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Abstract Construction of dams and the resulting water

impoundments are one of the most common engineering

procedures implemented on river systems globally; yet

simulating reservoir operation at the regional and global

scales remains a challenge in human–earth system inter-

actions studies. Developing a general reservoir operating

scheme suitable for use in large-scale hydrological models

can improve our understanding of the broad impacts of

dams operation. Here we present a novel use of artificial

neural networks to map the general input/output relation-

ships in actual operating rules of real world dams. We

developed a new general reservoir operation scheme

(GROS) which may be added to daily hydrologic routing

models for simulating the releases from dams, in regional

and global-scale studies. We show the advantage of our

model in distinguishing between dams with various storage

capacities by demonstrating how it modifies the reservoir

operation in respond to changes in capacity of dams.

Embedding GROS in a water balance model, we analyze

the hydrological impact of dam size as well as their dis-

tribution pattern within a drainage basin and conclude that

for large-scale studies it is generally acceptable to aggre-

gate the capacity of smaller dams and instead model a

hypothetical larger dam with the same total storage

capacity; however we suggest limiting the aggregation area

to HUC 8 sub-basins (approximately equal to the area of a

60 km or a 30 arc minute grid cell) to avoid exaggerated

results.

Keywords Dams � Reservoir operation � Neural network �

Hydrological alteration � Hydrological models

1 Introduction

Construction of dams and the resulting water impound-

ments are one of the most common engineering procedures

implemented on river systems. Half of the major global

river systems are affected by dams (Dynesius and Nilsson

1994). There are over 45,000 operational large dams

globally with an estimated aggregate storage capacity of

over 6000 km3 (Vörösmarty et al. 1997; WCD 2000;

ICOLD 2011; Lehner et al. 2011) trapping over 17 % of

global annual runoff (Nilsson et al. 2005; Piao et al. 2007).

Dams increase the storage of water in river systems by

700 % and triple the mean residence time of water in the

rivers (Vörösmarty et al. 1997). Dams impact ecosystems

by flow regulation, upstream flooding, change in sedi-

mentation patterns, draining floodplain wetlands and

altering water temperature patterns (Vörösmarty and

Sahagian 2000; Kingsford 2000; Syvitski et al. 2005).

Overlooking those impacts may significantly affect mod-

elling results and influence decisions addressing water

management issues.

In the context of this paper, reservoir or dam operation

refers to alteration of the outgoing flow regime via accu-

mulation of the incoming flow and delayed release of water

over time. One major problem in dams’ impact studies is

the lack of reliable methods for simulating reservoir

operation. In reality, dams are regulated in different ways

and virtually each dam has a unique operating rule
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(Simonovic 1992; Wurbs 1993). Actual reservoir operating

rules are not available to the public, thus their direct use in

models is infeasible, especially for macro-scale applica-

tions where hundreds or thousands of dams exist in the

study domain.

To address this problem, metrics have been proposed to

assess the aggregate hydrologic behavior of dam regulated

rivers. For example, Graf (1999) used the total reservoir

storage in a watershed as a measure of changes in flow

regimes and associated downstream effects. Nilsson et al.

(2005) used the percentage of the annual discharge of a

river system that can be contained by the reservoirs within

that system as a measure to quantify flow regulation by

dams (Dynesius and Nilsson 1994). Vörösmarty et al.

(1997) used the ratio of aggregated reservoir storage along

river networks and the mean annual river discharge to

calculate the mean local aging of water and showed how

large dams might change the residency time in rivers. They

used a similar approach to study the impact of reservoir

construction on sediment transport to the ocean (Vör-

ösmarty et al. 2003).

Conceptual or empirical relationships have also been

used to model reservoir operation. Meigh et al. (1999) and

Döll et al. (2003) used an empirical relationship to simulate

the monthly release from dams based on reservoir water

storage (Qout � Sb). Coe (2000) modelled dam operation by

assuming that a reservoir is full in the month of average

maximum inflow and is at its minimum storage for the

month of average minimum inflow. He calculated the

storage for other months assuming a linear relation

between those upper and lower limits. Wisser et al. (2010a)

used a relationship between daily inflow and average long-

term inflow to calculate the daily release from a reservoir.

Haddeland et al. (2006) calculated reservoir storage and

release to meet monthly irrigation and hydropower

demand. Hanasaki et al. (2006) predicted monthly release

based on reservoir characteristics, river discharge and

water use information. Their model tries to meet the

industrial, domestic and irrigation water demand (Yoshi-

kawa et al. 2013). Recent studies have applied remote

sensing applications to model dam characteristics like

storage, surface area and water level (Coe and Birkett

2004; Peng et al. 2006; Gao et al. 2012).

1.1 Artificial neural networks in hydrology

Artificial neural networks (ANN) have been success-

fully used in various water resources studies (Hsu et al.

1995; Maier and Dandy 2000; Govindaraju 2000a, b)

notably in river flow forecasting (Karunanithi et al.

