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Abstract

This paper proposes a new neural network based on SPD

manifold learning for skeleton-based hand gesture recogni-

tion. Given the stream of hand’s joint positions, our ap-

proach combines two aggregation processes on respectively

spatial and temporal domains. The pipeline of our network

architecture consists in three main stages. The first stage

is based on a convolutional layer to increase the discrim-

inative power of learned features. The second stage relies

on different architectures for spatial and temporal Gaussian

aggregation of joint features. The third stage learns a final

SPD matrix from skeletal data. A new type of layer is pro-

posed for the third stage, based on a variant of stochastic

gradient descent on Stiefel manifolds. The proposed net-

work is validated on two challenging datasets and shows

state-of-the-art accuracies on both datasets.

1. Introduction

Hand gesture recognition is an important research topic

with applications in many fields, e.g., assisted living,

human-robot interaction or sign language interpretation. A

large family of hand gesture recognition methods is based

on low-level features extracted from images, e.g., spatio-

temporal interest points. However, with the introduction

of affordable depth sensing cameras, e.g., Intel Realsense

or Microsoft Kinect, and the availability of highly accurate

joint tracking algorithms, skeletal data can be obtained ef-

fectively with good precision. Skeletal data provides a rich

and high level description of the hand. This has led to an ex-

tensive development of approaches for skeleton-based hand

gesture recognition in recent years.

Early works on the recognition of hand gestures or hu-

man actions from skeletal data are based on a modeling

of the skeleton’s movement as time series [49, 52]. The

recognition step is thus based on the comparison of se-

quences of features describing skeleton’s movements us-

ing, e.g., Dynamic Time Warping [49] or Fourier Temporal

Pyramid [52].

Such approaches ignore the high correlations existing

between the movement of two adjacent hand joints (e.g.,

two joints of a same finger) within a hand gesture. Tak-

ing into account this information is a crucial step for hand

gesture recognition and requires the definition and the ap-

propriate processing of hand joints’ neighborhoods. Re-

cently, graph convolutional networks for action recogni-

tion [27, 56] have shown excellent performance by taking

into account physical connections of body joints defined by

the underlying structure of body skeleton. While the use

of physical connections of skeleton joints are important for

capturing discriminating cues in hand gesture and action

recognition, the identification of other connections induced

by the performed gestures and actions are also useful and

can greatly improve recognition accuracy [45].

Motivated by this observation, we model in this work

the hand skeleton as a 2D grid where connections, differ-

ent from the classical physical connections of hand joints,

are added to better capture patterns defined by hand joints’

movements. Figure 1(a) shows the hand joint positions esti-

mated by an Intel Realsense camera. Since the hand skele-

ton has an irregular geometric structure that differs from

grid-shaped structures, the 2D grid is constructed from the

hand skeleton by removing some hand joints and adding

connections between neighboring joints. Figure 1(b) shows

a 2D grid corresponding to the hand skeleton in Fig. 1(a).

This 2D grid integrates adjacency relationships between

hand joints that often have correlated movements. More-

over, this modeling allows us to use a classical convolu-

tional layer instead of a graph convolutional operator on an

arbitrary geometric graph [56].

Our approach relies on SPD matrices to aggregate fea-

tures resulting from the convolutional layer. The SPD ma-

trices considered in this work combine mean and covariance

information which have been shown effective in various vi-

sion tasks [15, 21, 22]. Since SPD matrices are known to lie

on a Riemannian manifold, specific layers for deep neural

networks of SPD matrices should be designed [19, 60]. Be-

side good performances on action recognition tasks, these
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networks do not put a focus on spatial and temporal rela-

tionships of skeleton joints. This motivates us to design

a neural network model for learning a SPD matrix-based

gesture representation from skeletal data with a special at-

tention on those relationships. In our work, the encoding

of spatial and temporal relationships of hand joints is per-

formed using different network architectures. This allows to

capture relevant statistics for individual hand joints as well

as groups of hand joints whose movement is highly corre-

lated with that of other joints in the group. The experimental

evaluation shows that our method significantly improves the

state-of-the-art methods on two standard datasets.

2. Related Works

This section presents representative works for skeleton-

based hand gesture recognition (Sec. 2.1) and deep neural

networks for SPD manifold learning (Sec. 2.2).

2.1. Skeleton­Based Gesture Recognition

Most of approaches can be categorized as hand-crafted

feature-based approaches or deep learning approaches.

