
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 1428

A Neural Network Meta-Model and its Application

for Manufacturing

David Lechevalier

Le2i,

Université de Bourgogne

BP 47870, 21078 Dijon, France

david.lechevalier@etu.u-bourgogne.fr

 Ronay Ak, Y.Tina Lee

Systems Integration Division, Engineering Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899, USA

ronay.ak@nist.gov

yung-tsun.lee@nist.gov

Steven Hudak

University of Maryland,

Baltimore County, 21250, MD, US

hudak1@umbc.edu

Sebti Foufou

CSE Department, College of Engineering,

Qatar University, Qatar

sfoufou@qu.edu.qa

Abstract—Manufacturing generates a vast amount of data

both from operations and simulation. Extracting appropriate

information from this data can provide insights to increase a

manufacturer’s competitive advantage through improved

sustainability, productivity, and flexibility of their operations.

Manufacturers, as well as other industries, have successfully

applied a promising statistical learning technique, called neural

networks (NNs), to extract meaningful information from large

data sets, so called big data. However, the application of NN to

manufacturing problems remains limited because it involves the

specialized skills of a data scientist.

This paper introduces an approach to automate the application

of analytical models to manufacturing problems. We present an

NN meta-model (MM), which defines a set of concepts, rules, and

constraints to represent NNs. An NN model can be automatically

generated and manipulated based on the specifications of the NN

MM. In addition, we present an algorithm to generate a predictive

model from an NN and available data. The predictive model is

represented in either Predictive Model Markup Language

(PMML) or Portable Format for Analytics (PFA). Then we

illustrate the approach in the context of a specific manufacturing

system. Finally, we identify future steps planned towards later

implementation of the proposed approach.

Keywords—neural network; meta-model; data analytics;

PMML; manufacturing;

I. INTRODUCTION

The manufacturing industry generates a large amount of data
[1]. At each manufacturing level (i.e., from the shop floor to the
enterprise level), data is produced and recorded to monitor the
operations that occur. One way to extract useful information
from “big data” is through the application of data analytics.
Applying data analytics on manufacturing data is a promising
way to improve the efficiency of the manufacturing system as
well as reducing the cost of production at every manufacturing
level [2]. In particular, neural networks (NN), a statistical
technique, has been widely used in data analytics. Examples of
the NN applications are available at the process level [3], [4], at
the machine level [5], [6], at the factory level [7], [8] and at the

supply chain level [9], [10]. These applications demonstrate how
manufacturers can make their systems smarter using neural
networks. However, developing an NN model requires data
science knowledge that manufacturers often do not have. As a
contribution to automating the application of neural networks in
manufacturing, we propose an NN meta-model (NNMM) that
encapsulates data scientist knowledge about neural networks.
We introduce an algorithm to automatically manipulate a neural
network model (NNM), built using the meta-model and
illustrate how manufacturers can leverage the meta-model to
apply neural networks to their manufacturing systems.

The paper is organized as follows. Section II provides the
use case scenario and required background about both neural
networks and meta-models. Section III presents the NNMM and
an algorithm to manipulate an NNM created using this meta-
model. Section IV introduces a manufacturing use case to
illustrate the capabilities of using the meta-model in the
manufacturing area. We conclude this paper by presenting future
work that supports automation of the neural networks
application on a manufacturing system. This paper will be of
interest to manufacturers that look to apply neural networks on
their manufacturing systems, and schema developers who look
to represent data science knowledge.

II. CONTEXT AND BACKGROUND

In this section, we introduce the use case scenario and we
provide background about both neural networks and meta-
models.

A. Use case scenario

This section describes a case study that focuses on predicting
the energy consumed by a milling machine tool. The goal of this
case study is to predict estimated energy consumption
corresponding to the machine’s operational parameters. The
following three input variables are used to estimate the required
energy to manufacture a certain workpiece:

Feed rate: the velocity at which the tool is fed

1429

Spindle speed: rotational speed of the tool

Depth of cut: the actual depth of material that the tool is
removing

A milling machine tool obviously involves more parameters.
For simplicity, we decided to only keep these three parameters
which have the biggest impact on the energy consumption in the
milling process.

B. Regression Analysis and Neural Network (NN)

We present the characteristics of regression analysis and
neural networks. Regression analysis is a statistical process used
to investigate the relationships between variables [11].

