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Abstract—Electroencephalogram (EEG) is able to indicate
states of mental activity ranging from concentrated cognitive
efforts to sleepiness. Such mental activity can be reflected by EEG
energy. In particular, intrusion of EEG theta wave activity into the
beta activity of active wakefulness has been interpreted as ensuing
sleepiness. Pupil behavior can also provide information regarding
alertness. This paper develops an innovative signal classification
method that is capable of differentiating subjects with sleep
disorders which cause excessive daytime sleepiness (EDS) from
normal control subjects who do not have a sleep disorder based on
EEG and pupil size. Subjects with sleep disorders include persons
with untreated obstructive sleep apnea (OSA) and narcolepsy.
The Yoss pupil staging rule is used to scale levels of wakefulness
and at the same time theta energy ratios are calculated from the
same 2-s sliding windows by Fourier or wavelet transforms. Then,
an artificial neural network (NN) of modified adaptive resonance
theory (ART2) is utilized to identify the two groups within a
combined group of subjects including those with OSA and healthy
controls. This grouping from the NN is then compared with the
actual diagnostic classification of subjects as OSA or controls and
is found to be 91% accurate in differentiating between the two
groups. The same algorithm results in 90% correct differentiation
between narcoleptic and control subjects.

Index Terms—Adaptive resonance theory (ART2), electroen-
cephalogram (EEG), healthy controls, narcolepsy, neural network
(NN), obstructive sleep apnea (OSA), pupil stage.

I. INTRODUCTION

S
LEEP plays an important role in the history of neuroscience
and in the lives of human beings. Excessive daytime sleepi-

ness (EDS) caused by two major sleep disorders, sleep apnea
and narcolepsy, can have a disruptive, embarrassing, or even
dangerous impact on daily living activities. Sleep apnea is a
sleep-related breathing disorder which disrupts normal sleep.
Narcolepsy is a neurological disorder which causes irresistible
urges to sleep during normal waking hours as well as disruptions
in nighttime sleep [29]. Specifically, obstructive sleep apnea
(OSA), the most common type of sleep apnea, is a clinical syn-
drome characterized by recurring episodes of upper airway nar-
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rowing and/or closure during sleep. Sleep apnea is a serious
public health problem. The National Heart, Lung, and Blood In-
stitute (NHLBI, Bethesda, MD) estimates the prevalence rate of
sleep apnea at approximately 6.62% or 18 million Americans at
any given time. In the United States and Europe, approximately
75% of people seen in sleep disorder clinics have OSA [35].
OSA is associated with a high degree of morbidity, including
growth retardation (in children), neurobehavioral deficiencies,
and cardiovascular complications [37].

Symptoms of OSA include loud and irregular snoring,
restless sleep, and daytime sleepiness. In addition, episodes
of sleep apnea are often associated with oxygen desaturation.
Repeated episodes of this desaturation can eventually lead to
additional medical complications. Sleep apnea is clinically
diagnosed when those symptoms are present and an all-night
sleep study reveals the presence of at least five episodes of
apnea and/or hypopnea per hour of sleep.

Narcolepsy is a neurologic disorder in which people expe-
rience instability in the sleep–wake cycle. It is characterized
by problematic sleepiness during waking hours and disturbed
nighttime sleep. Narcolepsy is a serious clinical problem that
usually begins before age 25 and persists throughout the life-
time. The estimated prevalence is about one person per 1359 or
0.07% of the population, with men and women equally affected
[23], [43]. About 20% of persons seen in sleep disorder clinics
in the United States and Europe have narcolepsy [35]. Sleep at-
tacks, brief episodes (often 15 min or less) of sleep that occur at
any time of the day, and certain manifestations of the auxiliary
symptoms of narcolepsy appear to be closely related to the neu-
rophysiologic mechanisms of rapid eye movement (REM) sleep.
Sleep attacks may involve a dysfunction of the activating part of
the reticular formation in addition to REM mechanisms [3]. As a
result of their illness, narcoleptic patients often show symptoms
of psychopathology [22]. At the present time, the multiple sleep
latency test (MSLT) is the polygraphic EEG (electroencphalo-
gram) “gold standard” for objectively measuring physiologic
sleepiness. The standard diagnostic procedure for narcolepsy
is time consuming and complex: a 14-day, medication-free pe-
riod followed by a 7-day period of normal sleep–wake cycles.
Then, an all night polysomnographic sleep study is followed by
a day-long MSLT [1], [7]. Thus, narcolepsy can be diagnosed
when 1) an all-night sleep study (polysomnography) is nega-
tive for the presence of another sleep disorder and 2) MSLT nap
study findings include a mean sleep latency of less than 5 min
and in at least two of the nap periods REM sleep must occur
within 15 min of patient falling asleep [2]; so an alternative, re-
liable, easily administered, and simple test is clearly desirable.
The social and economic burdens for undiagnosed or misdiag-
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nosed narcolepsy is more than enough to justify the research