Hand-crafted feature-based approaches describe relation-

ships of hand and body joints in different forms to represent

gestures and actions. The simplest proposed relationships

are relative positions between pairs of joints [35, 46, 57].

More complex relationships were also exploited, e.g., skele-

tal quad [8] or 3D geometric relationships of body parts in

a Lie group [49]. Temporal relationships have also been

taken into account and proven effective [50]. While all

joints are involved in the performed gestures and actions,

only a subset of key joints is important for the recognition

task. These are called informative joints and they can be

automatically identified using information theory [37]. This

allows to avoid considering non-informative joints that of-

ten bring noise and degrade performance.

Motivated by the success of deep neural networks in var-

ious vision tasks [13, 17, 26], deep learning approaches for

action and gesture recognition have been extensively stud-

ied in recent years. To capture spatial and temporal relation-

ships of hand and body joints, they rely mainly on Convolu-

tional Neural Network (CNN) [4, 25, 32, 33, 36, 53], Recur-

rent Neural Network (RNN) [6, 51] and Long Short-Term

Memory (LSTM) [31, 36, 44]. While hand-crafted feature-

based approaches have used informative joints to improve

recognition accuracy, deep learning approaches were based

on attention mechanism to selectively focus on relevant

parts of skeletal data [30, 55]. Recently, deep learning

on manifolds and graphs has increasingly attracted atten-

tion. Approaches following this line of research have also

been successfully applied to skeleton-based action recogni-

tion [19, 20, 23, 27, 56]. By extending classical operations

like convolutions to manifolds and graphs while respect-

ing the underlying geometric structure of data, they have
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Figure 1: (a) Hand joints estimated by a Intel RealSense

camera (b) graph of hand skeleton and the weights asso-

ciated with the neighbors of node 12 in the convolutional

layer.

demonstrated superior performance over other approaches.

2.2. Deep Learning of SPD Matrices

In recent years the deep learning community has shifted

its focus towards developing approaches that deal with data

in a non-Euclidean domain, e.g., Lie groups [20], SPD man-

ifolds [19] or Grassmann manifolds [23]. Among them,

those that deal with SPD manifolds have received partic-

ular attention. This comes from the popular applications of

SPD matrices in many vision problems [1, 14, 16, 58].

Deep neural networks for SPD matrix learning aim at

projecting a high-dimensional SPD matrix into a more dis-

criminative low-dimensional one. Differently from classi-

cal CNNs, their layers are designed so that they preserve

the geometric structure of input SPD matrices, i.e., their

output are also SPD matrices. In [5], a 2D fully con-

nected layer was proposed for the projection, while in [19]

it was achieved by a Bimap layer. Inspired by ReLU lay-

ers in CNNs, different types of layers that perform non-

linear transformations of SPD matrices were also intro-

duced [5, 7, 19]. To classify the final SPD matrix, a layer is

generally required to map it to an Euclidean space. Most of

approaches rely on the two widely used operations in many

machine learning models, i.e., singular value decomposition

(SVD) and eigen value decomposition (EIG) for construct-

ing this type of layers [19, 29, 54]. As gradients involved in

SVD and EIG cannot be computed by traditional backprop-

agation, they exploit the chain rule established by Ionescu

et al. [24] for backpropagation of matrix functions in deep

learning.

3. The Proposed Approach

In this section, we present our network model referred

to as Spatial-Temporal and Temporal-Spatial Hand Gesture

Recognition Network (ST-TS-HGR-NET). An overview of

our network is given in Section 3.1. The different compo-

nents of our network are explained in Sections 3.2, 3.3, 3.4,

and 3.5. In Section 3.6, we show how our network is trained
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Figure 2: The architecture of ST-TS-HGR-NET.

for gesture recognition. Finally, Section 3.7 points out the

relations of our approach with previous approaches.

3.1. Overview of The Proposed Network

Our network illustrated in Fig. 2 is made up of three

components. The first component, referred to as CONV,

is a convolutional layer applied on the 2D grid encoding the

hand skeletal data (Fig. 1). Filter weights are shared over

all frames of the sequence.

The second component is based on the Gaussian em-

bedding method of [34] and is used to capture first- and

second-order statistics. This component is composed of

two different architectures for feature aggregation referred

to as Spatial-Temporal Gaussian Aggregation Sub-Network

(ST-GA-NET) and Temporal-Spatial Gaussian Aggregation

Sub-Network (TS-GA-NET).