1994; Zealand et al. 1999; Coulibaly et al. 2000;

Coulibaly and Baldwin 2008) and also to solve reser-

voir operation optimization problems through dynamic

programming (Raman and Chandramouli 1996; Fontane

et al. 1997; Jain et al. 1999; Rani and Moreira 2010). It

has been demonstrated that performances of ANN-

based models are similar or superior over conventional

statistical and stochastic models for prediction of river

flows (Abrahart and See 2000; Cigizoglu 2003; Rani

and Moreira 2010).

Here for the first time we use ANN to map the general

input/output relationships in actual operating rules of real

world reservoirs. Our goal is to parameterize actual dam

operation data by using ANN and develop a general

reservoir operation scheme (GROS) that is suitable for use

in large-scale hydrological models and is sufficiently

accurate in simulating the operation of existing reservoirs.

GROS enables us to collectively investigate the impact of

dams and reservoirs operation on hydrological systems. We

seek to limit the input requirements to essential and con-

veniently calculable data. For regional and global studies,

accurate water demand data with applicable resolution is

rarely available; therefore, we do not use water demand as

an input to GROS. We compare the performance of GROS

with a monthly reservoir model developed by Hanasaki

et al. (2006) and a daily reservoir model developed by

Wisser et al. (2010a).

1.2 Assessment of hydrologic alteration caused

by dams

Dams alter the frequency, duration and timing of annual

flooding and drought events. While this has beneficiary

effects on human water security, aquatic biota is distressed

by these changes as they rely on the natural hydrologic

cycle for food and reproduction (Pringle et al. 2000;

Kingsford 2000). Earlier works have analyzed the impact

of dams on natural hydrology by comparing pre and post-

dam flow regime from gage station data (Thoms and

Sheldon 2000; Magilligan and Nislow 2005). This

approach is only valid if no substantial change exists in

other factors affecting the hydrologic regime between two

periods. Impacts of climate variability and other anthro-

pogenic disturbances such as water use, land cover change,

and water transfer projects between the two periods should

be accounted for (Yang et al. 2008; Chen et al. 2010).

Moreover when comparing data from two periods, it is

impossible to see how a different damming strategy could

have affected the hydrology of that region.

2 Development of GROS

We are using ANN to develop our GROS for use in large-

scale hydrological models to simulate the operation of

existing reservoirs. The architecture of the ANN used in
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this study (Fig. 1) is determined by trial and error (Basheer

and Hajmeer 2000; Rafiq et al. 2001). Each input set

consists of three vectors; if t represents the daily time step,

the three input vectors are: Inflow = [It, It-1, It-2],

Release = [Rt-1, Rt-2] and Storage = [St-1], which are

used to calculate the daily release (output) from reservoir

[Rt]. Based on our analysis of significance of inputs (dis-

cussed in Sect. 2.1), using inflow and release data from

previous time steps (i.e. t-3, t-4, etc.) does not have a

significant impact on performance of the ANN and since

storage levels do not fluctuate substantially every day, we

limited the inputs to daily reservoir storage volume, three

consecutive days of inflow, and release in past 2 days.

Redundant inputs increase the likelihood of overfitting and

decrease ANN prediction ability (Tetko et al. 1996; Maier

et al. 2010).

Inflow, release and storage data are each handled by a

separate input layer. The three elements of the inflow

vector [It, It-1, It-2] are connected to a hidden layer with

six nodes. The two elements of the release vector [Rt-1,

Rt-2] are connected to a hidden layer with four nodes, and

the storage [St-1] is connected to a hidden layer with two

nodes. Outputs from these layers are connected to the

fourth layer with six nodes which are connected to the fifth

layer with one node. The sigmoid hyperbolic tangent was

selected as the transfer function for all the hidden layers

since it provides better accuracy and faster learning speed

compared to other sigmoid transfer functions (Adeloye and

De Munari 2006; Taormina et al. 2012). The Log-sigmoid

transfer function was used in the output layer to ensure that

the output is always between 0 and 1. Testing with multiple

learning algorithms, the Levenberg–Marquardt algorithm

had the best performance (Maier and Dandy 2000; Kişi

2007).

Daily inflow, release and storage data of 12 dams

(Table 1) are used in calibration and validation of the

ANN. On average each dam has 23 years of daily data.

These dams represent a wide range of storage sizes

(1.5–32.3 km3), inflows (38.5–2993.5 m3/s), residence

time (45–1089 days) and purpose. Two of the 12 dams

(Sirikit and Bhumibol) are in Thailand where the climate is

different compared to the other sites, which are all in the

USA. Data from these two dams were excluded from the

ANN training process to be used exclusively as indepen-

dent validation datasets to ensure that the final ANN has

not overfitted to the specific training sites. The input/output

pairs from the other 10 dams were randomly divided into

three subsets of training (60 %), cross training (20 %) and

validation (20 %) (Table 1). In ANN specific terminology,

the training set is used for determining the ANN weights

and biases to minimize the error function and maximize

accuracy in each iteration. The cross training set is used to

oversee the training process and improve ANN general-

ization by minimizing overfitting. An overfitted ANN

yields high accuracy on training data but fails to generalize

from the training data, thus has poor performance on new,

independent input data. The validation dataset provides an

unbiased estimate of the generalization error (Govindaraju

2000a).