aimed at finding such tests [33].

In general, there are two classes of detection methods that

have been applied to diagnostic methods for OSA. One class is

based on breath signals while the other is based on electromyo-

gram (EMG) signals. Several research papers [13], [14], [38],

[42], [45] have examined methods belonging to the first class.

Assessment of respiratory signal is a key step to diagnose OSA.

Respiratory impedance can be determined by a forced oscilla-

tion technique (FOT) [14] and can be considered as a proper

noninvasive method to diagnose sleep apnea. FOT relies on ap-

plying an oscillatory pressure signal to the respiratory system

and determines the respiratory impedance using nasal pressure

and airflow signals. Currently, FOT is a promising noninvasive

method for measuring respiratory impedance [13], [38]. Using

FOT during sleep, Yen et al. [45] estimated airway impedance

with high specificity and reliability. Then, they used an artifi-

cial neural network (NN) to classify people with and without

hypopnea/apnea based on this respiratory signal. Gumery et al.

[19] developed a device to measure the surface EMG time la-

tency reflex of the genioglossus muscle stimulated by time and

amplitude calibrated with negative pharyngeal pressure drops.

Then, based on a Berkner transform, they built a multiscale de-

tector. Further, they tested those detectors in terms of accuracy

and robustness using signals acquired from apneic patients and

healthy controls.

Zorick [48] investigated some properties of 103 patients with

narcolepsy including intrusion of sleep into awake time. Results

showed that patients with narcolepsy had frequent sleep onset

REM periods, 70% on the MSLT and 45% on nocturnal record-

ings. Since EEG and pupil diameter can represent this change,

they indicate that the EEG and pupil diameters of narcoleptic

patients differ significantly from normal at the onset of sleep.

Another possible basis for a narcolepsy test is to recognize the

relationship between sleepiness and pupil diameter which indi-

cates that pupil size decreases with advancing sleepiness [46].

EEG measurement can be used to detect brain activity since

different mental activities produce different EEG patterns.

Millán et al. [31] present a neural classifier to recognize mental

tasks and get about 70% correct recognition. Researchers

have found that fluctuations in wakefulness can be examined

with EEG measurement from active subjects with eyes open

and engaged in their usual awake activities [4], [20]. In these

situations, intrusions of alpha and theta activity into the beta

activity of active wakefulness have been interpreted as ensuing

sleepiness. As a further characterization of a sleepy EEG pat-

tern, Guilleminault [18] defined lapses into microsleeps with

ensuing sleepiness as the appearance of 3–14-s bursts of theta

activity into the awake EEG. A microsleep [18] is defined as

the transient period of decreased wakefulness that can occur

prior to sleep onset and is often found in sleepy individuals.

Keegan and Merritt [24] found a significant correlation be-

tween variations in pupil size and EEG power measures for

the delta, theta, alpha, and beta bands, respectively, when data

were segmented into 2-s windows. Yoss et al. [46] developed

a system for scaling levels of wakefulness during 15 min of

alertness testing by measuring pupil diameter as a proportion

of the individual’s maximum pupil diameter (stage 1 “awake”
95%–100%, stage 2 85%–94%, stage 3 75%–84%, and

stage 4 “sleepy” 65%–74% of maximum diameter).