The third component, referred to as SPD Matrix Learn-

ing and Classification Sub-Network (SPDC-NET), learns a

SPD matrix from a set of SPD matrices and maps the re-

sulting SPD matrix, which lies on a Riemannian manifold,

to an Euclidean space for classification.

In the following, we explain in detail each component of

our network. The backpropagation procedures of our net-

work’s layers are given in the supplementary material.

3.2. Convolutional Layer

The convolutional layer (Fig. 3) used in the first place of

our network allows to combine joints with correlated varia-

tions (Section 1). Let NJ and NF be respectively the num-

ber of hand joints and the length of the skeleton sequence.

Let us denote by pt
0,i ∈ R

3, i = 1, . . . , NJ , t = 1, . . . , NF ,

the 3D coordinates of hand joint i at frame t. We define

a 2D grid where each node represents a hand joint i at a

frame t (Section 1). The grid has three channels correspond-

ing to the x, y, and z coordinates of hand joints. Fig. 1(b)

shows the 2D grid corresponding to the hand skeleton in

Fig. 1(a), where each node has at most 9 neighbors in-

cluding itself. Let dcout be the output dimension of the

convolutional layer. Let us denote by pt
i ∈ R

dc
out , i =

3, . . . , NJ , t = 1, . . . , NF , the output of the convolutional

layer. The output feature vector at node i is computed as:

pt
i =

∑

j∈Ni

Wl(j,i)p
t
0,j , (1)
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Figure 3: Illustration of sub-network CONV.

where Ni is the set of neighbors of node i, Wl(j,i) is the

filter weight matrix, and l(j, i) is defined as:

j − i 0 4 5 1 −3 −4 −5 −1 3

l(j, i) 1 2 3 4 5 6 7 8 9
(2)

3.3. Spatial­Temporal Gaussian Aggregation Sub­
Network

To capture the temporal ordering of a skeleton sequence,

a number of sub-sequences are constructed and then fed to

different branches of ST-GA-NET (see Fig. 4). A branch

of ST-GA-NET is designed to aggregate features for a

sub-sequence of a specific finger. In this paper, we con-

struct six sub-sequences for each skeleton sequence. The

first sub-sequence is the original sequence. The next two

sub-sequences are obtained by dividing the sequence into

two sub-sequences of equal length. The last three sub-

sequences are obtained by dividing the sequence into three

sub-sequences of equal length. This results in 30 branches

for ST-GA-NET (6 sub-sequences × 5 fingers).

To aggregate features in a branch associated with sub-

sequence s and finger f , s = 1, . . . , 6, f = 1, . . . , 5, each

frame of sub-sequence s is processed through 4 layers. Let

Jf be the set of hand joints belonging to finger f , tsb, t
s
e

be the beginning and ending frames of sub-sequence s, t

be a given frame of sub-sequence s, {pi
s,j |j ∈ Jf , i =

tsb, . . . , t
s
e} be the subset of output feature vectors of the

convolutional layer that are fed to the branch. Let us finally

consider a sliding window {t− t0, . . . , t+ t0} centered on

frame t. Following previous works [28, 43], we assume that

pi
s,j , j ∈ Jf , i = t − t0, . . . , t + t0, are independent and

identically distributed samples from a Gaussian distribution

(hereafter abbreviated as Gaussian for simplicity):
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ΣΣΣ
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


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Figure 4: The architecture of ST-GA-NET (two different

branches are shown).

N (p;µµµt
s,f ,ΣΣΣ

t
s,f ) =

1

|2πΣΣΣt
s,f |

1

2

exp(−1

2
(p−µµµt

s,f )
T (ΣΣΣt

s,f )
−1(p−µµµt

s,f )),

(3)

where |.| is the determinant, µµµt
s,f is the mean vector and

ΣΣΣt
s,f is the covariance matrix. The parameters of the Gaus-

sian can be estimated as:

µµµt
s,f =

1

(2t0 + 1)|Jf |
∑

j∈Jf

t+t0
∑

i=t−t0

pi
s,j , (4)

ΣΣΣt
s,f =

1

(2t0 + 1)|Jf |
∑

j∈Jf

t+t0
∑

i=t−t0

(pi
s,j−µµµt

s,f )(p
i
s,j−µµµt

s,f )
T .