Regression techniques can be roughly divided into “linear”

and “non-linear” regressions. A dataset is defined as a 𝒟 =
{(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝, 𝑦𝑖)|𝑖 = 1, … , 𝑛}, where p and n indicate the

number of input variables and the number of samples in our
dataset, respectively. 𝑦𝑖 is the corresponding output target scalar
for each input vector 𝒙𝑖 [12].

NNs are ooriginally inspired by the function of the neurons
in the brain. They are typically used for classification and
forecasting. They are frequently used as an alternative to
standard nonlinear regression and cluster analysis techniques.
NNs are composed of computing units (called neurons or nodes)
operating in parallel. These units are arranged in different layers
and interconnected by weighed edges (called synapses). A layer
is the term used for a vertical row of neurons. Each of these
computing units performs a few simple operations and
communicates the results to its neighboring units. From a
mathematical viewpoint, NNs consist of a set of nonlinear (e.g.,
sigmoidal) basis functions with free parameters; i.e., w or
weights, that are adjusted. The objective of the adjustment is to
minimize the error associated with regression in an iterative
process called training using a dataset. The basis functions are
called activation functions.

There are many types of NNs. Feed-forward neural networks
(FNNs) and recurrent neural networks (RNNs) are the two main
types. A RNN has neurons that transport a signal back through
the network (at least one feedback connection in recurrent
network) whereas FNNs feed outputs from individual neurons
forward to one or more neurons or layers in the network [13],
[14]. Multilayer perceptron (MLP) neural networks and Radial
basis function (RBF) neural networks are two of the most
common types of FNNs used as empirical nonlinear regression
models. RBF networks use a radial basis function, i.e., a
Gaussian kernel, as the activation function. RBFs networks have
similar universal approximation capabilities as MLP networks.
For the theory and application of the RBF networks, we refer the
readers to [13], [15].

A feed-forward neural network that represents our use case
is illustrated in Fig. 1. The neural network is composed of an
input layer, a hidden layer and an output layer. The input layer
is the layer containing the input neurons. In our example, the
input neurons represent the three input parameters: feed rate,
spindle speed and depth of cut. The hidden layer contains the
hidden neurons. The hidden layers are used to represent the
relationships between the input layer and the output layer. The
hidden layers allow a representation of the relationships among

the variables when these relationships cannot be captured in a
regression model. At both the input and hidden layers, there is a
bias neuron. The bias neuron, which allows shifting the
activation function to the left or right for improving the learning
process, is a neuron with a constant output. This neuron is
treated as a regular neuron in the associated layer. Finally, the
output layer contains the output neuron that represents the
predicted energy in our example. The free parameters w called
weights are assigned to the edges that connect the different

layers. During the training, these weights are adjusted to
minimize the error between the output value of the NN and the
real output value for a given data sample. In essence the weights
represent the sensitivity of the output to the input variable.
Equation (1) introduces how to compute the output value using
the weights.

Each layer receives input signals generated by the previous
layer, produces output signals through an activation function
(e.g. a sigmoid function) and distributes them to the subsequent
layer through the neurons. The network output is given by the
following expression:

𝑓(𝑿; 𝒘) = 𝑦̂(𝑿) = 𝜓(𝑤0𝑙𝑏 + ∑ 𝑤𝑗𝑙𝜙(𝑤0𝑗𝑏 + ∑ 𝑤𝑖𝑗𝒙𝑘
𝑝
𝑘=1)ℎ

𝑗=1) , (1)

where 𝑿 is an input vector with p entries, 𝑿 = (𝒙1, 𝒙2, … , 𝒙𝑝), p

is the number of input signals (variables), 𝒙𝑘 is the kth input
signal, w is the weight vector, ℎ indicates the number of hidden
neurons, 𝑤𝑖𝑗 is the synaptic weight from ith neuron to jth

neuron, 𝜙() and 𝜓() are the activation (transfer) functions from
input layer to hidden, and hidden layer to output layer,
respectively, and b stands for the bias factor.

An estimate 𝒘̂ of 𝒘 can be obtained by a training procedure
aimed at minimizing the quadratic error function, E, on a
training set:

depth

of cut

Neuron

(or node)

Input

Layer

Hidden

Layer

spindle

speed

feed rate

Weighted

edge

Output

Layer

Output

Energy

Sigmoid

function

bias

Fig. 1. Example of a MLP NN for estimating a quantity of interest

1430

𝐸(𝑤) = ∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛
𝑖=1 , (2)

where 𝑦̂𝑖 = 𝑓(𝑿𝑖 ; 𝑤̂) represents the output provided by the NN
in correspondence of the input 𝑿𝑖 , and n is the number of the
training samples.