Subjects with OSA, narcolepsy, and healthy controls may

have different alertness levels under the same conditions. The

pupil response patterns between subjects with and without sleep

disorders are different [27]. In this paper, we develop a novel

method to detect subjects with sleep disorders based on EEG

and pupil size. We compare subjects with sleep disorders to

those healthy controls and find that they have different responses

in theta wave patterns for the same situation. A significant dif-

ference between those subjects can be used for the purpose of

diagnosis by artificial NNs, specifically, modified adaptive reso-

nance theory (ART2) NNs. Compared with simulation results of

backpropagation NNs and Hopfield NNs, modified ART2 NNs

give us much better results for this project. We tested our algo-

rithm using two sets of subjects including one set of five sub-

jects with OSA plus six healthy controls and another set of four

subjects with narcolepsy plus six healthy controls. This method-

ology may eventually lead to new diagnostic methods for spe-

cific sleep disorders such as OSA, narcolepsy, etc. To the best of

our knowledge, no researchers have reported the classification

of patients with OSA or with narcolepsy by NN methods based

on EEG and pupil size data.

This paper is organized as follows. In Section II, we present

the experimental data. In Section III, data preprocessing is de-

scribed and our method for detecting excessive daytime sleepi-

ness associated with sleep disorders is developed. In Section IV,

simulation results are given. In Section V, conclusions are pre-

sented and future perspectives are discussed.

II. EXPERIMENTAL DATA COLLECTION

Data from five untreated OSA subjects, four narcoleptic

subjects, and six healthy controls were collected approximately

12 h after their midsleep period to maximize the probability

of sleepiness occurring. This midafternoon increase in somno-

lence, commonly believed to be a postprandial phenomenon,

has been shown to be unrelated to food intake [6]. Data col-

lection was performed at the Center for Narcolepsy Research,

University of Illinois at Chicago, Chicago, IL. The alertness

level testing, conducted with a pupillometry system built at

Mayo Clinic [28], consists of 1-min recording of pupil diameter

in the light followed by about 14 min in a quiet, dark room.

During the alertness level testing, subjects were seated in

a comfortable chair and instructed to stay awake but not to

do anything special to maintain alertness, to try to minimize

blinking, and to stare straight ahead at a small red dot projected

on a wall approximately 2 m from their eyes. The video pupil

images from two small infrared cameras are processed by an

image processor which brightened the outline of the pupil cir-

cumference. The image processor detects and outputs a voltage

proportional to the pupil diameter. The analog pupil diameter

data are digitized at the rate of 256 Hz using an analog-to-digital

(A/D) converter and saved to a personal computer (PC) using

a binary format [28]. EEG/polysomnography (PSG) data were

recorded simultaneously with the pupil diameter data using

a Grass Instruments (Quincy, MA) model 8–16D polygraph

and the standard MSLT montage: EEG (C3/A2, O1/A2, and

P3/O1), electro-oculogram (EOG) [right oculogram (ROC/A1)

and left oculogram (LOC/A2)] and EMG (bilateral mentalis

placement) [8]. Filters for EEG and EOG were set at 0.3 Hz for

high pass and 30 Hz for low pass. EMG filters were set at 10
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Fig. 1. Comparison between data of pupil size (a) before and (b) after noise
removal.

and 100 Hz, respectively. EEG/PSG data were also digitized at

256 Hz and stored with pupillometry data in a PC.

III. METHOD FOR DETECTING SLEEP DISORDER

BASED ON ART2 NNS

A. Data Preprocessing

Pupil size data contains “noise” such as blinking and eye

movements since they cannot be avoided during data recording.

These artifacts are not useful for our method and do not contain

any useful information. We designed an algorithm to remove

these artifacts and used linear interpolation to place data in the

resulting time gaps in order to get a continuous time series. In

particular, when pupil diameters reach zero or pupil diameters in

two adjacent time points change too much, we consider them as

abnormal data. Fig. 1 shows an example of pupil diameter data

of a subject before and after removing the artifacts. Our method

is similar to that developed by Merritt et al. [30].

In accordance with Yoss pupil staging method, we used a

sliding window of 2 s. Data recording from each subject has

14.5 min and the first 3 min are ignored. Thus, there are 11.5

min of data for analysis. Data for the first 3 min of recording

were eliminated from analysis because the pupil dilates and os-

cillates when the lights are extinguished and it takes 2–3 min

of darkness to adapt and reach a larger stable diameter [25].

The largest pupil diameter is normally found during the fourth

minute of dark recording. Thus, the mean pupil diameter of each

2-s window can be calculated and divided by the largest pupil

diameter to get pupil size ratios for Yoss stages.

