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Portland Pozzolana Cement (PPC) mortars are predominantly employed in plastering works to achieve better workability, superior
surface fnish, and higher fneness to ofer better cohesion with fne aggregates than the ordinary Portland cement (OPC) mortars. To
achieve high performance in the cement mortar similar to cement concrete, the addition of a superplasticizer is recommended. Te
present study investigates the impact of addition of sulphonated naphthalene formaldehyde- (SNF)-based (0.5%, 0.6%, 0.7%, and 0.8%)
and lignosulphate- (LS)-based (0.2%, 0.3%, 0.4%, and 0.5%) superplasticizers on the workability and compressive strength characteristics
of PPCmortars. Plasteringmortars of ratio 1 : 4 were prepared with natural sand andmanufacturing sand (M sand) as fne aggregates. A
fow table test was conducted on all the mortar mix proportions, and the efects of the inclusion of superplasticizers on fow properties
were recorded at diferent time intervals (0, 30, 60, 90, and 120minutes). PPCmortar cubeswere prepared, cured, and examined to assess
the inclusion of chemical admixtures on compressive strength at diferent ages (1, 3, 7, 14, and 28days).Te experimental fndings from
the workability and compressive strength of PPC mortars were analyzed, and the corresponding results were predicted using artifcial
intelligence. Experimental investigations demonstrated that the desired fow characteristics and higher compressive strength results were
achieved from a 0.7% dosage of ligno-based superplasticizer. Te predicted workability and compressive strength results at various ages
acquired by implementing an Artifcial Neural Network (ANN) were found to be in close agreement with the experimental results.

1. Introduction

Cement mortar is considered to be one of the typical and
cheaper building materials employed in the feld of con-
struction technology. When cement material is utilized for
producing mortar for plastering work, it is termed as cement
plaster. Cement plaster is essential in bonding internal and
external coats between the concrete surface and painting.
Cement plaster is the blend of ordinary Portland cement/
Portland Pozzolana cement/Portland slag cement, fne

aggregates, and water in adequate proportions that are usually
applied to masonry, exteriors, and interiors to obtain a smooth
surface fnish [1]. Cementmortar fnds an extensive application
in plastering work, building masonry units, damaged concrete
repairing, leveling the foor, patching work, fller materials in
ferrocement, and developing precast materials and damp
proofng materials [2].

Both OPC and PPC-based mortar mixes are widely
employed in construction practices because of their ad-
vantages and disadvantages. Tese days, PPC-based mortar
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mixes are commonly employed as a replacement for OPC
mortars, particularly in plastering works, due to their wide
variety of applications like better workability, high fneness,
low heat of hydration, and comparatively lower W/C ratio
provided for further enhancement in the compressive
strength of concrete and better surface fnish [3].

Naturally available river sand corresponds to Zones 3
and 4 was generally employed in preparing cement plaster
works due to its less water absorption capacity, thereby
increasing the plasticity efect [4]. Te physical character-
istics of river sand, such as particle size distribution, shape,
and surface texture, signifcantly infuence the fow and
workability properties of mortar mix in the fresh state [5].
Factors such as mineralogical composition, modulus of
elasticity, degree of alteration of fne aggregates, and
toughness tend to signifcantly impact the properties of
mortar mixes in their hardened state [6, 7].

Overexploitation of the river sand led to the prohibition
of sand extraction by the authorities due to the adverse
consequences and biological imbalance caused by sand
depletion in river beds [8]. Because of the rapidly developing
construction industry, the demand for sand has skyrocketed,
resulting in a scarcity of sufcient river sand in most parts of
the globe [9]. In these conditions, the requirement for
a suitable replacement for natural river sand that does not
compromise the strength and durability of mortar becomes
critical to sustaining infrastructure development and pro-
tecting the ecosystem. M sand is the most common alter-
native material utilized in construction activities for river
sand. It is produced by crushing large pieces of granite stone
into the sand size aggregates [10].

