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Abstract—Manufacturing generates a vast amount of data 

both from operations and simulation.  Extracting appropriate 

information from this data can provide insights to increase a 

manufacturer’s competitive advantage through improved 

sustainability, productivity, and flexibility of their operations.  

Manufacturers, as well as other industries, have successfully 

applied a promising statistical learning technique, called neural 

networks (NNs), to extract meaningful information from large 

data sets, so called big data. However, the application of NN to 

manufacturing problems remains limited because it involves the 

specialized skills of a data scientist.  

This paper introduces an approach to automate the application 

of analytical models to manufacturing problems. We present an 

NN meta-model (MM), which defines a set of concepts, rules, and 

constraints to represent NNs. An NN model can be automatically 

generated and manipulated based on the specifications of the NN 

MM.  In addition, we present an algorithm to generate a predictive 

model from an NN and available data. The predictive model is 

represented in either Predictive Model Markup Language 

(PMML) or Portable Format for Analytics (PFA). Then we 

illustrate the approach in the context of a specific manufacturing 

system. Finally, we identify future steps planned towards later 

implementation of the proposed approach. 

Keywords—neural network; meta-model; data analytics; 

PMML; manufacturing; 

I. INTRODUCTION 

The manufacturing industry generates a large amount of data 
[1]. At each manufacturing level (i.e., from the shop floor to the 
enterprise level), data is produced and recorded to monitor the 
operations that occur. One way to extract useful information 
from “big data” is through the application of data analytics.  
Applying data analytics on manufacturing data is a promising 
way to improve the efficiency of the manufacturing system as 
well as reducing the cost of production at every manufacturing 
level [2]. In particular, neural networks (NN), a statistical 
technique, has been widely used in data analytics. Examples of 
the NN applications are available at the process level [3], [4], at 
the machine level [5], [6], at the factory level [7], [8] and at the 

supply chain level [9], [10]. These applications demonstrate how 
manufacturers can make their systems smarter using neural 
networks. However, developing an NN model requires data 
science knowledge that manufacturers often do not have. As a 
contribution to automating the application of neural networks in 
manufacturing, we propose an NN meta-model (NNMM) that 
encapsulates data scientist knowledge about neural networks. 
We introduce an algorithm to automatically manipulate a neural 
network model (NNM), built using the meta-model and 
illustrate how manufacturers can leverage the meta-model to 
apply neural networks to their manufacturing systems. 

The paper is organized as follows. Section II provides the 
use case scenario and required background about both neural 
networks and meta-models. Section III presents the NNMM and 
an algorithm to manipulate an NNM created using this meta-
model. Section IV introduces a manufacturing use case to 
illustrate the capabilities of using the meta-model in the 
manufacturing area. We conclude this paper by presenting future 
work that supports automation of the neural networks 
application on a manufacturing system. This paper will be of 
interest to manufacturers that look to apply neural networks on 
their manufacturing systems, and schema developers who look 
to represent data science knowledge. 

II. CONTEXT AND BACKGROUND 

In this section, we introduce the use case scenario and we 
provide background about both neural networks and meta-
models. 

A. Use case scenario 

This section describes a case study that focuses on predicting 
the energy consumed by a milling machine tool. The goal of this 
case study is to predict estimated energy consumption 
corresponding to the machine’s operational parameters. The 
following three input variables are used to estimate the required 
energy to manufacture a certain workpiece: 

Feed rate: the velocity at which the tool is fed 
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Spindle speed: rotational speed of the tool 

Depth of cut: the actual depth of material that the tool is 
removing 

A milling machine tool obviously involves more parameters. 
For simplicity, we decided to only keep these three parameters 
which have the biggest impact on the energy consumption in the 
milling process.  

B. Regression Analysis and Neural Network (NN) 

We present the characteristics of regression analysis and 
neural networks. Regression analysis is a statistical process used 
to investigate the relationships between variables [11]. 

Regression techniques can be roughly divided into “linear” 

and “non-linear” regressions. A dataset is defined as a 𝒟 =
{(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝, 𝑦𝑖)|𝑖 = 1, … , 𝑛}, where p and n indicate the 

number of input variables and the number of samples in our 
dataset, respectively. 𝑦𝑖  is the corresponding output target scalar 
for each input vector 𝒙𝑖 [12]. 