On the other hand, theta wave activity (4–8 Hz) is an indicator

of sleepiness. The amount of theta wave activity has been shown

to increase in value during episodes where people demonstrate

decreasing alertness level. Accordingly, theta energy was cal-

culated for 2-s windows with the original data from three EEG

channels of C3/A2, O1/A2, and P3/O1. We use both Fourier and

wavelet transforms on each data set and find that Fourier trans-

form has good performance for OSA while wavelet transform

gives better results for narcolepsy. Therefore, for subjects with

OSA and accompanying controls, Fourier transform is used to

get theta wave and further to obtain theta energy. For subjects

with narcolepsy and accompanying controls, wavelet transform

is applied to get theta wave and further to obtain theta energy.

We used Matlab to realize these procedure. After that, the av-

erage energy can be obtained for each sliding window, which

indicates the amount of theta wave present. Theta energy data

are divided by the mean power value of fourth minute to obtain

theta energy ratios, because pupil size is normally the biggest in

the fourth minute. In order to find the information of sleepiness

with changing pupil size, we realign power ratio data of theta

waves according to pupil stages. Since some unknown artifacts

may exist in the EEG data, eliminating all artifacts was not pos-

sible. Thus, we use the regression method to catch changes of

theta activity following pupil stages. The regression analysis is

based on the method of Chatterjee and Hadi [9], expressed by

(1)

where is a dependent variable (output), is an independent

variable (input or data), and is the error. Solving for from

(1) based on the least square error will give the predicted data.

B. ART2 NNs

ART was introduced by Grossberg [17] in 1976. ART2 NNs

[5] were designed for both analog and digital inputs in 1987.

ART2 has been widely used to identify patterns in various fields,

e.g., Suzuki [40] used NNs based on ART2 to recognize QRS

waves1 from electrocardiogram (ECG); Vlajic and Card [44]

make use of a modified ART2 NNs to discover input data clus-

ters without considering their actual size; and Chen et al. [10]

incorporate the incremental communication method into ART2

NNs to reduce the communication cost. This paper is based on

ART2 NNs with modified learning functions to adapt to the

input patterns. Fig. 2 shows the architecture of ART2. An ART2

NN [5], [12] consists of two subsystems: an attentional sub-

system and an orienting subsystem. The attentional subsystem

1QRS wave is a peak pattern in ECG which is made up by three points of Q,
R, and S, where Q is the left bottom point of the wave, R is the peak point of
the wave, and S is the right bottom point of the wave.
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Fig. 2. ART2 NNs architecture.

has two layers, F1 and F2. F1 is made up of three sublayers.

Here, three sublayers of F1 are necessary for analog input pat-

terns since the differences between possible signals with partic-

ular patterns may be much smaller for analog inputs than for bi-

nary inputs which are used to represent features of signals. The

signals of Fig. 2 are realized individually by some equations;

see [5] for details.

One function in category layer (F2) is given as

(2)

where is the value of the th category layer from the third

layer, is the weight from the th input of the third layer of

F1 to the th category in the category layer, and is the signal

from the third layer of F1. The contrast-enhancing function

is a choice function and can use sigmoid function. In our case,

the contrast-enhancing function is defined by

if

otherwise
(3)

where is a parameter to be determined and is defined in

(2). When resonant conditions exiting in the network are below

the threshold set by the vigilance parameter, the memory will

be activated and the long-term memory (top–down weights and

bottom–up weights) adaptive process described in the following

will also be activated.

The following architecture describes the updating relation-

ship between the third layer of F1 from an input signal and the

activated category layer.

Bottom–up long-term memory trace (F1 F2)

(4)

Top–down long-term memory trace (F2 F1)

(5)

where is the th output of the third layer of F1, is the output

of the th category activated, and and are the weights

between the category of the layer F2 and the third layer of F1.

When resonant conditions existing in the network exceed the

threshold set by the vigilance parameter, we modify the original

update equations in order to avoid forgetting all the information

obtained before. The memory will be updated by the average

value of all long-term memory (LTM) associated with the same

winner while individual input should get its own LTM by (6)

and (7). The memory update is described as follows. Bottom–up

long-term memory trace (F1 F2)

(6)

Top–down long-term memory trace (F2 F1)

(7)

In (6) and (7), is the number of subjects associated with the

winner , in and in , re-

spectively, are the weight before update, and and , respec-

tively, are the new weight from a new input.