Compared to river sand, the cost of M sand is 40–45%
lesser, and it does not contain the impurities like clay, dust,
and silt coatings. Another reason for utilizing M sand is its
easy accessibility and lower transportation costs. It is safe to
use M sand to alternate river sand in construction practices
[11]. When M sand is used in the PPC-based mortar mixes,
high water content is required to improve the fow behavior
since its particle size is angular and produces high fneness
and porosity [12, 13]. Compressive strength issues will occur
when the W/C ratio proportion is increased on the utili-
zation of M sand; to overcome this challenge, diferent types
of superplasticizers could be used to reduce the water
content [14, 15].

An Artifcial Neural Network (ANN) is a quantitative
and statistical framework replicating a network of neurons
in the human brain. It has the potential to be extensively
used in engineering technologies to address highly com-
plicated problems. According to recent studies, the neural
network can also estimate the strength properties of building
materials accurately. Many critical parameters, such as de-
sign mix [16], cement quantity [17], substitution amount of
recycled coarse aggregates [18], drying shrinkage of concrete
[19], strength characteristics of geopolymer composites
containing various source materials [20], and slump values
[21, 22], can be predicted using neural networkmodels along
with the experimental outcomes in addition to compressive
strength [23]. Recent studies have proved that by employing
the ANN framework, the compressive strength and fow

characteristics of PPC-based cement mortars can be pre-
dicted accurately.

From the past literature studies, it was observed that very
few literary works had been reported on the investigations
on the incorporation of various chemical admixtures on the
plasticity efect of PPC-based mortar mixes. Hence, an at-
tempt was made to correlate the impact of the inclusion of
various proportions of SNF and LS-based superplasticizers
on the workability (fow property) and strength (com-
pressive property) of PPC mortar mixes prepared using M
sand against the OPC-based mortar mixes. Furthermore, the
ANN model was programmed in MATLAB R2018a with the
implementation of the Levenberg Marquardt (LM) algo-
rithm to predict the workability and compressive strength
characteristics of PPC mortar mixes in comparison with the
experimental results.

2. Materials and Methods

2.1. Materials. A substantial number of cement mortar cube
specimens were prepared with varying proportions of W/C
ratios, water content, and chemical admixtures proportions to
study their impacts on the plasticity (fow characteristics) and
strength (compressive) of the mortars. Commercially available
Portland Pozzolana cement (PPC) is used as the binding ma-
terial in the study. Tables 1 and 2 represent the physical and
chemical characteristics of the binding material used in this
study, respectively. Fine aggregates (river sand and M sand)
passing through a 4.75mm sieve size have been employed in the
study, and their physical characteristics are listed in Table 3.

Te chemical admixtures used in this study were LS-
based and SNF-based, sourced from Fosroc Chemicals India
Private Limited, Chennai. In general, ligno-based admixture
consists of a small amount of air entrainment agent that
makes a smooth fnish and creates a capillary portion when
added to the mortar/concrete mix. Tis admixture has 5 to
10% of water reduction capacity as per manufactured
recommend value.

SNF-based admixtures are reported to have an efective
dispersing impact on concrete and are designed to minimize
concrete’s water requirement by up to 30% while retaining
fow behavior. NSF-based superplasticizers generally contain
linear polymers that prefer to adsorb on cement particles,
dissipating both cement particles and boosting fowability
[24, 25]. According to the literature, the NSF disperses
cement particles and decreases attractive interparticle forces
(van der Waals forces) through electrostatic repulsion. For
NSF, the contribution of electrostatic repulsive force to total
repulsive force is very high, resulting in an efective dis-
persing efect on fow behavior [26, 27]. Water reduction
percentage might be changed based on the available solid
content in the product. Table 4 illustrates the material
characteristics of LS and SNF-based superplasticizers
employed in the study provided by the manufacturers.

2.2. Experimental Program. Te experimental work was
performed in the Regional Concrete Laboratory of the
Fosroc Chemicals India Private Limited, Chennai. In this
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study, 15 mixes proportions of constant cement: fne ag-
gregate proportion (1 : 4) was prepared in four phases with
diferent W/C ratios (ranging between 0.6 and 0.75), water
content, and admixtures (SNF, LS) dosages to determine the
plasticity and compressive strength characteristics of PPC
mortars. Figure 1 displays the cubic samples prepared for the
various PPC mortar mix proportions considered in
the study.