Data used in this study comes from 12 dams with dif-

ferent operating rules, spanning several orders of magni-

tude. If the actual data is used directly, the training process

will fail as no significant pattern will be detectable between

inputs and outputs. To avoid this problem, the data were

rescaled to be dimensionless, ranging from 0 to 1. For each

dam, flow (m3/s) was converted to daily volume (m3) to be

comparable to storage (m3); then all the data for each dam

were divided by the maximum capacity of that dam. To use

Fig. 1 Architecture of the

artificial neural network used in

developing GROS. t stands for

daily time step, I for inflow,

R for release and S for Storage.

W and b represent weights and

biases. Rectangles in green are

input layers, rectangles in gray

are hidden layers, and rectangle

in orange is the output layer.

Numbers shown for each hidden

layer show the number of nodes

in that layer
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outputs of ANN in a hydrological model, the scaling pro-

cedure should be reversed (Appendix 1) by multiplying it

by the maximum capacity of the dam to get the daily

volume of released water (m3) and then converting it to

flow rate (m3/s).

This trained ANN is the core of our GROS. Appendix 1

contains a simplified algorithm that explains how GROS

simulates the daily reservoir release. Using GROS in a

water balance model (WBMplus) (Wisser et al. 2010b), we

isolated reservoir effects from other disturbances (i.e. water

withdrawal, flow diversions and climate variability) and

studied the impact of dams with various storage sizes and

distribution patterns on river system dynamics. We calcu-

lated Colwell’s parameters (Colwell 1974) and used the

Indicators of hydrological alteration (Richter 1996) and

Range of Variability Approach (Richter et al. 1997) to

show how dams impact rivers hydrology under different

scenarios (Mathews and Richter 2007).

2.1 Significance of ANN inputs

We used an Improved Stepwise method (Gevrey et al.

2003) to identify the importance of inputs used in devel-

oping GROS. The change in the sum of square errors (SSE)

is calculated when that input and its corresponding weights

are removed from the Neural Network. The most important

variables are those which cause the largest change in SSE.

Table 2 lists the SSE and coefficient of determination

(R2) for 10 experiments that show how eliminating inputs

from ANN training affects its performance. From the six

single inputs used in this study (It, It-1, It-2, Rt-1, Rt-2,

St-1), daily storage (St-1) is the most significant input. St-1
represents the fraction of dam filled with water in each day.

Inputs from older times have a smaller impact on ANN

performance. Among the inputs, inflow at time t-2 (It-2)

had the smallest impact on SSE.

2.2 Model performance

We evaluated the performance of GROS against observed

time series and compared the outcomes against existing

daily and monthly reservoir models (Hanasaki et al. 2006;

Wisser et al. 2010a). Wisser et al. (2010a) use a simple

relationship linking daily reservoir inflow It (m3/s) and

long-term mean inflow Im (m3/s) to calculate daily reservoir

release Rt (m
3/s) as:

Rt ¼
kIt It � Im
kIt þ Im � Itð ÞIt It\Im

�

ð1Þ

where k and k are empirical constants set to 0.16 and 0.6,

respectively.

Hanasaki et al. (2006) categorized reservoirs as irriga-

tion and non-irrigation and developed a set of rules for

monthly release from reservoirs based on their intended

purpose and water demand. For a non-irrigation reservoir,

monthly release was parameterized as:

r0m;y ¼ imean ð2Þ

Table 1 List of the dams used in this study

Name of dam Location Capacity

(km3)

Mean flow

(m3/s)

Residence

time (day)

Purpose Data

period

Source Training

(%)

Cross

training

(%)

Validation

(%)

Palisades Idaho 1.5 193.3 90 F–I–H 1970–2000 a 60 20 20

American Falls Idaho 2.1 207.1 117 I–F–H–R 1978–1995 a 60 20 20

Navajo New Mexico 2.1 38.5 631 I–H–F–R 1962–2002 b 60 20 20

Trinity California 3.0 55.3 628 I–H–F 1970–2000 c 60 20 20

Falcon Texas-Mexico 3.3 110.8 345 I–F–H–R 1958–1995 b 60 20 20

Hungry Horse Montana 4.3 100.5 495 H–I–F 1970–2000 d 60 20 20

Oroville California 4.4 190 268 H–F–I–S 1995–2004 c 60 20 20

Flaming Gorge Utah 4.7 64.4 845 I–F–H–S 1962–2002 a 60 20 20

Sirikit Thailand 9.5 166.4 661 I–F–H 1980–1996 e 0 0 100

Grand Coulee Washington 11.6 2993.5 45 F–I–H 1978–1990 d 60 20 20

Bhumibol Thailand 13.5 143.5 1089 I–F–H 1980–1996 e 0 0 100

Glen Canyon Arizona 32.3 453.1 825 I–H–R 1970–2002 a 60 20 20

I, F, H, R and S stand for irrigation, flood control, hydropower, recreation and water supply

a US Bureau of Reclamation, b International Border and Water Commission, c California Department of Water Resources, d US Army Corp of

Engineers, e Energy Generation Agency of Thailand
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where r0m;y is the provisional monthly release (m3/s),

and imean is the mean annual inflow (m3/s).

