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Abstract

We have constructed an inexpensive, video-based, motorized track-
ing system that learns to track a head. It uses real time graphical
user inputs or an auxiliary infrared detector as supervisory signals
to train a convolutional neural network. The inputs to the neural
network consist of normalized luminance and chrominance images
and motion information from frame differences. Subsampled im-
ages are also used to provide scale invariance. During the online
training phase, the neural network rapidly adjusts the input weights
depending upon the reliability of the different channels in the sur-
rounding environment. This quick adaptation allows the system to
robustly track a head even when other objects are moving within
a cluttered background.

1 Introduction

With the proliferation of inexpensive multimedia computers and peripheral equip-
ment, video conferencing finally appears ready to enter the mainstream. But per-
sonal video conferencing systems typically use a stationary camera, tying the user
to a fixed location much as a corded telephone tethers one to the telephone jack. A
simple solution to this problem is to use a motorized video camera that can track
a specific person as he or she moves about. However, this presents the difficulty of
having to continually control the movements of the camera while one is communi-
cating. In this paper, we present a prototype, neural network based system that
learns the characteristics of a person’s head in real time and automatically tracks
it around the room, thus alleviating the user of much of this burden.

The camera movements in this video conferencing system closely resemble the move-
ments of human eyes. The task of the biological oculomotor system is to direct
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Figure 1: Schematic hardware diagram of Marvin, our head tracking system.

“interesting” parts of the visual world onto the small, high resolution areas of the
retinas. For this task, complex neural circuits have evolved in order to control the
eye movements. Some examples include the saccadic and smooth pursuit systems
that allow the eyes to rapidly acquire and track moving objects [1, 2]. Similarly,
an active video conferencing system also needs to determine the appropriate face
or feature to follow in the video stream. Then the camera must track that person’s
movements over time and transmit the image to the other party.

In the past few years, the problem of face detection in images and video has attracted
considerable attention [3, 4, 5]. Rule-based methods have concentrated on looking
for generic characteristics of faces such as oval shapes or skin hue. Since these types
of algorithms are fairly simple to implement, they are commonly found in real-time
systems [6, 7]. But because other objects have similar shapes and colors as faces,
these systems can also be easily fooled. A potentially more robust approach is to
use a convolutional neural network to learn the appropriate features of a face [8, 9].
Because most such implementations learn in batch mode, they are beset by the
difficulty of constructing a large enough training set of labelled images with and
without faces. In this paper, we present a video based system that uses online
supervisory signals to train a convolutional neural network. Fast online adaptation
of the network’s weights allows the neural network to learn how to discriminate an
individual head at the beginning of a session. This enables the system to robustly
track the head even in the presence of other moving objects.

2 Hardware Implementation

Figure 1 shows a schematic of the tracking system we have constructed and have
named “Marvin” because of an early version’s similarity to a cartoon character.
Marvin’s eye consists of a small CCD camera with a 65° field of view that is attached
to a motorized platform. Two RC servo motors give Marvin the ability to rapidly
pan and tilt over a wide range of viewing angles, with a typical maximum velocity of
300 deg/sec. The system also includes two microphones or ears that give Marvin the
ability to locate auditory cues. Integrating auditory information with visual inputs
allows the system to find salient objects better than with either sound or video
alone. But these proceedings will focus exclusively on how a visual representation
is learned.
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Figure 2: Preprocessing of the video stream. Luminance, chromatic and motion
information are separately represented in the Y, U, V, D channels at multiple res-
olutions.

Marvin is able to learn to track a visual target using two different sources of su-
pervisory signals. One method of training uses a small 38 KHz modulated infrared
light emitter (A ~ 900nm) attached to the object that needs to be tracked. A
heat filter renders the infrared light invisible to Marvin’s video camera so that the
system does not merely learn to follow this signal. But mounted next to the CCD
camera and moving with it is a small infrared detector with a collimating lens that
signals when the object is located within a narrow angular cone in the direction
that the camera is pointing. This reinforcement signal can then be used to train
the weights of the neural network. Another more natural way for the system to
learn occurs in an actual video conferencing scenario. In this situation, a user who
is actively watching the video stream has manual override control of the camera
using graphical user interface inputs. Whenever the user repositions the camera to
a new location, the neural network would then adjust its weights to track whatever
is in the center portion of the image.

Since Marvin was built from readily available commercial components, the cost of
the system not including the PC was under $500. The input devices and motors
are all controlled by the computer using custom-written Matlab drivers that are
available for both Microsoft Windows and the Linux operating system. The image
processing computations as well as the graphical user interface are then easily im-
plemented as simple Matlab operations and function calls. The following section
describes the head tracking neural network in more detail.

3 Neural Network Architecture

Marvin uses a convolutional neural network architecture to detect a head within its
field of view. The video stream from the CCD camera is first digitized with a video
capture board into a series of raw 120 x 160 RGB images as shown in Figure 2. Each
RGB color image is then converted into its YUV representation, and a difference (D)
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Figure 3: Neural network uses a convolutional architecture to integrate the different
sources of information and determine the maximally salient object.

image is also computed as the absolute value of the difference from the preceding
frame. Of the four resulting images, the Y component represents the luminance or
grayscale information while the U and V channels contain the chromatic or color
information. Motion information in the video stream is captured by the D image
where moving objects appear highlighted.