C. Motivation and Requirements for a Neural Network Meta-

model in Manufacturing

This section presents the motivation and requirements to
develop an NNMM for manufacturing. The survey presented in
the section I shows that neural networks are widely used at
different manufacturing applications. For each application, a
neural network needs to be built based on the manufacturing
knowledge involved. This manual process requires data science
knowledge, in addition to manufacturing knowledge. A
manufacturer that does not have sufficient data science
knowledge will need external help to apply data analytics on a
manufacturing system. In [16], authors describe a framework to
automatically apply data analytics on a manufacturing system.
The suggested framework uses manufacturing and data science
knowledge to establish relationships between these two worlds.
One central component of the framework is a meta-model
repository where knowledge of manufacturing and data science
are described.

A meta-model is a set of concepts, rules and constraints used
to describe a specific domain [17]. Thus, a meta-model provides

domain-specific abstractions representing all of the relevant
domain-specific core components. Such abstractions offer
capabilities to maintain consistency across an entire domain, as
well as capabilities to understand models of that domain in a
common way. Models, as instances of a given meta-model,
instantiate objects of the meta-model to represent a system
inside the specific domain. If a model conforms to a domain-
specific meta-model, it can be used to generate other models by
simply manipulating the model objects in accordance with the
meta-model specifications and meaning. Moreover, libraries
instantiating meta-model components can be provided to
facilitate the representation of the system inside a model.

An NNMM can contribute to the described framework by
providing the capabilities to represent and communicate neural
networks. An MM can provide a common way to represent NNs
regardless of the available data or the specific software or
programming languages used to generate the neural network.
The NNMM can also facilitate the exchange and the
manipulation of models that are built based on the NNMM.
Using an NNMM, an algorithm can automatically create an
NNM to represent an NN. Another algorithm can manipulate the
generated model according to the meta-model specification and,
finally, achieve a specific data analytics task using an NN as
represented in the NN model. One example of task is the training
of a neural network.

Fig. 2. Workflow to automatically apply data analytics on a manufacturing system

1431

Manufacturers can leverage these capabilities to generate
neural network models representing manufacturing systems and
then apply data analytics for their systems. Fig. 2 illustrates a
workflow that does this, assuming that meta-models
representing manufacturing knowledge and analytical
knowledge are available. A manufacturer can represent a
manufacturing system in a model using available concepts
defined in a manufacturing meta-model. Once the
manufacturing model is built, the manufacturer defines the
target of the analysis and provides collected data to an algorithm.
Defining the target of the analysis consists in defining the
studied metric and the type of analytics the manufacturer wants
to run (i.e., classification or regression). From the manufacturing
model, the target of the analysis and the data, the algorithm
automatically generates a neural network model using the
concepts defined in the NNMM. In our use example, a
manufacturer could have a milling machine model as its
manufacturing model. The manufacturer would treat energy as
the studied metric and regression as the type of analytics. The
algorithm would then generate the NNM representing an NN as

described in Fig. 1. Section V presents initial capabilities that
this algorithm should provide.

In this workflow, it is important to understand that there are
several types of manufacturing models. One model could be a
simulation model while another model could be a production
scheduling model. In both cases, these models can be very
complex. Running data analytics directly from these models
requires 1) developing an algorithm to apply neural networks
specifically for each type of model and 2) modifying one’s
algorithm every time these models are modified. Providing an
NNMM enables generation of an NNM from the manufacturing
model. Once an NNM is generated, the manufacturer executes
data analytics from the NNM. If a manufacturing model is
modified, it does not imply that the NNM needs to be modify as
well and the manufacturer does not need to repeat the step of
generating the NNM. A manufacturer can keep the existing
NNM model and run data analytics from this NNM until the new
manufacturing model requires the NNM to be modified. Thus,
manufacturers save time and money by reusing the NNM. In
addition, an important modification of the manufacturing model

Fig. 3. Neural Network Meta-Model

1432

only requires a modification of the algorithm to transform this
model into a neural network model. The algorithms to
manipulate this neural network model do not need modification.