Reset equations in the orienting subsystem are the key part of

ART2 NN since it is related to the ability of identification. We

use the same equations as Grossberg’s ART2 [5], given by

where is a vigilance parameter, is the th element of sim-

ilarity vector , is a small number, and are the th

element of and , respectively, and and are signals in

Fig. 2.

C. Our System and Parameter Selection

Since the vigilance parameter decides the level of similarity

between input signals in the same category, more categories will

be obtained if is large when other parameters are the same,

e.g., if is close to 1. The order of input signals has certain ef-

fects on the final classification results. For example, three input

signals A, B, and C are given and A and B are very similar while

B and C are very similar, but A is far away from C compared to

between B and C. Under certain model parameters, if A is the

first input to ART2, B and C will be grouped together with A.

However, if B is the first input signal, A is the second, and C

is the third, A and B may be grouped together while C is in a

different group. The reason is that the original ART2 algorithms

has forgetting property. In order to solve this problem, a large

is chosen so that only signals similar enough will be grouped

together. Based on (6) and (7), a mean signal can be obtained

in one group. After that, the other ART2 are used with a dif-

ferent set of parameters to classify grouped signals from the first

ART2. The parameter choices for our method are based on the

original ART2 paper [5], where their relationship is derived and

limits are set. Based on their relationship and limits, we use the

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on October 17, 2008 at 16:39 from IEEE Xplore.  Restrictions apply.



312 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 19, NO. 2, FEBRUARY 2008

Fig. 3. Architecture of four ART2 series. Dashed line arrowhead represents
that the fourth one exits if it is necessary.

method of trial and error and choose a set of best parameters for

our system.

Selection of parameters and in the system must obey cer-

tain constraints according to [5], where a proof was given for

constraint given by

(8)

We choose different values of and for different input types.

The parameters and in Fig. 2 may have a more significant

impact on the stability of the network. A few papers [5], [12] dis-

cussed the effect of parameters and . In general, small and

could make the network unstable and the values of parameters

and affect the range of the vigilance parameter . The smaller

the values of and are, the wider the usable range of the vig-

ilance parameter is. If values of and are too big, sensitivity

of the network will decrease significantly, and the number of

members in a group will increase. The vigilance parameter has

a critical effect on the results of classification. A bigger value of

the vigilance parameter tends to separate inputs into more cate-

gories. Only very similar subjects can be grouped together. On

the other hand, if its value is too small, most inputs will go into

one group; so we use three ART2 networks in hierarchy for sub-

jects with OSA or narcoleptic subjects, respectively, in order to

avoid missing some subjects due to the choice of vigilance pa-

rameter and to obtain more precise classifications. After that, if

there are still more than two groups, a fourth ART2 may be nec-

essary as in Fig. 3. We tried to use the smallest number of layers

possible for each data set to classify them successfully. After re-

sulting comparison of different number of layers of our system,

we found that three layers for OSA data had good performance

and so did four layers for narcoleptic data. In each ART2, we

use the same structure as in [5] shown in Fig. 2. However, we

do not follow the procedure of traditional ART2 and we separate

these subjects into two groups based on their similarity param-

eters for the fact that the larger the similarity parameter is, the

closer they are to each other.

Fig. 4. Comparison of theta energy ratio between (a) a subject with OSA and
(b) healthy control.

IV. SIMULATION RESULTS

A. Classification Between Subjects With OSA and Controls

A total of 11 subjects are used to test our NN algorithm, in-

cluding six healthy controls and five subjects with OSA. Ten

of the 11 subjects are correctly classified so the differentiation

rate is 91%. Fig. 4 shows the energy ratio distribution of the

theta wave of one subject with OSA and one healthy subject

after aligning data according to pupil stages.

It is not possible to distinguish them from the figures, so we

use linear regression method to process them further. Fig. 5

shows the results of regression with different point numbers for

a healthy control and an OSA subject. Fig. 6 shows the pupil

stages of the same subject.

The patterns have discrepancy between different subjects.

The energy ratio of theta wave is from the original data with 2-s

sliding windows, in which artifacts such as eye blinking have
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Fig. 5. Regression results of an OSA subject and a healthy control with 20,
30, and 40 regression points. (a) OSA subject and (b) healthy control. Dash–dot
lines represent results with 20 regression points, solid lines are for 30 regression
points, and dashed lines show results for 40 regression points.

been removed. However, the regression procedure can make

the change of theta energy ratio more obvious.