In the frst phase, PPC was blended with river sand in the
ratio of (1 : 4) with diferent W/C ratios (0.6, 0.65, and 0.70)
in three mixes (M1, M2, and M3) without adding chemical
admixtures to determine the optimum W/C ratio, which
meets the fow characteristics. Phase two involves the
preparation of four PPC mortar mixes (M4, M5, M6, and
M7) with M sand in the ratio of 1 : 4 by varying the W/C
ratios (from 0.65 to 0.75) with a gradual increase in water
content from 2.5% to 10% to achieve the plasticity efect in
mortar samples as the utilization of M sand creates higher
water demand.

In phase three, four PPC mortars (M8, M9, M10, and
M11) were prepared by varying the dosages of LS-based
superplasticizers (0.5%, 0.6%, 0.7%, and 0.8%) using M sand
in the same ratio of 1 : 4 with a constant W/C ratio of 0.65 to
obtain cohesive and workable mortar mix with good re-
tention period. In phase four, PPC mortars were prepared
using M sand with diferent SNF-based admixtures (0.2%,
0.3, 0.4%, and 0.5%) in four mixes (M12, M13, M14, and
M15) with a constant W/C ratio of 0.65 to achieve the
workable mix. In this context, SNF admixture was in-
troduced in the above four mixes to reduce the water ca-
pacity as M sand requires huge water content to achieve
plastering efect in mortar mixes. Table 5 depicts the details
of the 15 mortar mixes adopted in the study.

2.3. Test Methods. Te workability characteristics of the
mortar mixes can be evaluated by conducting a fow table
test. Te fow table test in cement mortar is considered an
essential parameter in determining the quality of the mortar
mix in terms of cohesiveness, consistency, and proneness to
segregation. In this study, 15 PPC cement mortar mixes were
prepared to determine their workability characteristics in the
fresh state using standard fow table apparatus according to
IS 5512 provisions [28]. Tree mortar cubic samples of
dimension 70.6mm× 70.6mm× 70.6mm in every mix
proportion were evaluated under compression load at the
end of 28days for compressive strength as per IS 516:2008
provisions [29]. Te compressive strength was acquired by
evaluating the mortar samples in the universal testing
machine (UTM) according to IS 2250:1981 standards, and
the load was deployed at the frequency of 2.2N/mm2 per
minute before the failure emerged [30].

3. Results and Discussion

3.1. Flow Characteristics. Table 6 explains the plasticity ef-
fects of the ffteen mortar mix proportions adopted in the
study. From phase one, it was observed that the M2 mortar
mix blended with river sand with a 0.65W/C ratio yielded
a workable mix and was found to be suitable for plastering
works compared to the other mixes (M1 and M3). Te
behavior of fow properties of the three PPC mortar mixes
prepared using river sand under the infuence of various
W/C ratios is shown in Figure 2.

In phase two, four PPC mortar mixes (M4, M5, M6, and
M7) were prepared using M-Sand with varying proportions
of W/C ratios ranging 0.65 to 0.75 to evaluate its plasticity
efect. It is observed that the mortar mix M6 containing
a 0.725 (W/C) ratio was workable and suitable for plastering
works by meeting the required plasticity efect. Figure 3
depicts the fow properties of the four PPC mortar mixes
containingM sand under the infuence of variousW/C ratios
without adding chemical admixtures.

Four PPC mortars (M8, M9, M10, and M11) containing
diferent percentages of LS-based chemical admixtures (0.5%
to 0.8%) were prepared using M sand with a constant W/C
proportion of 0.65 tested to evaluate the workability char-
acteristics.Te slump fow experiment recorded that the mix
number M10 yielded a cohesive and workable mortar mix
with a good retention period compared to the other three
mixes.Te fow behavior of four PPCmortar mixes prepared
using M sand with various LS-based admixtures is shown in
Figure 4.

