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We have developed a new method for the identification of signal peptides and their cleavage sites based on
neural networks trained on separate sets of prokaryotic and eukaryotic sequences. The method performs
significantly better than previous prediction schemes, and can easily be applied to genome-wide data sets.
Discrimination between cleaved signal peptides and uncleaved N-terminal signal-anchor sequences is also
possible, though with lower precision. Predictions can be made on a publicly available WWW server:
http://www.cbs.dtu.dk/services/SignalP/.

1. Introduction

Signal peptides control the entry of virtually all

proteins to the secretory pathway, both in eu-

karyotes and prokaryotes.11,23,36 They comprise the

N–terminal part of the amino acid chain, and are

cleaved off while the protein is translocated through

the membrane.

Strong interest in automated identification of sig-

nal peptides and prediction of their cleavage sites

has been evoked not only by the huge amount of un-

processed data available, but also by the industrial

need to find more effective vehicles for production of

proteins in recombinant systems. In this paper we

address the organism-specific aspects of the problem

and present neural-network based prediction meth-

ods to identify signal peptides and their cleavage sites

in protein sequences from Gram-positive and Gram-

negative bacteria, humans and other eukaryotes.

The mechanism for targeting a protein to the se-

cretory pathway is believed to be similar in all organ-

isms and for many different kinds of proteins.14 Sig-

nal peptides from widely different organisms are to

some degree interchangeable.6 Therefore, it is quite

surprising that signal peptides from different pro-

teins do not share a strict consensus sequence — in

fact, the sequence similarity between them is rather

low. However, they do share a common structure.

The most characteristic common feature of signal

peptides is a stretch of seven to fifteen hydrophobic

amino acids called the hydrophobic core or h-region.

The region between the N-terminal of the preprotein

and the h-region is termed the n-region. It is typi-

cally one to five amino acids in length, and normally

carries positive charge. Between the h-region and the

cleavage site is the c-region, which consists of three

to seven polar, but mostly uncharged, amino acids.

∗Present address: Novo Nordisk A/S, Scientific Computing, Building 9M1, Novo Alle, DK-2880 Bagsværd, Denmark.
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Close to the cleavage site a more specific pattern of

amino acids is found. The (−3, −1)-rule states that

the residues at positions −3 and −1 (relative to the

cleavage site) must be small and neutral (at −1 al-

most always Ala, Gly, Ser, Cys or Thr) for cleavage

to occur correctly.30,31 In contrast, position −2 is

often occupied by an aromatic, charged or large po-

lar residue. In bacterial signal peptides, the positive

charge in the n-region is often balanced by a negative

net charge in the c-region or in the first few residues

of the mature protein.32

The most widely used method for predicting the

location of the cleavage site has until recently been

a weight matrix published in 1986.33 This method

is also useful for discriminating between signal pep-

tides and non-signal peptides by using the maximum

cleavage site score. The original matrices are com-

monly used today, even though the amount of signal

peptide data available has increased since 1986 by a

factor of 5–10.

Artificial neural networks, most often of the feed-

forward back-propagation type, have been used for

many biological sequence analysis problems (for re-

views see Refs. 12, 21). They have also been applied

to the twin problems of predicting signal peptides

and their cleavage sites, but until now without signif-

icant improvements in performance compared with

the weight matrix method. Ladunga et al. 16 used

an algorithm that adjusts the network architecture to

the data for discriminating between signal peptides

and non-signal peptides, but their network failed to

outperform the discrimination ability of the weight

matrix method, even though a larger database was

used. Schneider and Wrede27 used neural networks

trained by a genetic algorithm for predicting cleav-

age sites, but the data set was small and the perfor-

mance did not even match that of the weight matrix

method. An unsupervised neural network, the self-

organizing feature map, was unexpectedly found to

show a tendency for extracting sequences coding for

the signal peptide region from a data set of human

insulin receptor genes — A theoretically interesting

but not easily applicable result.3

Here, we present a combined feed-forward neural

network approach to the recognition of signal pep-

tides and their cleavage sites, using one network to

recognize the cleavage site and another network to

distinguish between signal peptides and non-signal

peptides.19 A similar combination of two pairs of net-

works has been used with success to predict intron

splice sites in pre-mRNA from humans and the di-

cotelydoneous plant Arabidopsis thaliana.8,15

2. Materials and Methods

2.1. Extraction of signal peptide sequences

The signal peptide data were taken from SWISS-

PROT version 29.5 From a total of 38 303 entries,

5995 entries contained the keyword SIGNAL in the

feature table. Entries suggesting absence of experi-

mental evidence for the cleavage site were discarded,

i.e. where the signal peptide was incomplete, the

cleavage site was unknown, question marks or com-

ments such as “POTENTIAL”, “PROBABLE”, or “BY

SIMILARITY” were present, or an alternative cleavage

site was suggested. This selection procedure reduces

the number of cleavage sites which are not experi-

mentally determined, but it does not eliminate them,

since many SWISS-PROT entries simply lack infor-

mation about the quality of the evidence, as we have

previously found.20

Furthermore, all virus and phage genes were dis-

carded. From the eukaryotic data set, proteins en-

coded by organellar (non-nuclear) genes were dis-

carded (by excluding entries containing an “OG”