(5)

Based on the method in [34] that embeds the space of Gaus-

sians in the Riemannian symmetric space, the Gaussian can

be identified as a SPD matrix given by:

Yt
s,f =

[

ΣΣΣt
s,f +µµµt

s,f (µµµ
t
s,f )

T µµµt
s,f

(µµµt
s,f )

T 1

]

. (6)

The GaussAgg layer is designed to perform the compu-

tation of Eq. 6, that is:

Yt
s,f = hga({pi

s,j}i=t−t0,...,t+t0
j∈Jf

), (7)

where hga is the mapping of the GaussAgg layer, Yt
s,f is

the output of the GaussAgg layer.

The next layer ReEig [19] introduces non-linear trans-

formations of SPD matrices via a mapping defined as:

Yt
s,f = hr(X

t
s,f ) = Umax(ǫI,V)UT , (8)

where hr is the mapping of the ReEig layer, Xt
s,f and Yt

s,f

are the input and output SPD matrices, Xt
s,f = UVUT is

the eigen-decomposition of Xt
s,f , ǫ is a rectification thresh-

old, I is the identity matrix, max(ǫI,V) is a diagonal matrix

whose diagonal elements are defined as:

(max(ǫI,V))(i, i) =

{

V(i, i) if V(i, i) > ǫ

ǫ if V(i, i) ≤ ǫ.
(9)

After the ReEig layer, the LogEig layer [19] is used to

map SPD matrices to Euclidean spaces. Formally, the map-

ping of this layer is defined as:

Yt
s,f = hl(X

t
s,f ) = log(Xt

s,f ) = U log(V)UT , (10)

where hl is the mapping of the LogEig layer, Xt
s,f and Yt

s,f

are the input and output SPD matrices, as before.

The next layer, referred to as VecMat, vectorizes SPD

matrices by the following mapping [48]:

yt
s,f = hvm(Xt

s,f ) = [Xt
s,f (1, 1),

√
2Xt

s,f (1, 2), . . . ,√
2Xt

s,f (1, d
c
out + 1),Xt

s,f (2, 2),
√
2Xt

s,f (2, 3), . . . ,

Xt
s,f (d

c
out + 1, dcout + 1)]T ,

(11)

where hvm is the mapping of the VecMat layer, Xt
s,f ∈

R
dc
out+1 is the input matrix, yt

s,f is the output vector,

Xt
s,f (i, i), i = 1, . . . , dcout + 1, are the diagonal entries of

Xt
s,f and Xt

s,f (i, j), i < j, i, j = 1, . . . , dcout + 1, are the

off-diagonal entries.

We again assume that yt
s,f , t = tsb, . . . , t

s
e, are indepen-

dent and identically distributed samples from a Gaussian

N (y;µµµs,f ,ΣΣΣs,f ) whose parameters can be estimated as:

µµµs,f =
1

tse − tsb + 1

tse
∑

t=ts
b

yt
s,f , (12)

ΣΣΣs,f =
1

tse − tsb + 1

tse
∑

t=ts
b

(yt
s,f −µµµs,f )(y

t
s,f −µµµs,f )

T . (13)

The second GaussAgg layer then performs the mapping:
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Figure 5: Illustration of a branch of TS-GA-NET.

Ys,f = hga({yt
s,f}t=tsb,...,t

s
e)

=

[

ΣΣΣs,f +µµµs,f (µµµs,f )
T µµµs,f

(µµµs,f )
T 1

]

.
(14)

The resulting SPD matrix Ys,f describes variations of fin-

ger f along sub-sequence s.

3.4. Temporal­Spatial Gaussian Aggregation Sub­
Network

Similarly to ST-GA-NET, TS-GA-NET is composed of

30 branches where each branch aggregates features for a

sub-sequence of a specific finger. The sub-sequences are

constructed in exactly the same way as ST-GA-NET. How-

ever, the feature aggregation procedure at the first and sec-

ond GaussAgg layers are performed differently. More pre-

cisely, considering the branch associated with sub-sequence

s and finger f . First, sub-sequence s is further divided

into NS sub-sequences of equal length. Let tsb,k and tse,k,

k = 1, . . . , NS , be the beginning and ending frames of

these sub-sequences. Then for a given hand joint j ∈ Jf
and sub-sequence k, the first GaussAgg layer computes a

SPD matrix given as:

Yk
s,j =

[

ΣΣΣk
s,j +µµµk

s,j(µµµ
k
s,j)

T µµµk
s,j

(µµµk
s,j)

T 1

]

, (15)

where µµµk
s,j = 1

ts
e,k

−ts
b,k

+1

∑tse,k
t=ts

b,k
pt
s,j and ΣΣΣk

s,j =

1
ts
e,k

−ts
b,k

+1

∑tse,k
t=ts

b,k
(pt

s,j −µµµk
s,j)(p

t
s,j −µµµk

s,j)
T .