For an irrigation reservoir, monthly release was

parameterized as:

where kalc is an allocation coefficient for grids with more

than one reservoir upstream. dirg,m,y is the monthly irriga-

tion water withdrawal (m3/s); ddom is the domestic water

withdrawal (m3/s); dind is the industrial water withdrawal

(m3/s); and dmean is the mean annual total water demand of

the reservoir (m3/s). The subscripts m, y and mean, indicate

month, year and annual mean, respectively. The term
P

area

indicates integration over the basin downstream reservoir.

The monthly release rm,y (m
3/s) was calculated as

where c is the storage capacity to mean total annual inflow

ratio (c = C/Imean); and krls,y is the release coefficient,

which reflects water storage at the beginning of the oper-

ational year; r0m;y is the provisional monthly release.

We used the observed inflow time series as inputs to

GROS and calculated the daily release from the reservoirs

(Appendix 1). Based on analysis of observed data, the

minimum storage level for reservoirs is set to 10 % of

capacity. Nash–Sutcliffe efficiency coefficient (E) (B1),

coefficient of determination (R2) (B2) and normalized root

mean square error (NRMSE) (B3) are calculated for sim-

ulated dam releases (Fig. 2).

Simulation results from GROS are significantly more

accurate than the outputs from the other two models. On

average, GROS reduces the NRMSE (and RMSE) for

simulated daily release by 72 % compared to Wisser et al.

(2010a) method. For monthly simulated release, the aver-

age NRMSE (and RMSE) for Wisser et al. (2010a) and

Hanasaki et al. (2006) models are comparable to each other

at around 0.65 but the average NRMSE (and RMSE) for

GROS is 0.11, nearly 80 % smaller. The average daily

Table 2 Significance of ANN inputs using the improved stepwise method

Experiment Input variables SSE R2

Control ANN (It, It-1, It-2, Rt-1, Rt-2, St-1) 0.102 0.976

Exclude inflow at t-2 ANN (It, It-1, Rt-1, Rt-2, St-1) 0.106 0.975

Exclude inflow at t-1 ANN (It, It-2, Rt-1, Rt-2, St-1) 0.114 0.973

Exclude inflow at t ANN (It-1, It-2, Rt-1, Rt-2, St-1) 0.119 0.972

Exclude inflow at t-2 and t-1 ANN (It, Rt-1, Rt-2, St-1) 0.126 0.971

Exclude release at t-2 ANN (It, It-1, It-2, Rt-1, St-1) 0.173 0.960

Exclude release at t-1 ANN (It, It-1, It-2, Rt-2, St-1) 0.181 0.959

Exclude storage ANN (It, It-1, It-2, Rt-1, Rt-2) 0.188 0.958

Exclude release ANN (It, It-1, It-2, St-1) 0.818 0.808

Exclude inflow ANN (Rt-1, Rt-2, St-1) 2.844 0.351

r0m;y ¼

imean

2
� 1þ

P

area kalc � ðdirg;m;y þ dind þ ddom
� �

dmean

� �

; ðdmean � 0:5� imeanÞ

imean þ
P

area

kalc � ðdirg;m;y þ dind þ ddom
� �

� dmean; ðdmean � 0:5� imeanÞ

8

>

>

<

>

>

:

dmean ¼
X

area

kalc � ðdirg;m;y þ dind þ ddom
� �

ð3Þ

rm;y ¼

krls;y � r0m;y; c� 0:5ð Þ

c

0:5

� �2

krls;y � r0m;y þ 1�
c

0:5

� �2
� 	

im;y; 0� c� 0:5ð Þ

8

<

:

ð4Þ
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Nash efficiency coefficient is 0.86, and R-squared is 0.85

using GROS.

Accuracy of GROS outputs for simulated release from

Bhumibol and Sirikit dams which were excluded from the

development of ANN to be used as independent validation

datasets, confirms that the ANN used in GROS is not

overfitted to its training datasets.

3 Methods for assessing alteration of flow regimes

by dams

We used Colwell’s parameters (Colwell 1974), a suite of

indicators of hydrological alteration (Richter 1996) and

range of variability approach (Richter et al. 1997) to

demonstrate how changes in storage size and distribution

pattern of dams in a drainage basin alter their hydrological

impacts.

Colwell (1974) proposed three parameters of pre-

dictability, constancy and contingency to describe patterns

of temporal fluctuation in physical and biological phe-

nomena. Predictability is a measure of temporal uncer-

tainty across successive time domains spanning a periodic

phenomenon. Maximum predictability occurs when the

state of a phenomenon is known with absolute certainty in

time. Maximum constancy happens when the state of a

phenomenon is always constant. Contingency shows to

what degree state of the phenomena depends on time.

Values of these parameters range from 0 to 1 (Colwell

1974; Poff and Ward 1989).

