by the Bates model. ‘Ground total squared error’ refers to the sum of the differences between σ ∗
imp

and σimp , where σimp is obtained using the COS and Brent methods with already calibrated Heston

parameter values. For a single calibration case, the computing time fluctuates slightly, as the CPU or

GPU performance may be influenced by external factors. Function evaluations should be a reliable

measure to estimate the time

– Calibration Rare jump Common jump Weighting ATM

Parameters Search space Bates Heston Bates Heston Bates Heston

Intensity of jumps, λJ – 0.1 – 1.0 – 1.0 –

Mean of jumps, μJ – 0.1 – 0.1 – 0.1 –

Variance of jumps, ν2
J – 0.12 – 0.12 – 0.12 –

Correlation, ρ [–0.9, 0.0] –0.3 –0.284 –0.3 –0.135 –0.3 –0.164

Reversion speed, κ [0.1, 3.0] 1.0 1.140 1.0 1.050 1.0 1.205

Long variance, ν̄ [0.01, 0.5] 0.1 0.100 0.1 0.120 0.1 0.114

Volatility of volatility, γ [0.01, 0.8] 0.7 0.728 0.7 0.701 0.7 0.604

Initial variance, ν0 [0.01, 0.5] 0.1 0.103 0.1 0.119 0.1 0.115

Function evaluations CaNN – 162,890 – 155,680 – 258,300

Time(seconds) GPU – 0.45 – 0.40 – 0.7

Total Squared Error Ground – 1.38× 10–6 – 5.19× 10–6 – 5.95× 10–5
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Figure 8 Implied volatilities from the ‘market’ and calibration. The solid lines represent the Bates implied

volatilities, while the dashed lines are the calibrated Heston-based volatilities. The impact of weighting ATM

options can be seen in the third figure

Bates model will give very similar implied volatility surfaces. With an increasing jump in-

tensity, the deviation between the two models can become significant, especially for short

maturity options.

In financial practice, a perfect calibration to the ATM options is often required. We

can enforce this, by increasing the weights of the ATM options in the objective function.

The third figure from Fig. 8 and Table 10 compare the differences when weighting ATM

options in the objective function. The two curves fit very well ATM, however, in this case

the total error increases with unequal weighting. The results demonstrate the robustness

of theCaNN framework. It is howeverwell-known that theHestonmodel can not fit short-

maturity market implied volatility very well, and therefore we will also employ a higher-

dimensional model, e.g., calibrating directly the Bates model, which will be discussed in

Sect. 4.4.

4.4 Calibrating the Bates model

In this section, we show the ability of Bates–CaNN to calibrate the Bates model parame-

ters. The Bates model calibration is a higher-dimensional problem, since the Bates model

is based on more parameters than the Heston model. The proposed CaNN framework is

used to calibrate eight parameters in the Bates model, a setting in which we are dealing

with more complex implied volatility surfaces.

Initially, the Bates–IV–ANN forward pass is trained on the training data set consisting

of one million samples that are generated by the Bates model. Compared to the forward
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Table 11 The Bates parameters are estimated with Bates–CaNN, by calibrating to a data set (35

samples) generated by the Bates model. In DE, the random seed is 2 and the population size is

10× Nv = 80

Parameters CaNN search space Bates Calibrated

Intensity of jumps, λJ [0, 3.0] 1.0 1.065

Mean of jumps, μJ [0, 0.4] 0.1 0.087

Variance of jumps, ν2
J [0, 0.3] 0.160 0.146

Correlation, ρ [–0.9, 0.0] –0.3 –0.228

Reversion speed, κ [0.1, 3.0] 1.0 0.598

Long average variance, ν̄ [0.01, 0.5] 0.1 0.128

Volatility of volatility, γ [0.01, 0.8] 0.7 0.776

Initial variance, ν0 [0.01, 0.5] 0.1 0.102

Total Squared Error – – 4.95× 10–6

Function evaluation – – 842,800

Time (seconds) – – 1.8

Figure 9 The solid lines represent the observed

implied volatilities, with the dashed lines being the

model calibrated ones. This plot shows the result

with equal weights and λ̄ = 1.0× 10–6 . The random

seed is 2 during calibration

pass of the Hestonmodel, merely a different characteristic function is inserted in the COS

method, and three additional model parameters have been varied. The Bates–CaNN is

employed to calibrate the Batesmodel, aiming to recover the eight Batesmodel parameters

possibly well. All the samples have equal weight, and the regularization factor is λ̄ = 1.0×
10–6.

Table 11 shows an example with high intensity, large variance jumps, for which the He-

ston model can not capture the corresponding implied volatility accurately. There are still

35 market samples as shown in Table 5. Estimating eight parameters is a challenging task,

including millions of comparisons between the model and the market values during cali-

bration.