Phase four experimental trials deal with the efect of
adding a variable proportion of SNF-based superplasticizers
(0.5% to 0.8%) on the fow properties of four PPC-based
mortar mixes (M12, M13, M14, and M15) prepared using M
sand with 0.65W/C ratio. From the fow table results, it was
observed that all four mortar mixes failed to achieve the
normal plasticity efect due to the formation of harsh and
segregated mixes [2]. Figure 5 shows the fow properties of
PPC-based mortars prepared using M sand with the varying
proportions of SNF-based superplasticizers.

Table 2: Chemical characteristics of binders used in the study.

Chemical characteristics PPC (Oxides percentage
by mass)

CaO 43.51
Al2O3 10.06
SiO2 30.62
MnO —
Fe2O3 4.34
MgO 1.03
Na2O 0.54
K2O —
Loss of ignition (LOI) 2.80

Table 1: Physical characteristics of binding materials.

Physical characteristics PPC
Fineness (m2/kg) 382
Standard consistency (%) 33.5
Initial setting time (min) 190
Final setting time (min) 290
Fly ash addition (%) 31
Specifc gravity 2.9
Soundness (mm) 0.50
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From the above fow behavior of 15 mortar mixes, it can
be inferred that the PPC mortar mix M10 prepared using M
sand achieves better fow characteristics on the in-
corporation of 0.7% of LS-based superplasticizer by pro-
ducing a cohesive, workable mortar mix with sufcient
retention period, which was found to be best suitable for
plastering works [10].

3.2. Analysis of Compressive Strength Characteristics. Te
compressive strength of PPC mortars is one of the essential
features of masonry formations. Figure 6 depicts the com-
pressive strength outcomes at the end of 1, 3, 7, 14, and
28days for the three PPC-based mortar mixes (M1, M2, and
M3) prepared using river sand with diferent W/C ratios
(0.60, 0.65, and 0.70). From Figure 6, it can be inferred that
the achieves the maximum compressive strength value of
20.5MPa at the end of 28days due to the low W/C ratio
(0.60) but failed to meet the plasticity requirements as the
result of poor workability characteristic [31]. On the other
hand, M2 produces a workable mortar mix without
bleeding/segregation and records the second-highest com-
pressive strength of 18.6MPa. Te M2 mix proportion
having a 0.65W/C ratio is found to produce standard
plasticity criteria for the plastering works from the above
statement.

Te compressive strength analysis at 1, 3, 7, 14, and
28days for the phase two experimental works consisting 4
PPCmortars (M4, M5, M6, andM7) produced usingM sand
with various percentages of W/C ratios (0.65, 0.7, 0.725, and
0.75) and water contents (2.5%, 5%, 7.5%, and 10%) is shown
in Figure 7. According to Figure 7, it can be observed that the
M4 reported the highest compressive strength of 18.4MPa,
and the least compressive value of 16.7MPa corresponds to
the M7 mortar mix at the end of 28 days. Te gradual in-
crease in the water content from 2.5% to 10% in PPC mixes
with M sand had an adverse efect on the compressive
strength properties.

Te impact of the incorporation of varying percentages
of LS-based superplasticizers (to control the water demand
due to the usage of M sand) on the compressive strength
performance of PPC-based cement mortars at 1, 3, 7, 14, and

28 days produced withM sand at 0.65W/C ratio is illustrated
in Figure 8. Te fgure shows that the compressive strength
of PPCmortars (M8, M9, andM10) increases monotonically
with the increase in LS-based superplasticizers to 0.7%.
Further increase in the admixture dosage (0.8%) resulted in
a slight declination in compressive strength due to increased
workability values [32].Temaximum compressive strength
of PPCmortar in phase three trial was 22.4MPa at the end of
28days for M10.

Te efect of addition of diferent percentages of SNF-
based admixtures (0.2%, 0.3%, 0.4%, and 0.5%) on the
compressive strength development of PPC cement mortars
mixes (M12, M13, M14, and M15) with constant W/C ratio
of 0.65 at the diferent curing periods (1, 3, 7, 14, and 28 days)
is demonstrated in Figure 9. From Figure 9, it can be
concluded that the M13 mix records the maximum com-
pressive values for 1, 3, 7, 14, and 28days upon the 0.3%
addition of SNF-based admixture.