The NNM created in the modeling environment represents
only the structure of the neural network. Using this NNM, the
data given as inputs by the manufacturer, and available tools or
libraries implementing machine learning techniques, another
algorithm can execute data analytic tasks. The choice of the
executed task depends on the type of analysis that the
manufacturer defines at the beginning of the workflow. The
algorithm can also generate analytical models in standard format
to apply scoring using these models and existing software that
understands this format. Scoring is the process of using a model
to make predictions about behavior.

III. DESCRIPTION OF THE NEURAL NETWORK META-MODEL

As described in Section II.B, a variety of neural networks are
available. Creating an NNMM must facilitate representing any
neural network. Moreover, using an NNMM, models have to be
easy to understand and manipulate. To achieve these
requirements, the meta-model needs to provide capabilities to
represent any specificity of any neural network. The meta-model
needs to provide explicit and clear concepts to make the model
generation, understanding and manipulation simple. This paper
will present our NNMM to represent neural networks and meet
these requirements. It also describes the architecture of the
second algorithm mentioned in the workflow.

A. Description of the Neural Network Meta-model

In this section, an NNMM developed in the Generic
Modeling Environment (GME) [18] is proposed. GME is a tool
for creating custom, domain-specific modeling environments.
The domain-specific modeling environment is used to create
high-level descriptive models of objects in a given domain.
GME is also used to build models of real world objects in that
domain. The NNMM represents different types of neural
networks, including FNN, through various abstractions. In this
work, we exclude the representation of RNN. An RNN 1) allows
an edge to have the same neuron as its source and its destination
and 2) requires higher-level abstractions than the abstractions
presented in this NNMM. Including RNN will be a future step
to allow the representation of all kinds of neural networks.

The meta-model needs to be easy to use, thus we have
chosen a simplified representation of each concept. Fig. 3 shows
the NNMM. A NeuralNetworkModel concept is composed of
Neuron and Edge concepts. Neuron is an abstract concept and is
extended by four concepts: InputNeuron, HiddenNeuron,
BiasNeuron and OutputNeuron concepts. Edge is an abstract
concept that is extended by the VisibleEdge and HiddenEdge
concepts. A VisibleEdge is used to represent an edge between an
input neuron and a hidden neuron, between a hidden neuron and
an output neuron and between a bias neuron and an output
neuron. Edges between two hidden neurons and between a bias
neuron and a hidden neuron are represented using a
HiddenEdge.

This NNMM is built to facilitate its adoption by allowing
the extension of the meta-model to meet new requirements. For
instance, in the proposed NNMM, a layer is represented by a

neuron attribute . However, one can create a concept called
Layer as a new concept as part of a NeuralNetworkModel.

B. Algorithm Generating a Predictive Model from an NNM

and Data

To illustrate the capabilities of an NNMM, we implement an
algorithm that automatically generates a predictive model using
a neural network model and data. Four tasks must be executed
to complete the workflow from an NNM and data to a predictive
model in a specific format e.g., Predictive Model Markup
Language (PMML) [19] or Portable Format for Analytics (PFA)
[20]. Tasks, as shown in Fig. 4, are 1) extract the available
information specified in the NNM 2) build a data structure
representation of the NNM using the extracted information, 3)
train this data structure with the given data and updating the
NNM, and 4) convert the trained data structure into a
standardized or neutral format.

Fig. 4. Process flow to generate a predictive model from an NNM and data

Fig. 4 represents the process flow of the algorithm as an
example of an analytical model interpreter presented in the
workflow in Fig. 2. The NNM is implemented using GME.
GME allows users to develop an algorithm that can directly
manipulate the implemented model. First, the algorithm
executes the first task. The relevant information extracted from
the NNM is the type of neural network, the number of hidden
layers, the number of hidden neurons per layer, the number of

1433

inputs neurons, the number of outputs neurons, and the names
the NNM uses to refer to each neuron and connection within the
network. This information is provided as the input of the second
task. The second and third tasks are accomplished using Weka
[21], a Java machine-learning library. Using the information
given as inputs, the algorithm can instantiate a Weka data
structure representing the neural network specified in the model.
Using data provided at the beginning of the workflow, the
algorithm trains the neural network using functions
implemented in the Weka library. The algorithm provides
capabilities to customize the training by modifying several
parameters of the training: learning rate, momentum, number of
iterations, size of validation and random seed that is the number
used to initialize the pseudorandom number generator. Default
training parameter values are suggested as well. Finally, the
NNM is updated to include the neural network edge weights that
have been computed during the training. The final task is
accomplished using Java PMML (JPMML) application program
interface (API) [22], a Java library for producing and scoring
PMML documents, and using Titus [23], a Python library for
producing and scoring PFA documents.