Richter (1996) proposed the indicators of hydrologic

alteration (IHA) for assessing the degree of hydrologic

alteration attributable to human influence within an

ecosystem. IHA consists of 32 indices (Table 3) selected to

quantitatively describe hydrological alterations caused by

anthropogenic disturbances between pre-impact and post-

impact time periods (Richter 1996; TNC 2009). The range

of variability approach (RVA) defines a range of variation

(i.e. mean ± 1SD) for IHA parameters from pre-impact

period data (i.e. before dam construction). The degree to
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Bhumibol

Flaming Gorge

Grand Coulee

Hungry Horse

Falcon

Glen Canyon

Palisade

Oroville

Navajo

Sirikit

Trinity

American Falls

All Dams Average

Daily Nash Coefficient
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GROS Hanasaki et al. (2006) Wisser et al. (2010a)

Fig. 2 RMSE, E and R2 of

Daily simulated release using

GROS and Wisser et al.

(2010a). NRMSE of monthly

release simulation using GROS,

Hanasaki et al. (2006) and

Wisser et al. (2010a). All dams

average shows the arithmetic

mean for all the 12 dams
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which the RVA target range is not attained at the post-

impact period (i.e. after dam construction) is a measure of

Hydrologic Alteration (Richter et al. 1997).

We implemented GROS in WBMplus and used various

scenarios to understand how variation in size and location

of dams in a drainage basin changes their hydrological

impact. Size and location of dams in each scenario is

allocated based on analysis of national inventory of dams

(NID) database (USACE 2013) to be representative of real-

world conditions (Appendix 4).

Discharges were simulated for a length of 25 years

(1986–2010) for each scenario using MERRA precipitation

and temperature data (Rienecker et al. 2011) and a gridded

3-min (longitude 9 latitude) simulated topological net-

work (Vörösmarty et al. 2000) of a large arbitrary drainage

basin with 36,450 km2 area (Fig. 3). The average discharge

at the mouth of this drainage basin is 690 m3/s and low

pulse and high pulse thresholds (mean ± 1SD for IHA and

RVA analysis) are at 86.3 and 1293 m3/s.

3.1 The significance of water storage capacity

of a single dam

Analysis of the NID database (USACE 2013) reveals that

real world dams, with different purposes and significantly

different storage capacities, may be built on rivers with

statistically similar flow conditions (Appendix 4). There-

fore, storage capacity is a critical input to reservoir models

and models that do not use storage values for simulation of

release cannot reliably capture the impact of dam opera-

tion. For example Wisser et al. (2010a) reservoir operation

model (Eq. 1) does not use water storage in its calculations

Fig. 3 HUC 8 sub-basins contained in the study domain

Table 3 Summery of IHA hydrological parameters

IHA statistics group Parameter

number

Hydrological parameters

Group 1: magnitude of monthly water conditions 1–12 Mean value for each calendar month

Group 2: magnitude and duration of annual extreme

water conditions

13–23 Annual min 1-day means

Annual min 3-day means

Annual min 7-day means

Annual min 30-day means

Annual min 90-day means

Annual max 1-day means

Annual max 3-day means

Annual max 7-day means

Annual max 30-day means

Annual max 90-day means

Base flow index: 7-day min flow/mean flow for year

Group 3: timing of annual extreme water conditions 24 & 25 Julian date of each annual 1-day max

Julian date of each annual 1-day min

Group 4: frequency and duration of high/low pulses 26–29 No. of high pulses each year

No. of low pulses each year

Mean duration of high pulses in each year (days)

Mean duration of low pulses in each year (days)

Group 5: rate/frequency of water condition changes 30–32 Rise rates: means of all positive differences between

consecutive daily values

Fall rates: means of all negative differences between

consecutive daily values

Number of hydrologic reversals
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thus simulated release will be identical for dams with

significantly different storage capacities. Hanasaki et al.

(2006) use ratio of storage capacity to mean total annual

inflow (Eq. 4); but the way it is formulated does not enable

the model to respond to change in storage capacity

properly.

We assumed five scenarios to show the advantage of

GROS compared to other models and to quantify how

variation in the size of a dam changes its hydrological

impact. In the first scenario, flow was simulated without

any dams. For the other scenarios, operation of a dam with

5, 10, 15 and 20 km3 storage volume was simulated at the

mouth of the drainage basin (Fig. 6, S4).

Figure 4 shows how variation in storage capacity of a

dam affects its impact on extreme flow conditions. The

IHA and RVA analysis results are presented in Table 7 and

Fig. 5. As expected, the impact of dams on natural

hydrology increases as storage capacity increases.

Dams decrease the range of fluctuations in the magni-

tude of monthly flows (IHA parameter 1–12). Magnitude,

frequency and duration of extreme water conditions were

considerably affected by dams operation (IHA parameter

13–23). Dams shifted the date of the occurrence of the

minimum and maximum flows by up to 2 months (IHA

parameter 24–25). There were no low pulses and the

number of high pulses was reduced (IHA parameter

26–29). Because of the flow regulation by dams, the fre-

quency and rate of daily flow change were also signifi-

cantly reduced (IHA parameter 30–32).

The Colwell’s parameters also consistently change with

the increase in dam capacity (Table 4). Dams reduce the

range of flow compared to natural conditions by reducing

the magnitude of high flows and increasing the magnitude

of low flows (Table 7; Fig. 5). As the storage capacity of

dams increases, the standard deviation and coefficient of

variation (CV = r/l) of flows decrease. Limiting the range

of flow variation also results in an increase in the value of

Constancy, which respectively increases Predictability

(Table 4).