3.3. Prediction of Strength and Flow Properties of Mortars
Using Neural Networks. ANN is an extensively parallelly
distributed information activity framework that func-
tions like a group of neurons located in the human brain.
It has the capability to understand and generalize from
the available data and intends to deliver relevant answers
even when the set of input parameters contains an error
or incomplete [33, 34]. In general, neural networks were
employed to resolve and diferentiate the experimental
results procured from other methods [35]. It contains
numerous interconnected artifcial neuron-like networks
in which every single neuron produces a single output
(Y) from all the inputs (Xi) through the given equation
(1). Term (f ) present in equation (1) denotes the acti-
vation function, which deals with the sum of input

Table 3: Physical properties of fne aggregates.

Physical properties River sand (RS) Manufacturing sand (MS)
Specifc gravity 3.07 3.22
Percentage of water absorption 2.38 3.41
Fineness modulus 2.41 2.05
75 microns passing limits (%) 7.4 10.6

Table 4: Properties of superplasticizers.

Properties LS-based
admixture SNF-based admixture

Specifc gravity 1.16 1.2
Dry material content
(%) 34 41

Chloride content 0.003 0.005

Figure 1: Casting of 70.6mm× 70.6mm× 70.6mm cubic samples.
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parameters acquired from the sum function and in-
fuences the output of the neuron. Te term (H) repre-
sents the weighted sum of the input parameters, which
can be derived from equation (2) and (b) is the bias
coefcient to infuence the function [36, 37].

Y � f(H) �
1

1 + e
− H

, (1)

H � 

n

i�1
XiWi + b. (2)

TeANN framework consists of three distinct layers; hence,
it is referred to as multilayer perception (MLP) framework [38].
Te frst layer is the input layer usually employed for feeding the
network with data from outside. Te second layer is either
a hidden layer or computational layer that connects the input
layer with the output layer and processes the data furnished

through the input layer.Te third component is the output layer,
which is responsible for communicating the neural network’s
predictions in the form of output [39].

Te slump fow and compressive strength characteristics of
PPCmortars were signifcantly infuenced by two critical factors,
such as the W/C ratio and the percentage of chemical admix-
tures added ( Ligno-based and SNF-based superplasticizers).Te
input layer contains two independent variables (diferent W/C
ratios and various percentages of LS and SNF type chemical
admixtures), and the output layer comprises two dependent
variables, where ANN predicts the slump fow and compressive
strength values. Figure 10 explains the pictorial representation of
the process involved in the context of the fow chart explaining
the step-by-step process involved in the neural network
predictions.

In the present ANN framework, the input and output data
sets were categorized into three groups: learning (60%), testing
(20%), and validation (20%). Among the 15 experimental trial

Table 5: Details of the 15 mix proportions used in the study.

Mix id Phase Cement: FA Binder FA W/C SP SP (%)
Water
content
(%)

M1
Phase I 1 : 4 PPC RS

0.60 × × ×

M2 0.65 × × ×

M3 0.70 × × ×

M4

Phase II 1 : 4 PPC MS

0.65 × × 2.5
M5 0.70 × × 5.0
M6 0.725 × × 7.5
M7 0.75 × × 10.0
M8

Phase III 1 : 4 PPC MS

0.65 LS 0.50 ×

M9 0.65 LS 0.60 ×

M10 0.65 LS 0.70 ×

M11 0.65 LS 0.80 ×

M12

Phase IV 1 : 4 PPC MS

0.65 SNF 0.20 ×

M13 0.65 SNF 0.30 ×

M14 0.65 SNF 0.40 ×

M15 0.65 SNF 0.50 ×

Table 6: Plasticity characteristics of 15 mortar mixes considered in the study.