Using these libraries and the Weka data structure trained
during the previous task, a PMML or PFA document can be
generated for scoring. The conversion from the Weka data
structure, which represents the trained neural network to a
PMML or PFA document involved considerable programming
because Weka does not contain a method for exporting a neural
network into either of these formats. This programming requires
understanding of the Weka library and the PMML and PFA
specifications. The algorithm is developed to provide an
automatic way to build, train and manipulate a neural network
from a neural network model.

IV. USE CASE

In this section, we will present the NNM and an
implementation of the algorithm generating a predictive model
for the use case we described in Section II.A.

A. Milling Process Analysis: Process Description and Neural

Network Representation

The data set used in this case study was generated for [24].
To generate the data, Park et al. describe an intelligent machine
monitoring framework that consists of two agents: i) a data
management and extraction agent, and ii) a data-driven
machine-learning and knowledge-extraction agent. The former
agent consists of an MTConnect agent [25] and a data post-
processor. The MTConnect agent retrieves raw sensor data from
a machine tool and systematically converts and organizes the
data into semantically meaningful input features and response
outputs.

The raw data includes the timestamp, power demand, feed
rate, spindle speed, and numerical control (NC) code block (an
NC code block corresponds to a specific cutting operation). The
raw data is processed to obtain derived data, such as the average
feed rate, average spindle speed, and cumulative energy
consumption for each NC code block. The data set also includes
simulated data, such as the depth of cut and cutting strategy (i.e.,
climb versus conventional milling). This data is determined by
comparing two sequential tool positions reported by the

MTConnect agent relative to the actual dimensions and location
of the workpiece. The data set was generated from a part
machined with different cutting operations such as face milling,
contouring, slotting, pocketing, and drilling. Refer to [24], [26],
[27] for detailed information about the experimental design and
data processing techniques used to generate the data set.

With three input variables and one output variable, the NN
structure therefore consists of three input neurons and one output
neuron. For simplicity, in this example, we have used only one
hidden layer and three hidden neurons.

B. Using the Neural Network Model and Data to Generate

PMML file

Using the NNMM, an NNM that represents our case study is
created. Fig. 5 shows the NNM created in GME to represent our
use case.

Fig. 5. NNM to study the energy consumed by a milling machine tool

The input layer contains three input neurons representing the
three parameters given as inputs: feed rate, spindle speed and
depth of cut. The input layer includes a bias neuron called
BiasNeuron1. The hidden layer including the bias neuron called
BiasNeuron2 is represented. Finally the output neuron
represents the power prediction.

The algorithm described in the previous section provides an
interface to provide the data and customize the parameters of the
training if needed. Fig. 6 presents the graphical user interface
(GUI) that pops up when a user calls the algorithm.

1434

Fig. 6. Interface to provide the needed inputs to the algorithm

As mentioned in the previous section, the user does not have
to change the parameters of the neural network training and can
use the suggested values for the training. Data has to be provided
to the algorithm to enable the training. The user can decide the
format (with two options, PMML and PFA) used to export the
predictive model that the algorithm generates. By clicking on the
appropriate button from the GUI, the user launches the first task
described in Section III.B. Following the process described in
Section III.B, the algorithm trains a neural network as specified
by the NNM. The algorithm updates the weight of every edge
inside the NNM in GME as shown in Fig. 7. Finally, it creates a
predictive model file in the requested format.

Fig. 7. Example of edge weight instantiation

The predictive model file generated from the algorithm
allows the predictive model to be used by other software that
understands the format of the file. Doing so users of that
software can score new data against the predictive model. A
manufacturer can create this predictive model and use it to
establish diagnostics on the manufacturing system. The
predictive model can also be used in different manufacturing
facilities that use the same milling machine tool. Each factory
can establish diagnostics by using their own data against this
model. This flow can facilitate the application of data analytics
in the manufacturing industry.