3.2 The significance of distribution patterns

of water storage capacity of multiple dams

in a basin

Working with incomplete reservoir databases that do not

list relatively small reservoirs is a concern in reservoirs

impacts studies (ICOLD 2011; Lehner et al. 2011). This is

especially important as most of the world’s dams are rel-

atively small structures (Rosenberg et al. 2000). Hydro-

logical impacts of individual small dams may be relatively

small, but the aggregate effects of numerous small dams

may be substantial.

In regional and global studies it is challenging to match

reservoirs with the correct rivers in the model due to

inaccurate or missing geo-referencing information in many

databases. To address these issues, it is customary to

aggregate the storage capacity of multiple reservoirs in a

watershed (Graf 1999; Nilsson et al. 2005) or a grid cell

(Vörösmarty et al. 1997; Hanasaki et al. 2010) and assume
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Table 4 Colwell’s parameters for dams with different storage sizes

Parameters 0 km3 5 km3 10 km3 15 km3 20 km3

No dam GROS

Annual C. V. 0.87 0.82 0.77 0.71 0.63

Predictability 0.5 0.54 0.58 0.62 0.72

Constancy 0.36 0.40 0.46 0.51 0.64

Contingency 0.14 0.13 0.12 0.11 0.08
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only one larger reservoir exists on the main river of that

watershed or grid cell.

By studying the hydrological impact of different distri-

bution patterns of dams in a drainage basin, we show how

the hydrological impact of numerous, dispersed, small

dams compares to the impact of a few larger ones. We also

investigate if this is a valid approach to aggregate the

capacity of smaller dams and instead model a hypothetical

larger dam with the same total storage capacity.

We used GROS in WBMplus to model river flow and

operation of reservoirs under four scenarios (Table 5;

Fig. 6). Based on our analysis (Appendix 4) the total

storage volume of dams in the basin was set to 20 km3. In

scenario S1, 475 relatively small dams are on lower order

streams of tributary branches. For scenario S2, there is a

single dam in each HUC 12 sub-watersheds with the

storage volume equal to aggregated storage volume of

smaller dams from scenario S1 in that HUC 12 sub-wa-

tershed. Scenario S3 is similar to scenario S2 except that

storage volumes are aggregated to HUC 8 sub-basins. In

scenario S4 storage volume of all the dams in the basin is

aggregated into one 20 km3 dam.

Figure 7 illustrates parts of the drainage basin disturbed

by reservoirs operation and the accumulated upstream stor-

age volume at each grid cell. Figure 8 shows how variation

in the distribution pattern of water storage capacity in a basin

impacts some of the extreme flow conditions. Analysis

results for IHA and RVA methods are summarized in

Table 8 and Fig. 9, and results for the Colwell’s parameters

are presented in Table 6. In general, the hydrological impact

on the water flow leaving the basin increases from scenario

S1 to scenario S4; larger dams have a larger hydrological

impact and they are generally located on larger streams, and

thus regulate larger amounts of water.

Magnitudes of monthly flows (IHA parameter 1–12) are

very similar for scenarios S1–S3. From scenario S1–S4, as

the number of dams decreases and their capacity increases,

they have a larger impact on magnitude, frequency and

duration of extreme water conditions (IHA parameter

13–23). Date of the minimum and maximum flows (IHA

parameter 24–25) is approximately the same for scenarios

Table 5 Five scenarios to study the impact of dams’ distribution

patterns

Scenario Description

S0 The base scenario to model flow conditions without dams

S1 475 Dams with average capacity of 0.04 km3 and total

capacity of 20 km3

S2 Storage volume of S1 dams aggregated to HUC 12 sub-

watersheds. 217 dams with average capacity of 0.09 km3

and total capacity of 20 km3

S3 Storage volume of S1 (or S2) dams aggregated to HUC 8

sub-basins. 9 dams with average capacity of 2.2 km3 and

total capacity of 20 km3

S4 One large dam with 20 km3 capacity located at the mouth

of the drainage basin

S1 S2

S3 S4

Fig. 6 Location of dams in each scenario
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S1–S4 and is not sensitive to the distribution pattern of

dams. The same is true for low and high pulses (IHA

parameter 26–29). The frequency and rate of flow changes

(IHA parameter 30–32) do not show a significant differ-

ence between different scenarios.

Colwell’s parameters for scenarios S1 and S2 are simi-

lar. Generally as the number of dams decreases and their

size increases and they move from small streams to larger

ones, their impact on Colwell’s parameters increases.