Note that Yk
s,j encodes the first- and second-order statis-

tics of hand joint j computed within sub-sequence k. This

temporal variation of individual joints is not captured by

the first GaussAgg layer of ST-GA-NET. The resulting SPD

matrices are processed through the ReEig, LogEig and Vec-

Mat layers. Let yk
s,j , k = 1, . . . , NS , j ∈ Jf , be the out-

put vectors of the VecMat layer of the branch. The second

GaussAgg layer of TS-GA-NET then performs the follow-

ing mapping:

Ys,f = hga({yk
s,j}k=1,...,NS

j∈Jf
)

=

[

ΣΣΣs,f +µµµs,f (µµµs,f )
T µµµs,f

(µµµs,f )
T 1

]

,
(16)

where µµµs,f and ΣΣΣs,f can be estimated as:

µµµs,f =
1

NS |Jf |
∑

j∈Jf

NS
∑

k=1

yk
s,j , (17)

ΣΣΣs,f =
1

NS |Jf |
∑

j∈Jf

NS
∑

k=1

(yk
s,j−µµµs,f )(y

k
s,j−µµµs,f )

T . (18)

3.5. SPD Matrix Learning and Classification Sub­
Network

The outputs of sub-networks ST-GA-NET and TS-GA-

NET are sets of SPD matrices. The objective of the classi-

fication sub-network (see Fig. 6) is to transform those sets

to a new SPD matrix, then map it to an Euclidean space for

classification. The mapping hspda of the SPDAgg layer is

defined as:

Y = hspda((X1, . . . ,XN );W1, . . . ,WN )

=
N
∑

i=1

WiXi(Wi)
T ,

(19)

where Xi ∈ R
ds
in×ds

in , i = 1, . . . , N , are the input SPD

matrices, Wi ∈ R
ds
out×ds

in are the transformation matrices,

Y ∈ R
ds
out×ds

out is the output matrix.

To guarantee that the output Y is SPD, we remark that

the right-hand side of Eq. (19) can be rewritten as:

N
∑

i=1

WiXi(Wi)
T = Ŵ diag(X1, . . . ,XN )(Ŵ)T , (20)
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Figure 6: The architecture of SPDC-NET.

where Ŵ = [W1, . . . ,WN ] and diag(X1, . . . ,XN ) is

constructed such that its diagonal contains the diagonal en-

tries of X1, . . . ,XN :

diag(X1, . . . ,XN ) =





X1 . . . . . . . . .

. . .X2 . . . . . .

. . . . . . . . .XN



 . (21)

It can be easily seen that diag(X1, . . . ,XN ) is a

valid SPD matrix, as for any vector x 6= 0, one has

xT diag(X1, . . . ,XN )x =
∑N

i=1(xi)
TXixi, where x =

[(x1)
T , . . . , (xN )T ]T and the vectors xi, i = 1, . . . , N ,

have equal sizes. The right-hand side of the above equation

is strictly positive since (xi)
TXixi ≥ 0, ∀i = 1, . . . , N ,

and there must exist i′ ∈ {1, . . . , N} such that xi′ 6= 0 (as

x 6= 0), which implies that (xi′)
TXi′xi′ > 0.

Inspired by [19], we assume that the combined matrix

Ŵ = [W1, . . . ,WN ] is a full row rank matrix. Then opti-

mal solutions of the transformation matrices are achieved by

additionally assuming that Ŵ resides on a compact Stiefel

manifold St(dsout, N × dsin)
1. The transformation matrices

Wi are updated by optimizing Ŵ and projecting the op-

timal Ŵ on its columns. Note that the constraint on the

dimension dsout of the output Y is: dsout ≤ Ndsin.

To map the output SPD matrix of the SPDAgg layer to

an Euclidean space, we use the LogEig layer, followed by a

fully connected (FC) layer and a softmax layer.