V. CONCLUSION AND FUTURE WORK

In order to improve systems that are already quite efficient,
manufacturers can take advantage of data analytics [2]. A neural
network is one such technique that allows them to run regression
analysis or classification to establish diagnostic or prognostic.
To facilitate the representation and manipulation of neural
networks, we propose a neural network meta-model. We
introduce the specification of this meta-model and an algorithm
describing the manipulation of the neural network to generate

predictive models. The algorithm illustrates how a neural
network model, created using the meta-model, is used as input
with data to generate a predictive model in a standard or neutral
format. Using the algorithm, a manufacturer can apply neural
networks on a manufacturing system without much data science
knowledge. The described use case shows an application of the
algorithm to one particular system, a milling process.

We also describe a full workflow to apply neural networks
on a manufacturing system from a manufacturing model. Our
current work contributes to this workflow through the
generation of NNMs using the NNMM using an algorithm to
manipulate this NNM. To allow manufacturers to automatically
generate neural network models, an algorithm should be able to
transform a manufacturing model (that can be a simulation
model, a mathematical model, etc.) into a neural network model
using the neural network meta-model as described in the
referenced framework.

Future work includes (1) providing a manufacturing meta-
model to represent manufacturing systems at different levels and
(2) designing and implementing a step by step process to
transform a manufacturing model into a neural network model
to develop a manufacturing model interpreter as described in
Fig. 2. The first task requires defining concepts at different
manufacturing levels. Classifications are already available at the
process level such as in [28]. By taking advantage of the
available classifications, one can define a manufacturing meta-
model to represent processes, machines, factories, etc. The
second task requires defining the steps to transform a
manufacturing model into a neural network model. This second
task requires one to identify the type and the target of the
analysis, and the manufacturing knowledge represented in the
manufacturing model. The algorithm designed for the second
task will need to define the inputs and outputs of the neural
network depending on the scenario. Extracting information
using a neural network model will be different at the process
level than it is at the factory assembly line level because of the
complexity. The number of hidden layers and hidden neurons
will change from one level to the next. Research has been done
to define the most appropriate structure (i.e., the number of
hidden layers and hidden neurons) of an NN and can be
implemented in the algorithm developed in the second task
[29].Achieving these two tasks seems promising to obtain a fully
automated workflow to apply neural networks for
manufacturing systems. Finally, the workflow can be
generalized by including other meta-models that represent other
techniques for applying data analytics. Developing these meta-
models and the required algorithms to ensure the transformation
between models will provide a full framework for predictive
analytics in manufacturing as described in [16].

Acknowledgement

This work was supported by National Institute of Standards
and Technology’s Foreign Guest Researcher Program and the
Ecole Supérieure d’Electricité (SUPELEC), sponsor of Ronay
Ak, and the NIST Student Undergraduate Research Fellowship
program.

 We thank our colleagues Anantha Narayanan and Sudarsan
Rachuri from NIST who provided insight and expertise that
greatly assisted the research. We also thank our colleagues KC

1435

Morris, Albert Jones and Sharon Kemmerer for their valuable
comments that helped to improve the quality of the paper.

REFERENCES

[1] M. Young., and D. Pollard. “What businesses can learn from big data and
high performance analytics in the manufacturing industry” Big Data
Insight Group, 2012.

[2] J. Manyika, et al. “Big data: The next frontier for innovation, competition
and productivity.” Technical report, McKinsey Global Institute, 2011.

[3] P.G. Benardos and G. Cl Vosniakos. "Prediction of surface roughness in
CNC face milling using neural networks and Taguchi's design of
experiments." Robotics and Computer-Integrated Manufacturing 18, no.
5: 343-354, 2002.

[4] WC. Chen, PH. Tai, MW. Wang, WJ. Deng, and CT. Chen. "A neural
network-based approach for dynamic quality prediction in a plastic
injection molding process." Expert systems with Applications 35, no. 3
(2008): 843-849, 2008.

[5] D. Dornfeld and M. F. DeVries. "Neural network sensor fusion for tool
condition monitoring." CIRP Annals-Manufacturing Technology 39.1 :
101-105. 1990.

[6] N. Ghosh, Y. B. Ravi, A. Patra, S. Mukhopadhyay, S. Paul, A. R.
Mohanty, and A. B. Chattopadhyay. "Estimation of tool wear during CNC
milling using neural network-based sensor fusion." Mechanical Systems
and Signal Processing 21, no. 1: 466-479, 2007.