NNs are ooriginally inspired by the function of the neurons 
in the brain. They are typically used for classification and 
forecasting. They are frequently used as an alternative to 
standard nonlinear regression and cluster analysis techniques. 
NNs are composed of computing units (called neurons or nodes) 
operating in parallel. These units are arranged in different layers 
and interconnected by weighed edges (called synapses). A layer 
is the term used for a vertical row of neurons. Each of these 
computing units performs a few simple operations and 
communicates the results to its neighboring units. From a 
mathematical viewpoint, NNs consist of a set of nonlinear (e.g., 
sigmoidal) basis functions with free parameters; i.e., w or 
weights, that are adjusted. The objective of the adjustment is to 
minimize the error associated with regression in an iterative 
process called training using a dataset. The basis functions are 
called activation functions. 

There are many types of NNs. Feed-forward neural networks 
(FNNs) and recurrent neural networks (RNNs) are the two main 
types. A RNN has neurons that transport a signal back through 
the network (at least one feedback connection in recurrent 
network) whereas FNNs feed outputs from individual neurons 
forward to one or more neurons or layers in the network [13], 
[14]. Multilayer perceptron (MLP) neural networks and Radial 
basis function (RBF) neural networks are two of the most 
common types of FNNs used as empirical nonlinear regression 
models. RBF networks use a radial basis function, i.e., a 
Gaussian kernel, as the activation function. RBFs networks have 
similar universal approximation capabilities as MLP networks. 
For the theory and application of the RBF networks, we refer the 
readers to [13], [15]. 

A feed-forward neural network that represents our use case 
is illustrated in Fig. 1. The neural network is composed of an 
input layer, a hidden layer and an output layer. The input layer 
is the layer containing the input neurons. In our example, the 
input neurons represent the three input parameters: feed rate, 
spindle speed and depth of cut. The hidden layer contains the 
hidden neurons. The hidden layers are used to represent the 
relationships between the input layer and the output layer. The 
hidden layers allow a representation of the relationships among 

the variables when these relationships cannot be captured in a 
regression model. At both the input and hidden layers, there is a 
bias neuron. The bias neuron, which allows shifting the 
activation function to the left or right for improving the learning 
process, is a neuron with a constant output. This neuron is 
treated as a regular neuron in the associated layer. Finally, the 
output layer contains the output neuron that represents the 
predicted energy in our example. The free parameters w called 
weights are assigned to the edges that connect the different 

layers. During the training, these weights are adjusted to 
minimize the error between the output value of the NN and the 
real output value for a given data sample.  In essence the weights 
represent the sensitivity of the output to the input variable. 
Equation (1) introduces how to compute the output value using 
the weights.  

Each layer receives input signals generated by the previous 
layer, produces output signals through an activation function 
(e.g. a sigmoid function) and distributes them to the subsequent 
layer through the neurons. The network output is given by the 
following expression: 

 

𝑓(𝑿; 𝒘) = 𝑦̂(𝑿) = 𝜓(𝑤0𝑙𝑏 + ∑ 𝑤𝑗𝑙𝜙(𝑤0𝑗𝑏 + ∑ 𝑤𝑖𝑗𝒙𝑘
𝑝
𝑘=1 )ℎ

𝑗=1 ) , (1) 

 

where 𝑿 is an input vector with p entries, 𝑿 = (𝒙1, 𝒙2, … , 𝒙𝑝), p 

is the number of input signals (variables), 𝒙𝑘  is the kth input 
signal, w is the weight vector, ℎ indicates the number of hidden 
neurons, 𝑤𝑖𝑗  is the synaptic weight from ith neuron to jth 

neuron, 𝜙() and 𝜓() are the activation (transfer) functions from 
input layer to hidden, and hidden layer to output layer, 
respectively, and b stands for the bias factor.  