The four YUVD channels are then subsampled successively to yield representations
at lower and lower resolutions. The resulting “image pyramids” allow the network
to achieve recognition invariance across many different scales without having to
train separate neural networks for each resolution. Instead, a single neural network
with the same set weights is run with the different resolutions as inputs, and the
maximally active resolution and position is selected.

Marvin uses the convolutional neural network architecture shown in Figure 3 to
locate salient objects at the different resolutions. The YUVD input images are fil-
tered with separate 16 x 16 kernels, denoted by Wy, Wy, Wy, and Wp respectively.
This results in the filtered images Y's, U$, V5, Ds:

As(i,j) =Wao A = Wa(i',j") A%+, 5 + ') (1)
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where s denotes the scale resolution of the inputs, and A is any of the Y, U, V,
or D channels. These filtered images represent a single layer of hidden units in the
neural network. These hidden units are then combined to form the saliency map
X? in the following manner:

X2(i, 5) = ev g[Y* (i, )] + cv glU° (i, )] + ev g[V* (i, 4)] + ep g[D* (i, j)] + co- (2)



Since g(z) = tanh(z) is sigmoidal, the saliency X* is computed as a nonlinear,
pixel-by-pixel combination of the hidden units. The scalar variables cy, cy, cv,
and cp represent the relative importance of the different luminance, chromatic, and
motion channels in the overall saliency of an object.

With the bias term cp, the function g[X*(i,7)] may then be thought of as the
relative probability that a head exists at location (4,7) at input resolution s. The
final output of the neural network is then determined in a competitive manner by
finding the location (i.,,jm) and scale s,, of the best possible match:

91Xm] = glX"" (i, jm)] = maxg[X°(i, 7). (3)

After processing the visual inputs in this manner, saccadic camera movements are
generated in order to keep the maximally salient object located near the center of
the field of view.

4 Training and Results

Either GUI user inputs or the infrared detector may be used as a supervisory signal
to train the kernels W, and scalar weights c4 of the neural network. The neu-
ral network is updated when the maximally salient location of the neural network
(4m,Jm) does not correspond to the desired object’s true position (iy,j,) as iden-
tified by the external supervisory signal. A cost function proportional to the sum
squared error terms at the maximal location and new desired location is used for
training:

e = lgm = g[X°" (im, jm) [, (4)
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In the following examples, the constants g, = 0 and g,, = 1 are used. The gradients
to Eqs. 4-5 are then backpropagated through the convolutional network [8, 10],
resulting in the following update rules:

Aca = nemg (Xm)glAlim, jm)] +1eng' (Xn)g[A(in, jn)]; (6)
AWa = nemd (Xm)g' (Am)cadm +neng (Xn)g' (An)cadn. (7)

In typical batch learning applications of neural networks, the learning rate 7 is set
to be some small positive number. However in this case, it is desirable for Marvin
to learn to track a head in a new environment as quickly as possible. Thus, rapid
adaptation of the weights during even a single training example is needed. A natural
way of doing this is to use a fairly large learning rate (n = 0.1), and to repeatedly
apply the update rules in Eqs. 6-7 until the calculated maximally salient location
is very close to the actual desired position.

An example of how quickly Marvin is able to learn to track one of the authors
as he moved around his office is given by the learning curve in Figure 4. The
weights were first initialized to small random values, and Marvin was corrected in
an online fashion using mouse inputs to look at the author’s head. After only a few
seconds of training with a processing time loop of around 200 ms, the system was
able to locate the head to within four pixels of accuracy, as determined by hand
labelling the video data afterwards. As saccadic eye movements were initiated at
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Figure 4: Fast online adaptation of the neural network. The head location error in
pixels in a 120 x 160 image is plotted as a function of frame number (5 frames/sec).

the times indicated by the arrows in Fig. 4, new environments of the office were
sampled and an occasional large error is seen. However, over time as these errors
are corrected, the neural network learns to robustly discriminate the head from the
office surroundings.

5 Discussion

Figure 5 shows the inputs and weights of the network after a minute of training as
the author walked around his office. The kernels necessarily appear a little smeared
because they are invariant to slight changes in head position, rotation, and scale.
But they clearly depict the dark hair, facial features, and skin color of the head. The
relative weighting (cy, cy,cy > ¢p) of the different input channels shows that the
luminance and color information are the most reliable for tracking the head. This
is probably because it is relatively difficult to distinguish in the frame difference
images the head from other moving body parts.

We are currently considering more complicated neural network architectures for
combining the different input streams to give better tracking performance. How-
ever, this example shows how a simple convolutional architecture can be used to
automatically integrate different visual cues to robustly track a head. Moreover, by
using fast online adaptation of the neural network weights, the system is able to
learn without needing large hand-labelled training sets and is also able to rapidly
accomodate changing environments. Future improvements in hardware and neu-
ral network architectures and algorithms are still necessary, however, in order to
approach human speeds and performance in this type of sensory processing and
recognition task.

We acknowledge the support of Bell Laboratories, Lucent Technologies. We also
thank M. Fee, A. Jacquin, S. Levinson, E. Petajan, G. Pingali, and E. Rietman for
helpful discussions.



Figure 5: Example showing the inputs and weights used in tracking a head. The
head position as calculated by the neural network is marked with a box.
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