3.6. Gesture Recognition

The SPDAgg layer outputs a matrix B∈R
ds
out for each

gesture sequence (see Fig. 6). This matrix is then trans-

formed to its matrix logarithm and finally vectorized. The

final representation of the gesture sequence is v = [b1,1,√
2b1,2,

√
2b1,3, . . . ,

√
2b1,ds

out
, b2,2,

√
2b2,3, . . . , bds

out,d
s
out

]T

where bi,i, i = 1, . . . , dsout, are the diagonal entries

of log(B) and bi,j , i < j, i, j = 1, . . . , dsout, are the

off-diagonal entries of log(B).

3.7. Relation with Previous Works

Our approach is closely related to [19, 54]. We point

out in the following paragraphs the relations between the

proposed network and those introduced in [19, 54].

1A compact Stiefel manifold St(ds
out

, N × ds
in
) is the set of ds

out
-

dimensional orthonormal matrices of RN×d
s
in .

• Our network considers temporal modeling for hand

gesture recognition, while temporal modeling is not

considered in [54] as they focus on image classifica-

tion tasks. Moreover, in our work, a Gaussian is iden-

tified as a SPD matrix, while [54] identifies a Gaussian

as the square root of a SPD matrix.

• Our network takes directly 3D coordinates of hand

joints as input, while in [19], covariance matrices must

be computed beforehand as input of their network.

• Our network relies not only on the second-order infor-

mation (covariance) as [19] but also on the first-order

information (mean). The first-order information has

been proven to be useful in capturing the extra distri-

bution information of low-level features [42]. More-

over, we consider the first- and second-order informa-

tion for different subsets of hand joints, while [19] uses

the whole set of joints to compute statistics. Our net-

work is thus based on a finer granularity than [19].

• Our network combines two different and complemen-

tary architectures to better capture relevant statistics

for the recognition task, which makes our network dis-

tinct from those of [19, 54].

4. Experiments

We conducted experiments using the Dynamic Hand

Gesture (DHG) dataset [46, 47] and the First-Person Hand

Action (FPHA) dataset [12]. In all experiments, the dimen-

sion of a output feature vector of the convolutional layer

was set to 9 (dcout = 9), the dimensions of the transforma-

tion matrices of the SPDAgg layer were set to 200 × 56
(dsin = 56, dsout = 200). All sequences of the two datasets

were normalized to have 500 frames (NF = 500)2. The

batch size and the learning rate were set to 30 and 0.01, re-

spectively. The rectification threshold ǫ for the ReEig layer

was set to 0.0001 [19]. The network trained at epoch 15 was

used to create the final gesture representation. The clas-

sifier was learned using the LIBLINEAR library [9] with

L2-regularized L2-loss (dual) where C was set to 1, the tol-

erance of termination criterion was set to 0.1 and no bias

term was added. For FPHA dataset, the non-optimized CPU

implementation of our network on a 3.4GHz machine with

24GB RAM and Matlab R2015b takes about 22 minutes

per epoch and 7 minutes per epoch for training and testing,

respectively. In the following, we provide details on the ex-

perimental settings and results obtained for each dataset.

4.1. Datasets and Experimental Settings

DHG dataset. The DHG dataset contains 14 gestures

performed in two ways: using one finger and the whole

2We tested with NF = 300, 500, 800 and the difference between ob-

tained results were marginal.

12041



Num. of a hand joint’s neighbors FPHA DHG (14 gestures) DHG (28 gestures)

3 91.65 93.10 88.33

9 93.22 94.29 89.40

Table 1: Recognition accuracy (%) of our network for dif-

ferent settings of hand joint’s neighborhood.

t0 FPHA DHG (14 gestures) DHG (28 gestures)

1 93.22 94.29 89.40

2 93.04 94.17 89.04

3 93.04 94.29 89.40

Table 2: Recognition accuracy (%) of our network for dif-

ferent settings of t0.

hand. Each gesture is executed several times by different

actors. Gestures are subdivided into fine and coarse cate-

gories. The dataset provides the 3D coordinates of 22 hand

joints as illustrated in Fig. 1(a). It has been split into 1960
train sequences (70% of the dataset) and 840 test sequences

(30% of the dataset) [47].