An estimate 𝒘̂ of 𝒘 can be obtained by a training procedure 
aimed at minimizing the quadratic error function, E, on a 
training set: 
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Fig. 1. Example of a MLP NN for estimating a quantity of interest 
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𝐸(𝑤) = ∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛
𝑖=1  ,     (2) 

 
where 𝑦̂𝑖 = 𝑓(𝑿𝑖 ; 𝑤̂) represents the output provided by the NN 
in correspondence of the input 𝑿𝑖 , and n is the number of the 
training samples. 

C. Motivation and Requirements for a Neural Network Meta-

model in Manufacturing 

This section presents the motivation and requirements to 
develop an NNMM for manufacturing. The survey presented in 
the section I shows that neural networks are widely used at 
different manufacturing applications. For each application, a 
neural network needs to be built based on the manufacturing 
knowledge involved. This manual process requires data science 
knowledge, in addition to manufacturing knowledge. A 
manufacturer that does not have sufficient data science 
knowledge will need external help to apply data analytics on a 
manufacturing system. In [16], authors describe a framework to 
automatically apply data analytics on a manufacturing system. 
The suggested framework uses manufacturing and data science 
knowledge to establish relationships between these two worlds. 
One central component of the framework is a meta-model 
repository where knowledge of manufacturing and data science 
are described. 

A meta-model is a set of concepts, rules and constraints used 
to describe a specific domain [17]. Thus, a meta-model provides 

domain-specific abstractions representing all of the relevant 
domain-specific core components. Such abstractions offer 
capabilities to maintain consistency across an entire domain, as 
well as capabilities to understand models of that domain in a 
common way. Models, as instances of a given meta-model, 
instantiate objects of the meta-model to represent a system 
inside the specific domain. If a model conforms to a domain-
specific meta-model, it can be used to generate other models by 
simply manipulating the model objects in accordance with the 
meta-model specifications and meaning. Moreover, libraries 
instantiating meta-model components can be provided to 
facilitate the representation of the system inside a model. 

An NNMM can contribute to the described framework by 
providing the capabilities to represent and communicate neural 
networks. An MM can provide a common way to represent NNs 
regardless of the available data or the specific software or 
programming languages used to generate the neural network. 
The NNMM can also facilitate the exchange and the 
manipulation of models that are built based on the NNMM. 
Using an NNMM, an algorithm can automatically create an 
NNM to represent an NN. Another algorithm can manipulate the 
generated model according to the meta-model specification and, 
finally, achieve a specific data analytics task using an NN as 
represented in the NN model. One example of task is the training 
of a neural network.  

Fig. 2. Workflow to automatically apply data analytics on a manufacturing system 
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Manufacturers can leverage these capabilities to generate 
neural network models representing manufacturing systems and 
then apply data analytics for their systems. Fig. 2 illustrates a 
workflow that does this, assuming that meta-models 
representing manufacturing knowledge and analytical 
knowledge are available. A manufacturer can represent a 
manufacturing system in a model using available concepts 
defined in a manufacturing meta-model. Once the 
manufacturing model is built, the manufacturer defines the 
target of the analysis and provides collected data to an algorithm. 
Defining the target of the analysis consists in defining the 
studied metric and the type of analytics the manufacturer wants 
to run (i.e., classification or regression). From the manufacturing 
model, the target of the analysis and the data, the algorithm 
automatically generates a neural network model using the 
concepts defined in the NNMM. In our use example, a 
manufacturer could have a milling machine model as its 
manufacturing model. The manufacturer would treat energy as 
the studied metric and regression as the type of analytics. The 
algorithm would then generate the NNM representing an NN as 

described in Fig. 1. Section V presents initial capabilities that 
this algorithm should provide. 