[7] Y. Lin, J. Shie, and C. Tsai. "Using an artificial neural network prediction
model to optimize work-in-process inventory level for wafer fabrication."
Expert Systems with Applications 36, no. 2: 3421-3427, 2009.

[8] KJ Wang, J. C. Chen, and Y-S. Lin. "A hybrid knowledge discovery
model using decision tree and neural network for selecting dispatching
rules of a semiconductor final testing factory." Production planning &
control 16, no. 7: 665-680, 2005.

[9] M. Chiu, and Grier Lin. "Collaborative supply chain planning using the
artificial neural network approach." Journal of Manufacturing
Technology Management 15, no. 8: 787-796, 2004.

[10] R. Carbonneau, K. Laframboise, and R. Vahidov. "Application of
machine learning techniques for supply chain demand forecasting."
European Journal of Operational Research 184, no. 3: 1140-1154, 2008.

[11] M. A. Golberg and H. A. Cho, Introduction to Regression Analysis. WIT
Press, 2004.

[12] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Science &
Business Media, 2013.

[13] K.-L. Du and M. N. S. Swamy, Neural Networks and Statistical Learning.
Springer Science & Business Media, 2013.

[14] R. Rojas, Neural Networks: A Systematic Introduction. Springer Science
& Business Media, 2013.

[15] R. J. Howlett and L. C. Jain, Radial Basis Function Networks 2: New
Advances in Design. Physica, 2013

[16] D. Lechevalier, A. Narayanan, and S. Rachuri. "Towards a domain-
specific framework for predictive analytics in manufacturing." IEEE
International Conference on Big Data, 2014.

[17] A.Ledeczi, A. Bakay, M.Maroti, P.Volgyesi, G.Nordstrom, J.Sprinkle,
and G. Karsai. "Composing domain-specific design environments."
Computer 34.11: 44-51, 2001

[18] A.Ledeczi, M.Maroti, A. Bakay, G. Karsai, J.Garrett, C. Thomason,
G.Nordstrom, J.Sprinkle, and P.Volgyesi. "The generic modeling
environment." In Workshop on Intelligent Signal Processing, Budapest,
Hungary, vol. 17. 2001.

[19] A. Guazzelli, Alex, M. Zeller, W. Lin, and G. Williams. "PMML: An
open standard for sharing models." The R Journal 1, no. 1: 60-65, 2009.

[20] J. Pivarski, “PFA specification v0.7”, 2015. [Online]. Available:
http://scoringengine.org/. [Accessed: June 30th, 2015].

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten. "The WEKA data mining software: an update." ACM SIGKDD
explorations newsletter 11, no. 1: 10-18, 2009.

[22] JPMML, 2015. [Online]. Available: http://openscoring.io/. [Accessed:
June 30th, 2015].

[23] Titus, 2015. [Online]. Available: http://opendatagroup.com/. [Accessed:
June 30th, 2015].

[24] J. Park, K. H. Law, R. Bhinge, A. Srinivasan, D. Dornfeld, M. Helu, and
S. Rachuri, “A generalized data-driven energy prediction model with
uncertainty for a milling machine tool using Gaussian Process,” ASME
International Manufacturing Science and Engineering Conference, 2015.

[25] A. Vijayaraghavan, W. Sobel, A. Fox, D. Dornfeld, and P. Warndorf,
“Improving Machine Tool Interoperability Using Standardized Interface
Protocols: MT Connect,” International Symposium on Flexible
Automation, 2008.

[26] R. Bhinge, N. Biswas, D. Dornfeld, J. Park, K. H. Law, M. Helu, and S.
Rachuri, “An intelligent machine monitoring system for energy prediction
using a Gaussian Process regression,” IEEE International Conference on
Big Data, 2014.

[27] M. Helu, S. Robinson, R. Bhinge, T. Bänziger, and D. Dornfeld,
“Development of a Machine Tool Platform to Support Data Mining and
Statistical Modeling for Machining Processes,” Machine Tool
Technologies Research Foundation Annual Meeting, 2014.

[28] R. Todd, A. DK. Allen, and L. Alting. “Manufacturing processes
reference guide”. Industrial Press Inc., 1994.

[29] SK. Gnana, and S. N. Deepa. "Review on methods to fix number of hidden
neurons in neural networks." Mathematical Problems in Engineering,
2013