Mix id W/C ratio Admixture Flow
table test remarks

M1 0.60 × Te mix was not workable and unsuitable for plastering
M2 0.65 × Workable mix observed and suitable for plastering
M3 0.70 × Workable with surface bleed and not suitable for plastering
M4 0.65 × Mix was not workable and unsuitable for plastering works
M5 0.70 × Mix was not workable and unsuitable for plastering works
M6 0.725 × Workable mix observed and suitable for plastering
M7 0.75 × Highly workable with surface bleed unsuitable for plastering
M8 0.50 0.5% LS Te mix was cohesive but not workable
M9 0.60 0.6% LS Te mix was cohesive but not workable
M10 0.70 0.7% LS Cohesive and workable mix with a reasonable retention period
M11 0.80 0.8% LS Initially, the surface bleed was observed and setting delayed
M12 0.65 0.2% SNF A very harsh mix observed
M13 0.65 0.3% SNF A harsh mix observed and unsuitable for plastering
M14 0.65 0.4% SNF Segregation was observed and not suitable for plastering
M15 0.65 0.5% SNF A rough mix was observed with bleeding and segregation
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results, 9 data sets were considered for the learning phase, 3 data
sets for the testing phase, and 3 data sets for the validation phase.
Te maximum number of hidden layers and the amount of
neurons embedded at every hidden layer of the neural network
could be determined by performing a certain number of iter-
ations during training, testing, and validation process until the
expected results are achieved with limited error values. For the
present work, the ANN framework (2-4-4-2) comprising two
hidden layers with four neurons in each layer was developed in
MATLAB R2018a to predict the slump fow at various periods
between 0minutes and 120minutes and compressive strength
development at the end of 1, 3, 7, 14, and 28days of PPCmortars

using feed-forward backpropagation Levenberg-Marquardt al-
gorithm as shown in Figure 11.

Table 7 provides information on the ranges of input and
output parameters selected in the ANN database. Following
the identifcation of the framework, the 2-4-4-2 ANN
structure was used to implement newly generated learning
data for both input and output data.Te accuracy of the data
obtained from the established neural network can be
assessed using the following (3) for error prediction per-
centage [22].
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Figure 2: Flow properties of PPCmortars with varyingW/C ratios.
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Error Prediction(%) �
Experimental  results − ANN  results

experimental  results
× 100. (3)

Te percentage error values of PPC-based mortars for
the assumed mix proportions under the performance of
slump fow (0, 30, 60, 90, and 120mins) and compressive
strength (1, 3, 7, 14, and 28 days) tests with varying pro-
portions of W/C ratios and chemical admixtures are

illustrated in Table 8. From Table 8, it can be inferred that the
percentage of error values acquired from the ANN frame-
work is marginal as it lies within 10%. Te maximum
percentage error values for the compressive strength at the
end of 1, 3, 7, 14, and 28 days were obtained as 6.76%, 7.46%,
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Figure 6: Compressive strength variation for PPC mortars pre-
pared using river sand.
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6.02%, 8.25%, and 5.39%, respectively. Similarly, the opti-
mum error percentage results for the workability values
during 0, 30, 60, 90, and 120minutes were measured as
2.40%, 3.11%, 3.37%, 4.70%, and 6.23%, respectively.

Figure 12 compares the experimental and predicted
compressive strength results of 15 mortar mixes at the end of
1, 3, 7, 14, and 28 days. Similarly, Figure 13 illustrates the
comparison between experimental and predicted outcomes
of slump fow characteristics for the considered mortar
mixes at the end of diferent time intervals (0, 30, 60, 90, and
120minutes). From Figures 12 and 13, it can be observed
that the compressive strength and slump fow values of the

ffteen PPC mortar mixes obtained from the ANN frame-
work and experimental results are nearly equivalent.

For instance, the predictive performance of the compressive
strength at the end of 28days obtained from the ANN
framework is shown in Figure 14. Te overall coefcient of
correlation (R) for the 28day compressive strength outcomes
during training, validation, testing, and combination of three
phases were recorded as 0.90014, 0.98814, 0.97206, and 0.91566,
respectively, is depicted in Figure 14. Furthermore, Table 9
represents the R values for the target variables (compressive
strength and workability values) incorporated in the ANN
framework at the time of training, validation, testing, and the

Begin

Assign the variables for Input and Output

Split data sets for Training: Testing: Validation: 60:20:20

Select the algorithm for training

Specify the activation function

Specify the hidden layers and number neurons present in every hidden layer

Train the ANN model

Repeat the Iteration No If
R > 0.95

Yes Save the ANN model
(MSE, Epochs, Regression plots)

End

Figure 10: Steps involved in the neural network prediction system.