In this workflow, it is important to understand that there are 
several types of manufacturing models. One model could be a 
simulation model while another model could be a production 
scheduling model. In both cases, these models can be very 
complex. Running data analytics directly from these models 
requires 1) developing an algorithm to apply neural networks 
specifically for each type of model and 2) modifying one’s 
algorithm every time these models are modified. Providing an 
NNMM enables generation of an NNM from the manufacturing 
model. Once an NNM is generated, the manufacturer executes 
data analytics from the NNM. If a manufacturing model is 
modified, it does not imply that the NNM needs to be modify as 
well and the manufacturer does not need to repeat the step of 
generating the NNM. A manufacturer can keep the existing 
NNM model and run data analytics from this NNM until the new 
manufacturing model requires the NNM to be modified. Thus, 
manufacturers save time and money by reusing the NNM. In 
addition, an important modification of the manufacturing model 

Fig. 3. Neural Network Meta-Model 
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only requires a modification of the algorithm to transform this 
model into a neural network model. The algorithms to 
manipulate this neural network model do not need modification. 

The NNM created in the modeling environment represents 
only the structure of the neural network. Using this NNM, the 
data given as inputs by the manufacturer, and available tools or 
libraries implementing machine learning techniques, another 
algorithm can execute data analytic tasks.  The choice of the 
executed task depends on the type of analysis that the 
manufacturer defines at the beginning of the workflow.  The 
algorithm can also generate analytical models in standard format 
to apply scoring using these models and existing software that 
understands this format. Scoring is the process of using a model 
to make predictions about behavior.  

III. DESCRIPTION OF THE NEURAL NETWORK META-MODEL  

As described in Section II.B, a variety of neural networks are 
available. Creating an NNMM must facilitate representing any 
neural network. Moreover, using an NNMM, models have to be 
easy to understand and manipulate. To achieve these 
requirements, the meta-model needs to provide capabilities to 
represent any specificity of any neural network. The meta-model 
needs to provide explicit and clear concepts to make the model 
generation, understanding and manipulation simple. This paper 
will present our NNMM to represent neural networks and meet 
these requirements. It also describes the architecture of the 
second algorithm mentioned in the workflow. 

A. Description of the Neural Network Meta-model 

In this section, an NNMM developed in the Generic 
Modeling Environment (GME) [18] is proposed. GME is a tool 
for creating custom, domain-specific modeling environments. 
The domain-specific modeling environment is used to create 
high-level descriptive models of objects in a given domain. 
GME is also used to build models of real world objects in that 
domain. The NNMM represents different types of neural 
networks, including FNN, through various abstractions. In this 
work, we exclude the representation of RNN. An RNN 1) allows 
an edge to have the same neuron as its source and its destination 
and 2) requires higher-level abstractions than the abstractions 
presented in this NNMM. Including RNN will be a future step 
to allow the representation of all kinds of neural networks.  

The meta-model needs to be easy to use, thus we have 
chosen a simplified representation of each concept. Fig. 3 shows 
the NNMM. A NeuralNetworkModel concept is composed of 
Neuron and Edge concepts. Neuron is an abstract concept and is 
extended by four concepts: InputNeuron, HiddenNeuron, 
BiasNeuron and OutputNeuron concepts. Edge is an abstract 
concept that is extended by the VisibleEdge and HiddenEdge 
concepts. A VisibleEdge is used to represent an edge between an 
input neuron and a hidden neuron, between a hidden neuron and 
an output neuron and between a bias neuron and an output 
neuron. Edges between two hidden neurons and between a bias 
neuron and a hidden neuron are represented using a 
HiddenEdge. 

This NNMM  is built to facilitate its adoption by allowing 
the extension of the meta-model to meet new requirements. For 
instance, in the proposed NNMM, a layer is represented by a 

neuron attribute . However, one can create a concept called 
Layer as a new concept as part of a NeuralNetworkModel. 

B. Algorithm Generating a Predictive Model from an NNM  

and Data 

To illustrate the capabilities of an NNMM, we implement an 
algorithm that automatically generates a predictive model using 
a neural network model and data. Four tasks must be executed 
to complete the workflow from an NNM and data to a predictive 
model in a specific format e.g., Predictive Model Markup 
Language (PMML) [19] or Portable Format for Analytics (PFA) 
[20]. Tasks, as shown in Fig. 4, are 1) extract the available 
information specified in the NNM 2) build a data structure 
representation of the NNM using the extracted information, 3) 
train this data structure with the given data and updating the 
NNM, and 4) convert the trained data structure into a 
standardized or neutral format.  