Accumulated 

Storage Volume

km3

S1 S2

S3 S4

Fig. 7 Parts of the basin disturbed by the dams and the accumulated upstream storage volume (km3)

Table 6 Colwell’s parameters for different dam distribution patterns

Parameters S0 S1 S2 S3 S4

Annual C. V. 0.87 0.70 0.70 0.65 0.63

Predictability 0.50 0.60 0.59 0.63 0.72

Constancy 0.36 0.49 0.48 0.52 0.64

Contingency 0.14 0.11 0.11 0.11 0.08
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4 Summary of results and discussion

By using ANN, we developed a new general reservoir operation

scheme (GROS)whichmaybeadded todailyhydrologic routing

models for simulating the releases from dams, in regional and

global-scale studies. GROS is specifically designed to provide a

broad perspective of the general behavior of dams and improve

ourunderstandingof the large-scale hydrological impact of dams

operation in a relatively easy and efficient way. Comparisons

with two other models using a variety of performance metrics

verify that using GROS to model the operation of reservoirs can

significantly improve the accuracy of the simulation of daily and

monthly reservoir release time series.

Analysis of the NID database shows that dams with sig-

nificantly different storage capacitiesmay be located on rivers

with similar flow characteristics. General reservoir models

should be tested for their response to changes in storage

capacity of dams before being implemented into hydrological

models. One advantage of GROS over other models is that it

properly responds to changes in storage capacity of dams and

therefore can be reasonably used for simulating reservoir

releases in regional and global domains where hundreds and

thousands of dams with various storage capacities exist.

Using GROS in WBMplus we investigated the practice of

aggregating the storage capacity of multiple reservoirs in a

watershed and simulating the operation of a hypothetical

larger reservoir with the same total storage capacity. For

this purpose we aggregated the storage capacity of dams in

three scales, HUC 12 sub-watersheds (scenario S2), HUC 8

sub-basins (scenario S3) and basin level (scenario S4) and

compared their hydrological impact on the water flow that

leaves the basin. Based on our analysis results, hydrolog-

ical impact of the original condition (scenario S1) is almost

identical to scenario S2 (HUC 12 level aggregation) and

very similar to scenario S3 (HUC 8 level aggregation). We

conclude that for large-scale studies it is generally

acceptable to aggregate the capacity of smaller dams and

model a hypothetical larger dam with the same total stor-

age capacity; however we suggest limiting the aggregation

area to HUC 8 sub-basins (average of 3861 km2 in this

experiment) or a grid cell of approximately 60 km or 30 arc

minute resolution to avoid exaggerated results.

Based on analysis of significance of capacity and distribu-

tion pattern of dams in the way they alter water flow out of a

basin, hydrological parameters are mostly affected by the total

storage capacity in the basin rather than the pattern in which

storage is distributed in the basin. However, it should be noted

that a few large dams have a greater impact on hydrological

parameters compared to numerous smaller dams with the same

total storage capacity. In our experiment, hydrologic alteration

of the flow leaving the basin caused by a single large dam was

greater than the combined impact of 475 relatively smaller

dams with the same cumulative storage. This means that a

single large reservoir is a more effective structure to regulate

water compared to numerous smaller reservoirs with the same

cumulative water storage capacity. Having only one large dam

on the main stream of a basin decreases the level of river

fragmentation as tributary branches are not affected by the dam

operation. These points should be considered for both cases of

building new dams and restoration of rivers by dam removal.
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Appendix 1: GROS algorithm

This is the simplified algorithm of GROS.

Subscript t represents the daily time step. Io, Ro and So
stand for inflow (m3/s), release (m3/s) and storage (m3) of

dam in their original form. MaxS stands for maximum

storage capacity (m3) of dam. I, R and S, without the

subscript o, stand for the values scaled between 0 and 1.

The number 86,400 is the number of seconds in a day.
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Appendix 2: Equations

Equations of Nash–Sutcliffe efficiency coefficient (B1),

coefficient of determination (B2) and normalized root

mean square error are (B3) demonstrated here. O stands for

observation data, P stands for predicted (simulated) values

and N is total number of simulations.

E ¼ 1�

PN
i¼1 Oi � Pið Þ2

PN
i¼1 Oi � �Oð Þ

2
ð5Þ

R2 ¼

PN
i¼1 Oi � �Oð Þ Pi � �Pð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 Oi � �Oð Þ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 Pi � �Pð Þ

2
q

0

B

@

1

C

A

2

ð6Þ

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 Oi � Pið Þ2

N �O2

s

ð7Þ

The Hydrologic Alteration in RVA method is defined as:

Observed frequency� Expected frequency

Expected frequency
ð8Þ

where ‘‘Observed’’ is the count of years in which observed

value of the hydrologic parameter fell within the RVA

targeted range and’’Expected’’ is the count of years for

which the value is expected to fall within the RVA targeted

range.

Appendix 3: Hydrological alteration analysis

results

See Tables 7 and 8.