W/C ratio

Admixture
Dosage (%)

1

2
3

2

1 1

2

3

44

1

2

Compressive
Strength

Slump fow

Input layer Hidden Layers Output layer

Figure 11: ANN framework (4-4-4-2) adopted for the present study.

Table 7: Input and target variables accessed in the ANN prediction system.

Variables Range Remarks
W/C ratio 0.6–0.75 Input variablesLigno- and SNF-based admixtures (%) 0.2–0.8
Slump fow (mm) 90–220 Target variablesCompressive strength (MPa) 2.1–22.4
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Figure 12: Comparison of actual and predicted compressive strength values at various ages.
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Figure 13: Comparison of actual and predicted slump values at various time intervals.
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Figure 14: Prediction performance of the output variable (28th day compressive strength).

Table 9: Coefcient of correlation values of target variables.

Target variables Training Validation Testing Combination
Compressive strength at 1st day 0.98647 0.98514 0.93245 0.95632
Compressive strength at 3rd day 0.99235 0.98745 0.96210 0.97230
Compressive strength at 7th day 0.99412 0.98213 0.95021 0.95542
Compressive strength at 14th day 0.96520 0.96541 0.97854 0.94021
Compressive strength at 28th day 0.90014 0.98814 0.98206 0.91566
Slump fow at 0min 0.91254 0.97654 0.96542 0.93654
Slump fow at 30min 0.92541 0.96521 0.97541 0.96541
Slump fow at 60min 0.93650 0.99754 0.96742 0.98785
Slump fow at 90min 0.99851 0.98631 0.98745 0.99856
Slump fow at 120min 0.94632 0.99883 0.98322 0.95120
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association of the three levels. Table 9 shows that the R values
greater than 0.9 for all the target values emphatically exhibit
a signifcant association between recorded and prediction
fndings throughout all occurrences [22, 39]; the constructed
ANN architecture, which has been implemented employing
recorded values, predicted the expected outcomes efectively.
Tis refects the exceptional association among the actual results
and ANN outcomes with less error values displayed in Fig-
ures 12 and 13.

According to the preceding statement, the ANN structure
may be used to forecast the workability and compressive
strength parameters of variousmortarmixes produced PPC type
mortars. Furthermore, the workability and compressive strength
values calculated from experimental and predictive studies were
constrained by diferent W/C ratios and the Percentage of
chemical admixtures (LS and SNF-based) used in this study.

4. Conclusion

Tis work used diferent proportions of LS and SNF-based
superplasticizers as water-reducing agents in PPC-based
mortar mixes. Te following conclusions are drawn based
on the fow and compressive strength characteristics of PPC
mortars.

(i) Te optimum W/C ratio required to achieve the
plasticity efect in PPC mortar using river sand
without the inclusion of chemical admixtures was
recorded as 0.65 for the M2 mix. Moreover, the
maximum compressive strength was observed for
M1 for all ages containing a 0.6W/C ratio.

(ii) Te plasticity efect on the PPC mortars containing
M sand was achieved at a 0.725W/C ratio with 7.5%
extra water without any addition of super-
plasticizers compared to PPC-based mortars pro-
duced with river sand.

(iii) Te PPCmortar mixM10 with a 0.65W/C ratio and
0.7% of LS-based superplasticizer achieved work-
able plastering with a good retention period and
demonstrated the highest compressive value of
22.4MPa after 28days. M10 develops the highest
compressive strength among all the mixture pro-
portions at 28th day with satisfactory workability
characteristics.

(iv) Te addition of SNF-based chemical admixtures in
PPC mortar mixes (M12 to M15) prepared using M
sand had a negative efect on the fow characteris-
tics. However, the maximum compressive strength
results were observed for M13 at all ages.

(v) Te ANN model constructed in this investigation
was observed to be acceptable, estimating the
workability and compressive strength characteris-
tics of PPC mortar mixes.
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