FPHA dataset. This dataset contains 1175 action videos

belonging to 45 different action categories, in 3 different

scenarios, and performed by 6 actors. Action sequences

present high inter-subject and intra-subject variability of

style, speed, scale, and viewpoint. The dataset provides the

3D coordinates of 21 hand joints as DHG dataset except for

the palm joint. We used the 1:1 setting proposed in [12]

with 600 action sequences for training and 575 for testing.

4.2. Ablation Study

In this section, we examine the influence of different

components of our network on its accuracy. The default

values of t0 and NS are set to 1 and 15, respectively.

Hand modeling. We evaluate the performance of our

network when only physical connections of hand joints are

used for the computations at the convolutional layer, i.e.,

connections between hand joints belonging to neighboring

fingers are removed from the graph in Fig. 1 (b). Each joint

is now connected to at most three joints including itself. Re-

sults shown in Tab. 1 confirm that the use of connections

other than physical connections of hand joints bring perfor-

mance improvement.

Time interval t0. In this experiment, we vary t0 and

keep other components of our network unchanged. To en-

sure that the computation of covariance matrices is numer-

ically stable, we set t0 > 0. Tab. 2 shows the perfor-

mance of our network with three different settings of t0,

i.e. t0 = 1, 2, 3. Results suggest that using 3 consecutive

frames for the input of the first GaussAgg layer of ST-GA-

NET is sufficient to obtain good performance.

Number NS of sub-sequences in a branch. This ex-

periment is performed by varying NS while keeping other

components of our network unchanged. For the same

NS FPHA DHG (14 gestures) DHG (28 gestures)

15 93.33 94.29 89.40

20 92.87 94.05 88.93

25 92.70 94.29 89.04

Table 3: Recognition accuracy (%) of our network for dif-

ferent settings of NS .

Network FPHA DHG (14 gestures) DHG (28 gestures)

ST-HGR-NET 91.83 93.21 89.29

TS-HGR-NET 90.96 93.33 88.21

ST-TS-HGR-NET 93.22 94.29 89.40

Table 4: Recognition accuracy (%) of sub-networks ST-

GA-NET and TS-GA-NET.

reason related to the computation of covariance matrices,

NS must be in a certain interval. We tested with NS =
15, 20, 25. Results given in Tab. 3 indicate that our network

is not sensitive to different settings of NS .

Contribution of ST-GA-NET and TS-GA-NET. We

evaluate the performance of two networks, referred to as ST-

HGR-NET and TS-HGR-NET by removing sub-networks

TS-GA-NET and ST-GA-NET from our network, respec-

tively. Results shown in Tab. 4 reveal that none of both ST-

GA-NET and TS-GA-NET always provides the best per-

formances on the datasets. This motivates the need for their

combination using the component SPDC-NET and this con-

tributes to the overall performance of our global network

combining both TS-GA-NET and ST-GA-NET.

In the following, we report results obtained with default

settings of t0 and NS , i.e. t0 = 1 and NS = 15.

4.3. Comparison with State­of­the­Art

DHG dataset. The comparison of our method and state-

of-the-art methods on DHG dataset is given in Tab. 5. The

accuracy of the method of [19] is obtained by using the

implementation provided by the authors with their default

parameter settings. Our method significantly outperforms

the competing ones. The network of [19] also learns a

SPD matrix-based representation from skeletal data which

is similar in spirit to our network. However, they concate-

nate the 3D coordinates of joints at each frame to create the

feature vector of that frame, and their network’s input is the

covariance matrix computed from feature vectors over the

whole skeleton sequence. Thus, spatial and temporal re-

lationships of joints are not effectively taken into account.

By exploiting these relationships, our network improves the

recognition accuracy by 19.05% and 19.76% compared to

the results of [19] for experiments with 14 and 28 ges-

tures, respectively. For more comparison of our method

and existing methods, we conducted experiments using the

leave-one-subject-out experimental protocol. Results on

Tabs. 6 (14 gestures) and 7 (28 gestures) demonstrate that
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Method Year Color Depth Pose
Accuracy (%)

14 gestures 28 gestures

Oreifej and Liu [40] 2013 ✗ X ✗ 78.53 74.03

Devanne et al. [3] 2015 ✗ ✗ X 79.61 62.00

Huang et al. [19] 2017 ✗ ✗ X 75.24 69.64

Ohn-Bar and Trivedi [38] 2013 ✗ ✗ X 83.85 76.53

Chen et al. [2] 2017 ✗ ✗ X 84.68 80.32

De Smedt et al. [46] 2016 ✗ ✗ X 88.24 81.90

Devineau et al. [4] 2018 ✗ ✗ X 91.28 84.35

ST-TS-HGR-NET ✗ ✗ X 94.29 89.40

Table 5: Recognition accuracy comparison of our method

and state-of-the-art methods on DHG dataset with 1960 se-

quences for training and 840 sequences for testing. The best

result in each column is marked in bold.