Table 7 IHA analysis using

GROS for dams with different

storage capacities

IHA 0 km3 5 km3 10 km3 15 km3 20 km3

Magnitude

Group #1

Jan 696.8 701.1 693.2 689.5 684.8

Feb 633.1 623 613.9 609.1 611.8

Mar 1196 1176 1120 1067 999.9

Apr 1423 1424 1429 1384 1296

May 773.2 796.1 791.1 774.4 755.2

Jun 591.6 601.8 607.8 617.9 627

Jul 395.8 403.1 422.8 461.2 499.9

Aug 367.9 375.4 408.8 450.7 490.9

Sep 294.5 299.4 340.1 389.1 437.8

Oct 510.2 497.5 501.5 520.9 546.8

Nov 670.3 656.1 641.6 625.1 625.5

Dec 724.8 726.2 711.9 693 682.9

Group #2

1-day min 114.7 159.2 225.9 292.4 354.9

3-day min 125.1 161.1 227.5 293.8 356.2

7-day min 134.6 166.9 232 297.8 359.7

30-day min 186 203.8 258.9 321.8 381.3

90-day min 280 291.2 329.6 381.5 432

1-day max 3582 3525 2866 2842 2679

3-day max 3266 3194 2776 2748 2585

7-day max 2782 2711 2522 2476 2318

30-day max 1816 1794 1747 1684 1561

90-day max 1227 1219 1195 1147 1077

Base flow index 0.19 0.24 0.34 0.44 0.53

Group #3

Day of min 256 287 298 303 306

Date of min 13-Sep 14-Oct 25-Oct 30-Oct 2-Nov

Day of max 69 73 76 94 94

Date of max 10-Mar 14-Mar 17-Mar 4-Apr 4-Apr
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Table 8 IHA analysis using GROS for different storage distribution pattern of dams

IHA S0 S1 S2 S3 S4

Magnitude

Total storage (km3) 0 20 20 20 20

Group #1

Jan 696.8 679 683.8 695.9 684.8

Feb 633.1 620.1 620.6 638.6 611.8

Mar 1196 1119 1086 1067 999.9

Apr 1423 1360 1356 1319 1296

May 773.2 785.1 768.2 766.5 755.2

Jun 591.6 620.2 622.5 610.4 627

Jul 395.8 453.2 463.2 463.4 499.9

Aug 367.9 434.1 446.8 449.5 490.9

Sep 294.5 379.1 392.3 406.8 437.8

Oct 510.2 529.4 532.5 524.2 546.8

Nov 670.3 645.5 645.5 642.9 625.5

Dec 724.8 721.1 720.7 725.3 682.9

Group #2

1-day min 114.7 232.6 235.8 279.4 354.9

3-day min 125.1 237 241.9 282.8 356.2

7-day min 134.6 244.8 258.6 289.4 359.7

30-day min 186 276.6 295.1 316.2 381.3

90-day min 280 358.6 372.5 383.1 432

1-day max 3582 2817 2738 2641 2679

3-day max 3266 2700 2658 2541 2585

7-day max 2782 2431 2401 2310 2318

30-day max 1816 1666 1620 1588 1561

90-day max 1227 1159 1139 1116 1077

Base flow index 0.19 0.35 0.37 0.42 0.53

Group #3

Day of min 256 306 308 306 306

Date of min 13-Sep 2-Nov 4-Nov 2-Nov 2-Nov

Day of max 69 93 94 92 94

Date of max 10-Mar 3-Apr 4-Apr 2-Apr 4-Apr

Group #4

Low pulse count 1.3 0.0 0.0 0.0 0.0

Low pulse duration 3.5 0.0 0.0 0.0 0.0

Table 7 continued
IHA 0 km3 5 km3 10 km3 15 km3 20 km3

Magnitude

Group #4

Low pulse count 1.3 0.0 0.0 0.0 0.0

Low pulse duration 3.5 0.0 0.0 0.0 0.0

High pulse count 9.9 6.4 6.1 5.3 4.1

High pulse duration 4.9 7.5 7.7 8.0 9.4

Group #5

Rise rate 142.5 104.9 85.0 75.9 64.9

Fall rate -93.6 -55.7 -47.4 -42.4 -36.8

# of reversals 118.7 67.4 67.7 68.4 69.9
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Appendix 4: Analyzing NID for the purpose

of scenario development

Size and location of the hypothetical dams in this study are

selected based on criteria obtained by analyzing NID

dataset (USACE 2013) with reference to a gridded 3-min

(longitude 9 latitude) Simulated Topological Network

(Vörösmarty et al. 2000) which we use in WBMplus. Three

categories of dams and reservoirs were analyzed; (1) small

dams with storage capacity between 5 9 106 and

5 9 107 m3; (2) medium dams with storage capacity

between 5 9 107 and 5 9 108 m3; (3) large dams with

storage capacity larger than 0.5 km3. To find the appro-

priate location for each size category we used the middle

50th percentile of average flow, upstream catchment area

and residency time (ratio of capacity to average flow) of

NID dams. The middle 50th percentile was used to avoid

miss match between actual location of dams and their

location on simulated network and also to remove outliers.

We defined small dams to be located on rivers with mean

flow between 1 and 52 m3/s; upstream catchment area

between 58 and 3499 km2; and residency times between 3

and 184 days.Medium dams are located on rivers with mean

flow between 3 and 60 m3/s; upstream catchment area

between 373 and 4929 km2; and residency time between 61

and 498 days. Large dams are located on rivers with mean

flow larger than 9 m3/s; upstream catchment area larger than

2080 km2; and residency time between 140 and 1978 days.

Residency time range gives a minimum and maximum limit

for storage capacity at each location.
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