Figure 9 compares the implied volatilities from the synthetic market and the calibrated

Bates model. These volatilities resemble each other very well, even when the curvature is

high with short time to maturity.

5 Conclusion

In this work we proposed a machine learning-based framework to calibrate pricing mod-

els, in particular focussing on the high-dimensional calibration problems of the Heston

and Batesmodels. The proposed approach has several favorable features, where an impor-

tant one is robustness. Without choosing specific initial values, the DE global optimizer

prevents the model calibration getting stuck in a local minimum.
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Fast calibration results from several factors. An ANN is efficient in computing the out-

put values for a single input setting.When calibrating, all the market samples can be com-

puted by ANNs simultaneously. Using DE, during the selection stage, ANNs can calculate

a whole population of each generation at once, in parallel on a parallel computing architec-

ture. The numerical experiments show that optimal values can be found within a second

even when using a global optimization algorithm.

The ANN-based approach provides new tools to gain insight into the calibration prob-

lem. We use the Hessian matrix to perform a sensitivity analysis, where the sensitivities

can efficiently be extracted for large numbers of model parameters. The Hessian matrix

also explains why implied volatility, used in our work, is preferred over option prices, used

in previous works, from an optimization perspective.

The calibration framework furthermore is generic, and does not require characteristic

functions, or explicit gradients of financial models. The number of market data or to-

calibrate parameters is also flexible. With this framework, the model can be extended to

multiple quantities, e.g., calibrating to both option prices and implied volatility. To con-

clude, the ANN combined with DE provides an efficient and accurate framework for cal-

ibrating financial models.

To look forward, the above ANN calibration process does not rely on the quality of the

initial guess. However, because the market does not change dramatically in a short time

period, it may make sense to take the last available values as starting point of the calibra-

tion in future work. There are several possible strategies for the calibration framework in

this situation. One is switching to the gradient-based local optimization algorithms and

another one is narrowing the search space of the DE, which will further reduce the com-

putational time considerably. Further future improvements include combining gradient-

based optimization with the DE, since the gradient information is readily accessible. It is

also feasible to employ a small neural network to reduce the computing time, like in the

paper [20] which builds a three-hidden-layers ANNs and each layer has 30 nodes during

the calibration.

Appendix: COS pricingmethod

Based on the Feynman–Kac Theorem, the solution of the governing option valuation

PDEs is given by the risk-neutral valuation formula,

V (t0,x,ν) = e–r�t

∫ ∞

–∞
V (T , y,ν)f (y|x)dy,

where V (t,x,ν) is the option value, and x, y are increasing functions of the underlying at

t0 and T , respectively. To get to the COS formula, we truncate the integration range, so

that

V (t0,x,ν)≈ e–r�t

∫ b

a

V (T , y,ν)f (y|x)dy, (20)

with |
∫

R
f (y|x)dy –

∫ b

a
f (y|x)dy| < TOL.
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The density function of the underlying is then approximated by means of the character-

istic function with a truncated Fourier cosine expansion, as follows:

f (y|x)≈ 2

b – a

N–1
∑′

k=0

Re

{

f̂

(

kπ

b – a
;x

)

exp

(

–i
akπ

b – a

)}

cos

(

kπ
y – a

b – a

)

, (21)

where Re means taking the real part of the expression in brackets, and f̂ (ω;x) is the char-

acteristic function of f (y|x) defined as below

f̂ (ω;x) = E
(

eiωy|x
)

. (22)

The prime at the sum symbol in (21) indicates that the first term in the expansion is mul-

tiplied by one-half. Replacing f (y|x) by its approximation (21) in (20) and interchanging

the order of integration and summation, gives us the COS algorithm to approximate the

value of a European option, as below:

V (t0,x,ν) = e–r�t

N–1
∑′

k=0

Re

{

f̂

(

kπ

b – a
;x

)

e–ikπ
a

b–a

}

Hk , (23)

where

Hk =
2

b – a

∫ b

a

V (T , y,ν) cos

(

kπ
y – a

b – a

)

dy (24)

is the Fourier cosine coefficient ofH(t, y) = V (T , y,ν), which is available in closed-form for

several European option payoff functions.

Equation (23) can be directly applied to calculate the value of European option, which

also forms the basis for the pricing of Bermudan options.

The COS algorithm exhibits an exponential convergence rate for all processes whose

conditional density f (y|x) ∈ C∞((a,b) ⊂ R). The size of the integration interval [a,b] can

be determined with help of the cumulants.
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11. Forde M, Jacquier A, Mijatović A. Asymptotic formulae for implied volatility in the Heston model. Proc R Soc Lond, Ser

A, Math Phys Eng Sci. 2010;466(2124):3593–620.

12. Gauthier P, Rivaille P-YH. Fitting the smile, smart parameters for SABR and Heston. SSRN Electron J. 2009.

13. Gilli M, Schumann E. Calibrating option pricing models with heuristics. In: Natural computing in computational

finance. Berlin: Springer; 2012. p. 9–37.

14. Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge: MIT Press; 2016. http://www.deeplearningbook.org.

15. Guillaume F, Schoutens W. Calibration risk: illustrating the impact of calibration risk under the Heston model. Rev

Deriv Res. 2012;15(1):57–79.

16. Hernandez A. Model calibration with neural networks. 2016. https://doi.org/10.2139/ssrn.2812140.

17. Heston SL. A closed-form solution for options with stochastic volatility with applications to bond and currency

options. Rev Financ Stud. 1993;6(2):327–43.

18. Hirsa A, Karatas T, Oskoui A. Supervised deep neural networks (DNNS) for pricing/calibration of vanilla/exotic options

under various different processes. 2019. arXiv:1902.05810.

19. Homescu C. Implied volatility surface: construction methodologies and characteristics. 2011. arXiv:1107.1834.

20. Horvath B, Muguruza A, Tomas M. Deep learning volatility. 2019. arXiv:1901.09647.

21. Izmailov P, Podoprikhin D, Garipov T, Vetrov D, Wilson AG. Averaging weights leads to wider optima and better

generalization. 2018. arXiv:1803.05407.

22. Kennedy MC, O’Hagan A. Bayesian calibration of computer models. J R Stat Soc, Ser B, Stat Methodol.

2001;63(3):425–64.

23. Kingma DP, Adam JB. A method for stochastic optimization. 2014. arXiv:1412.6980.

24. Liang S, Srikant R. Why deep neural networks? 2016. arXiv:1610.04161.

25. Lin H, Jegelka S. Resnet with one-neuron hidden layers is a universal approximator. 2018. arXiv:1806.10909.

26. Liu S, Oosterlee CW, Bohte SM. Pricing options and computing implied volatilities using neural networks. Risks.

2019;7(1).

27. Maiorov V, Pinkus A. Lower bounds for approximation by MLP neural networks. Neurocomputing. 1999;25(1):81–91.

28. Mhaskar HN. Neural networks for optimal approximation of smooth and analytic functions. Neural Comput.

1996;8(1):164–77.

https://studies2.hec.fr/jahia/webdav/site/hec/shared/site/statsinthechateau/sacces_anonyme/Lectures/Cont.pdf
https://doi.org/10.2139/ssrn.3252432
http://www.deeplearningbook.org
https://doi.org/10.2139/ssrn.2812140
http://arxiv.org/abs/arXiv:1902.05810
http://arxiv.org/abs/arXiv:1107.1834
http://arxiv.org/abs/arXiv:1901.09647
http://arxiv.org/abs/arXiv:1803.05407
http://arxiv.org/abs/arXiv:1412.6980
http://arxiv.org/abs/arXiv:1610.04161
http://arxiv.org/abs/arXiv:1806.10909


Liu et al. Journal of Mathematics in Industry             ( 2019)  9:9 Page 28 of 28

29. Poggio T, Mhaskar H, Rosasco L, Miranda B, Liao Q. Why and when can deep-but not shallow-networks avoid the

curse of dimensionality: a review. Int J Autom Comput. 2017;14(5):503–19.

30. Robbins H, Monro S. A stochastic approximation method. Ann Math Stat. 1951;22(3):400–7.

31. Slowik A, Bialko M. Training of artificial neural networks using differential evolution algorithm. In: 2008 conference on

human system interactions. 2008. p. 60–5.

32. Spiegeleer JD, Madan DB, Reyners S, Schoutens W. Machine learning for quantitative finance: fast derivative pricing,

hedging and fitting. Quant Finance. 2018;18(10):1635–43.

33. Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous

spaces. J Glob Optim. 1997;11(4):341–59.

34. Vollrath I, Wendland J. Calibration of interest rate and option models using differential evolution. SSRN Electron J.

2009.

35. Yarotsky D. Error bounds for approximations with deep ReLU networks. Neural Netw. 2017;94:103–14.


	A neural network-based framework for ﬁnancial model calibration
	Abstract
	Keywords

	Introduction
	Financial model calibration
	Asset pricing models
	The Heston model
	The Bates model

	The calibration procedure
	Choices within calibration

	An ANNs-based approach to calibration
	Artiﬁcial neural networks
	The forward pass: learning the solution with ANNs
	The backward pass: calibration using ANNs
	Optimization
	Stochastic gradient descent
	Differential evolution
	Acceleration of calibration


	Numerical results
	Parameter sensitivities for Heston model
	Effect of individual parameters
	Effect of two combined parameters

	The forward pass
	The backward pass
	Calibration to Heston option quotes
	Sensitivity analysis based on ANNs
	Calibration to Bates quotes

	Calibrating the Bates model

	Conclusion
	Appendix: COS pricing method
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Endnotes
	Publisher's Note
	References