One ART2 NN with another ART2 cannot identify all sub-

jects and more subjects go to the wrong group since there are

subjects grouped into more categories or missed as a noise

under a fixed vigilance parameter . If parameter is set slightly

higher, more subjects will not be classified. On the other hand,

if the parameter is set slightly lower, most subjects go into

the same group. That is, the accuracy of classification will be

reduced. Tables I and II show parameters we used in traditional

ART2 NN and three ART2 series. In addition, we find that

regression by different data points has an effect on the results.

The bigger the number of points used in the regression is, the

higher the vigilance parameter has to be set in order to get

better classification results. More points make the figure more

flat and stable. For purpose of comparison of one ART2 and

Fig. 6. Comparison of pupil stages between a subject with (a) OSA and (b)
healthy control.

TABLE I
PARAMETERS OF ONE TRADITIONAL ART2

three ART2 series, we draw the figure of performance in Fig. 7.

The vertical axis is the percentage of successful classification

while the horizontal axis is the number of points used in the

regression.

From Fig. 7, we find that the three ART2 series could get

much better result than only one ART2 under large vigilance pa-

rameter . The reason is from the architecture of ART2 which

reflects the similarity of signals. A single vigilance parameter
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TABLE II
PARAMETERS OF ART2 SERIES

Fig. 7. Performance of one traditional ART2 NN and our system. Solid line
represents performance of our system; dashed line represents performance of
one traditional ART2.

may not be proper for two different inputs. When the number of

inputs is large, one fixed vigilance parameter is not appropriate.

Three ART2 series allow us to choose different parameters in

different stages. The best performance is from inputs with re-

gression of 30 points. In this case, the first ART2 obtains eight

categories, the second ART2 gets three categories, and the third

ART2 has two categories. The system could identify correctly

ten subjects among 11 subjects. It missed one subject with OSA.

After we observed its data, we note that it has a different change

of pupil diameter from other subjects. Normally, the pupil diam-

eter of subjects becomes smaller with time during data collec-

tion, but this subject has a reverse change. Its pupil diameter be-

comes the largest in the last 2 min. The reason may be from the

angle of camera recording or this subject focuses on the wrong

place during the first period of recording. This may be the reason

why the subject is misclassified.

Fig. 8. Comparison of theta energy ratio between (a) narcoleptic subject and
(b) healthy control.

The following example is from our simulation for regression

of 30 points. Three ART2 NNs are used and 11 inputs are from

11 subjects. After the first ART2 NNs, 11 inputs go into eight

categories since some very similar inputs are grouped together.

We average inputs in the same group to get eight inputs for the

second ART2. Three categories are obtained after the second

ART2, including two big groups and one small group. The same

average strategy is applied to these three groups to get three in-

puts for the third ART2. Finally, two groups are reached after the

third ART2. We check the status of each subject in two groups

to get the percentage of correct classification.

B. Classification Between Narcoleptic Subjects and Controls

In order to test our algorithm, we use ten subjects, including

six healthy controls and four subjects with narcolepsy. Fig. 8

shows the energy ratio distribution of theta wave of a narcoleptic

subject and a healthy subject after aligning data according to

pupil stages.
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Fig. 9. Regression results of (a) narcoleptic subject and (b) healthy control with
10, 20, and 30 regression points. Dash–dot lines represent results with ten re-
gression points, solid lines are for 20 regression points, and dashed lines show
results for 30 regression points.

Here, the same strategy of the regression method is used to

deal with data as in Section IV-A. Fig. 9 shows the results of re-

gressions of different point numbers used for a narcoleptic sub-

ject and a healthy control. Fig. 10 shows the pupil stages of a nar-

coleptic subject and a control. The theta wave is obtained from

the original data with 2-s sliding windows by wavelet transform,

in which artifacts such as eye blinking are removed before. The

energy ratio is further calculated. The regression procedure is

used to preprocess data of energy ratio.

The algorithm is similar to the one we used to identify sub-

jects with OSA. The difference is that we use four ART2 series

instead of three. We follow the same principle to choose param-

eters as we did previously to separate subjects with OSA from

controls. For purpose of comparison, we first use the traditional

ART2 to classify them. Tables III and IV show parameters we

used in the traditional ART2 NN and series of four ART2 NNs.