Method Year Color Depth Pose Accuracy (%)

De Smedt et al., [46] 2016 ✗ ✗ X 83.1

CNN+LSTM [36] 2018 ✗ ✗ X 85.6

Weng et al., [55] 2018 ✗ ✗ X 85.8

ST-TS-HGR-NET ✗ ✗ X 87.3

Table 6: Recognition accuracy comparison of our method

and state-of-the-art methods on DHG dataset using the

leave-one-subject-out experimental protocol with 14 ges-

tures. The best result in each column is marked in bold.

Method Year Color Depth Pose Accuracy (%)

De Smedt et al., [46] 2016 ✗ ✗ X 80.0

CNN+LSTM [36] 2018 ✗ ✗ X 81.1

Weng et al., [55] 2018 ✗ ✗ X 80.4

ST-TS-HGR-NET ✗ ✗ X 83.4

Table 7: Recognition accuracy comparison of our method

and state-of-the-art methods on DHG dataset using the

leave-one-subject-out experimental protocol with 28 ges-

tures. The best result in each column is marked in bold.

our method achieves the best results compared to existing

methods on this protocol. In particular, our method outper-

forms the most recent work [55] by 1.5 and 3 percent points

for experiments with 14 and 28 gestures, respectively.

FPHA dataset. Tab. 8 shows the accuracies of our

method and state-of-the-art methods on FPHA dataset. The

accuracies of the methods of [19] and [23] are obtained

by using the implementations provided by the authors with

their default parameter settings. Despite the simplicity of

our network compared to the competing deep neural net-

works, it is superior to them on this dataset. The best per-

forming method among state-of-the-art methods is Gram

Matrix, which gives 85.39% accuracy, 7.83 percent points

inferior to our method. The remaining methods are out-

performed by our method by more than 10 percent points.

We observe that the method of [19] performs well on this

dataset. However, since this method does not fully exploit

spatial and temporal relationships of skeleton joints, it gives

Method Year Color Depth Pose Accuracy (%)

Two stream-color [10] 2016 X ✗ ✗ 61.56

Two stream-flow [10] 2016 X ✗ ✗ 69.91

Two stream-all [10] 2016 X ✗ ✗ 75.30

HOG2-depth [39] 2013 ✗ X ✗ 59.83

HOG2-depth+pose [39] 2013 ✗ X X 66.78

HON4D [40] 2013 ✗ X ✗ 70.61

Novel View [41] 2016 ✗ X ✗ 69.21

1-layer LSTM [62] 2016 ✗ ✗ X 78.73

2-layer LSTM [62] 2016 ✗ ✗ X 80.14

Moving Pose [59] 2013 ✗ ✗ X 56.34

Lie Group [49] 2014 ✗ ✗ X 82.69

HBRNN [6] 2015 ✗ ✗ X 77.40

Gram Matrix [61] 2016 ✗ ✗ X 85.39

TF [11] 2017 ✗ ✗ X 80.69

JOULE-color [18] 2015 X ✗ ✗ 66.78

JOULE-depth [18] 2015 ✗ X ✗ 60.17

JOULE-pose [18] 2015 ✗ ✗ X 74.60

JOULE-all [18] 2015 X X X 78.78

Huang et al. [19] 2017 ✗ ✗ X 84.35

Huang et al. [23] 2018 ✗ ✗ X 77.57

ST-TS-HGR-NET ✗ ✗ X 93.22

Table 8: Recognition accuracy comparison of our method

and state-of-the-art methods on FPHA dataset. The best re-

sult in each column is marked in bold.

a significantly lower accuracy than our method. Results

again confirm the effectiveness of the proposed network ar-

chitecture for hand gesture recognition.

5. Conclusion

We have presented a new neural network for hand ges-

ture recognition that learns a discriminative SPD matrix en-

coding the first-order and second-order statistics. We have

provided the experimental evaluation on two benchmark

datasets showing that our method outperforms state-of-the-

art methods.
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