  

Fig. 4. Process flow to generate a predictive model from an NNM and data 

Fig. 4 represents the process flow of the algorithm as an 
example of an analytical model interpreter presented in the 
workflow in Fig. 2. The NNM is implemented using GME. 
GME allows users to develop an algorithm that can directly 
manipulate the implemented model. First, the algorithm 
executes the first task. The relevant information extracted from 
the NNM is the type of neural network, the number of hidden 
layers, the number of hidden neurons per layer, the number of 
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inputs neurons, the number of outputs neurons, and the names 
the NNM uses to refer to each neuron and connection within the 
network. This information is provided as the input of the second 
task. The second and third tasks are accomplished using Weka 
[21], a Java machine-learning library. Using the information 
given as inputs, the algorithm can instantiate a Weka data 
structure representing the neural network specified in the model. 
Using data provided at the beginning of the workflow, the 
algorithm trains the neural network using functions 
implemented in the Weka library. The algorithm provides 
capabilities to customize the training by modifying several 
parameters of the training: learning rate, momentum, number of 
iterations, size of validation and random seed that is the number 
used to initialize the pseudorandom number generator. Default 
training parameter values are suggested as well. Finally, the 
NNM is updated to include the neural network edge weights that 
have been computed during the training. The final task is 
accomplished using Java PMML (JPMML) application program 
interface (API) [22], a Java library for producing and scoring 
PMML documents, and using Titus [23], a Python library for 
producing and scoring PFA documents. 

Using these libraries and the Weka data structure trained 
during the previous task, a PMML or PFA document can be 
generated for scoring. The conversion from the Weka data 
structure, which represents the trained neural network to a 
PMML or PFA document involved considerable programming 
because Weka does not contain a method for exporting a neural 
network into either of these formats.  This programming requires 
understanding of the Weka library and the PMML and PFA 
specifications. The algorithm is developed to provide an 
automatic way to build, train and manipulate a neural network 
from a neural network model. 

IV. USE CASE 

In this section, we will present the NNM and an 
implementation of the algorithm generating a predictive model 
for the use case we described in Section II.A. 

A. Milling Process Analysis: Process Description and Neural 

Network  Representation 

The data set used in this case study was generated for [24]. 
To generate the data, Park et al. describe an intelligent machine 
monitoring framework that consists of two agents: i) a data 
management and extraction agent, and ii) a data-driven 
machine-learning and knowledge-extraction agent. The former 
agent consists of an MTConnect agent [25] and a data post-
processor. The MTConnect agent retrieves raw sensor data from 
a machine tool and systematically converts and organizes the 
data into semantically meaningful input features and response 
outputs.  

The raw data includes the timestamp, power demand, feed 
rate, spindle speed, and numerical control (NC) code block (an 
NC code block corresponds to a specific cutting operation). The 
raw data is processed to obtain derived data, such as the average 
feed rate, average spindle speed, and cumulative energy 
consumption for each NC code block. The data set also includes 
simulated data, such as the depth of cut and cutting strategy (i.e., 
climb versus conventional milling). This data is determined by 
comparing two sequential tool positions reported by the 

MTConnect agent relative to the actual dimensions and location 
of the workpiece. The data set was generated from a part 
machined with different cutting operations such as face milling, 
contouring, slotting, pocketing, and drilling. Refer to [24], [26], 
[27]  for detailed information about the experimental design and 
data processing techniques used to generate the data set. 

With three input variables and one output variable, the NN 
structure therefore consists of three input neurons and one output 
neuron. For simplicity, in this example, we have used only one 
hidden layer and three hidden neurons. 

B. Using the Neural Network Model and Data to Generate 

PMML file 

Using the NNMM, an NNM that represents our case study is 
created. Fig. 5 shows the NNM created in GME to represent our 
use case.  

  

Fig. 5. NNM to study the energy consumed by a milling machine tool 

The input layer contains three input neurons representing the 
three parameters given as inputs: feed rate, spindle speed and 
depth of cut. The input layer includes a bias neuron called 
BiasNeuron1. The hidden layer including the bias neuron called 
BiasNeuron2 is represented. Finally the output neuron 
represents the power prediction.  