Fig. 10. Comparison of pupil stages between (a) narcoleptic subject and (b)
healthy control.

TABLE III
PARAMETERS OF ONE TRADITIONAL ART2

We compare the performance of two methods in Fig. 11. The

vertical axis is the percentage of successful classification while

the horizontal axis is the number of regression points used.

From Fig. 11, it is obvious that performance of four ART2

series is better than that of only one ART2 under the same inputs.

The reason is that flexibility of ART2 series makes it adaptable

to this kind of analog input. The best performance is from inputs

of 20 point regression. The system can identify nine subjects out

of ten subjects and the correct classification rate is 90%. The

missed subject is a healthy one. The reason is that its patterns

are very similar to that of a narcoleptic subject.
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TABLE IV
PARAMETERS OF ART2 SERIES

V. CONCLUDING REMARKS

We have shown that ART2 NN series can successfully clas-

sify subjects with/without OSA and subjects with/without nar-

colepsy based on the idea that patients with sleep disorder have

different level of wakefulness from healthy people. In order to

be consistent with the method by Yoss et al. [46], Keegan and

Merritt standardized the conditions for measuring pupil oscilla-

tion and miosis by the pupillometric alertness level test, during

which the person that is instructed to relax but try to stay awake

without doing anything special is seated quietly in a dark room

with eyes open and fixated on a small red spot of light. Simulta-

neously, the pupil diameters are measured continuously for up

to 15 min. In the data used in this paper, EEG, EMG, and eye

blinks were also measured at the same time. Some studies of

sleepiness in subjects with OSA have found that participants

were unaware of the extent of their sleepiness under the same

circumstance [11], [15] while studies on attention find that pa-

tients with narcolepsy have slower reaction times than controls,

even in a relatively simple task, such as four-choice reaction

time tasks [16], [41]. It is also frequently reported that perfor-

Fig. 11. Performance of one traditional ART2 NN and our system. Solid line
represents performance of our system; dashed line represents performance of
one traditional ART2.

mance in patients with narcolepsy is more variable than perfor-

mance in controls [39], [41]. Thus, patterns of theta energy ratio

in EEG can reflect the difference between sleep disorder patients

and healthy people since there is good evidence that rising theta

EEG activity is a sign of increasing sleepiness [21].

Although this method is for the classification of sleep disor-

ders of OSA or narcolepsy, there is reason to believe that other

sleep disorders like mixed apnea can be characterized by our

system based on ART2 as well. The evidence is that the level

of wakefulness for people with sleep disorders is less than that

for healthy people during daytime since wakefulness represents

the mental activity. EEG signals can indicate the mental activity.

EEG signals in association with pupil size data provide better in-

formation for identifying sleepiness associated with sleep disor-

ders. Eye closures and other artifacts in recorded pupil diameter

data normally exist and have a severe effect on further analysis,

so it is necessary to eliminate them completely from the original

data.

O’Neill et al. [34] classified narcoleptic subjects and con-

trols based on unmodeled random noise in the pupil light

response. They estimated pupil noise by statistical procedures

which yielded unbiased noise measures in the form of 6-D

Gaussian vectors. Each subject is associated with a Gaussian

vector which is optimally projected onto a scalar axis so as to

maximize the mean square distance between the narcoleptic

and control samples. Then, a Kullback-Leibler discrimination

function was estimated and evaluated for each projection as a

means of discriminating narcoleptics from controls. Since pupil

noise [26] may be affected by measurement equipment and the

environment, the stability of results needs to be investigated

further, although good results [34] have been reported for small

samples. As we know, the method of [34] strongly depends on

measurement and may not be robust. ART2 NNs are robust

methods to do pattern recognition. To the best of our knowl-

edge, no similar method has been used to detect sleep disorders

including OSA and narcolepsy based on EEG and pupil size.
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A series of ART2 NNs are necessary to get a precise clas-

sification result in order to eliminate effects of input ordering

and to group more similar subjects together. Our experiments

show that a hierarchical system of ART2 NNs could improve

the accuracy of classification over that of a single ART2 net-

work, achieving 91% between subjects with OSA and controls

and achieving 90% between narcoleptic subjects and controls.

The reason is that our system has more flexibility to adapt to

input patterns.
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