The algorithm described in the previous section provides an 
interface to provide the data and customize the parameters of the 
training if needed. Fig. 6 presents the graphical user interface 
(GUI) that pops up when a user calls the algorithm. 
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Fig. 6. Interface to provide the needed inputs to the algorithm 

As mentioned in the previous section, the user does not have 
to change the parameters of the neural network training and can 
use the suggested values for the training. Data has to be provided 
to the algorithm to enable the training. The user can decide the 
format (with two options, PMML and PFA) used to export the 
predictive model that the algorithm generates. By clicking on the 
appropriate button from the GUI, the user launches the first task 
described in Section III.B. Following the process described in 
Section III.B, the algorithm trains a neural network as specified 
by the NNM. The algorithm updates the weight of every edge 
inside the NNM in GME as shown in Fig. 7. Finally, it creates a 
predictive model file in the requested format. 

 

Fig. 7. Example of edge weight instantiation 

The predictive model file generated from the algorithm 
allows the predictive model to be used by other software that 
understands the format of the file. Doing so users of that 
software can score new data against the predictive model. A 
manufacturer can create this predictive model and use it to 
establish diagnostics on the manufacturing system. The 
predictive model can also be used in different manufacturing 
facilities that use the same milling machine tool. Each factory 
can establish diagnostics by using their own data against this 
model. This flow can facilitate the application of data analytics 
in the manufacturing industry. 

V. CONCLUSION AND FUTURE WORK 

In order to improve systems that are already quite efficient, 
manufacturers can take advantage of data analytics [2]. A neural 
network is one such technique that allows them to run regression 
analysis or classification to establish diagnostic or prognostic. 
To facilitate the representation and manipulation of neural 
networks, we propose a neural network meta-model. We 
introduce the specification of this meta-model and an algorithm 
describing the manipulation of the neural network to generate 

predictive models. The algorithm illustrates how a neural 
network model, created using the meta-model, is used as input 
with data to generate a predictive model in a standard or neutral 
format. Using the algorithm, a manufacturer can apply neural 
networks on a manufacturing system without much data science 
knowledge. The described use case shows an application of the 
algorithm to one particular system, a milling process. 

We also describe a full workflow to apply neural networks 
on a manufacturing system from a manufacturing model. Our 
current work contributes to this workflow through the 
generation of NNMs using the NNMM using an algorithm to 
manipulate this NNM. To allow manufacturers to automatically 
generate neural network models, an algorithm should be able to 
transform a manufacturing model (that can be a simulation 
model, a mathematical model, etc.) into a neural network model 
using the neural network meta-model as described in the 
referenced framework.  

Future work includes (1) providing a manufacturing meta-
model to represent manufacturing systems at different levels and 
(2) designing and implementing a step by step process to 
transform a manufacturing model into a neural network model 
to develop a manufacturing model interpreter as described in 
Fig. 2. The first task requires defining concepts at different 
manufacturing levels. Classifications are already available at the 
process level such as in [28]. By taking advantage of the 
available classifications, one can define a manufacturing meta-
model to represent processes, machines, factories, etc. The 
second task requires defining the steps to transform a 
manufacturing model into a neural network model. This second 
task requires one to identify the type and the target of the 
analysis, and the manufacturing knowledge represented in the 
manufacturing model. The algorithm designed for the second 
task will need to define the inputs and outputs of the neural 
network depending on the scenario. Extracting information 
using a neural network model will be different at the process 
level than it is at the factory assembly line level because of the 
complexity. The number of hidden layers and hidden neurons 
will change from one level to the next. Research has been done 
to define the most appropriate structure (i.e., the number of 
hidden layers and hidden neurons) of an NN and can be 
implemented in the algorithm developed in the second task 
[29].Achieving these two tasks seems promising to obtain a fully 
automated workflow to apply neural networks for 
manufacturing systems. Finally, the workflow can be 
generalized by including other meta-models that represent other 
techniques for applying data analytics. Developing these meta-
models and the required algorithms to ensure the transformation 
between models will provide a full framework for predictive 
analytics in manufacturing as described in [16]. 
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