line). From the prokaryotic data set, signal pep-

tides cleaved by signal peptidase II (Lsp, a specific

lipoprotein signal peptidase) were discarded, since

the cleavage sites of these proteins differ consider-

ably from those cleaved by the standard prokaryotic

signal peptidase (Lep)35; this was done by excluding

entries with a cross-reference to the PROSITE entry

named “PROKAR_LIPOPROTEIN”.4

From each entry, the sequence of the signal pep-

tide and the first 30 amino acids of the mature pro-

tein were included in the data set.a It would not

be reasonable to give the entire protein sequence as

background to the cleavage site, since the cleavage

takes place while the protein is being translocated

and the cleavage enzyme therefore hardly has the en-

tire protein as a potential substrate. The value 30 is

not arbitrary: several experimental results indicate

that in E. coli the first 30 residues of the mature pro-

tein seem to have a function for protein export.2,24

aOne entry, AVR9 CLAFU, which had less than 30 amino acids after the cleavage site was deleted.
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2.2. Extraction of cytoplasmic and nuclear

protein sequences

As background to the signal peptides, we extracted

data sets comprising the N-terminal parts of cyto-

plasmic and (for the eukaryotes) nuclear proteins.

This was done by searching for comment lines in

SWISS-PROT specifying the subcellular location

as “CYTOPLASMIC” or “NUCLEAR” without comments

like “POTENTIAL” or “PROBABLE”. Entries compris-

ing protein fragments were discarded (by searching

for the word “FRAGMENT” in the description line or

the keywords “NON_TER” or “NON_CONS” in the fea-

ture table), as were proteins shorter than 70 residues

or lacking the initial Met. Virus and phage proteins

were not included.

The first 70 amino acids of each sequence were

included in the data sets. In some cases (383 eu-

karyotic, 48 Gram-negative, and 14 Gram-positive)

where the entry contained a feature table line with

the key “INIT_MET”, indicating that the initiator

methionine had been cleaved off, we prepended the

missing “M” to the sequence.

A few examples of disagreement between signal

peptide and subcellular location information were

found in the data: The entry MURF_ECOLI (E. coli

UDP-MurNAc-pentapeptide synthetase) had both a

signal peptide and a comment stating that it was

located in the cytoplasm. The entry NO27_SOYBN

(soybean nodulin-27) which was cytoplasmic accord-

ing to the comment was very similar to two other

nodulins (NO20_SOYBN and NO22_SOYBN) which both

had signal peptides.b These four entries were deleted

from the data set in the signal/non-signal peptide

runs. According to our finished prediction method,

MURF_ECOLI certainly does not look like a signal pep-

tide, while the three nodulins look like typical signal

peptides.

2.3. Extraction of signal anchor sequences

Certain membrane proteins, known as type II mem-

brane proteins, are attached to the membrane by an

N-terminal sequence that shares many characteris-

tics with a signal peptide but is not cleaved.34 Con-

sequently, they consist of an N-terminal cytoplas-

mic domain, a single transmembrane domain, and

a larger C-terminal extracellular or lumenal domain.

In order to test whether the prediction method would

erroneously classify these uncleaved signal peptides,

also known as signal anchors, as signal peptides, a

data set of signal anchors was extracted in the fol-

lowing way:

In SWISS-PROT version 29, 157 entries con-

tained the feature table keyword “TRANSMEM” with

the qualifier “SIGNAL-ANCHOR (TYPE-II MEMBRANE

PROTEIN)”. From these, we selected 137 eukary-

otic signal anchors with specified endpoints and

without comments like “POTENTIAL” or “PROBABLE”.

Prokaryotic signal anchors were ignored, since only

five of these were found (four of them potential).

18 entries were discarded because they contained

more than one “TRANSMEM” line and therefore should

be regarded as type IV (i.e. multi-spanning) mem-

brane proteins, rather than type II. With one excep-

tion only, these proteins are members of the TM4

superfamily or bear similarity to it. Furthermore,

we discarded 22 entries where the suggested signal

anchor region (from the N-terminal of the protein

to the C-terminal end of the specified transmem-

brane region) was 70 residues or longer, because

these would hardly be mistaken for cleavable signal

peptides.

In many cases, the cytoplasmic domain preced-

ing the signal anchor were marked “POTENTIAL” or

“PROBABLE”, even if the signal anchor itself was not.

We did not discard these entries, however; since the

signal anchor data were not going to be used as train-

ing data but only as test data, we set the demands

for the quality of experimental evidence lower than

for the other data sets.

From the 97 selected entries (28 of them human),

the sequence of the N-terminal part of the protein

up to 30 amino acids after the C-terminal end of the

specified transmembrane region (signal anchor) was

included in the data set, in analogy with the signal

peptide data set. In nine cases (three of them hu-

man) where the entry contained a feature table line

with the key “INIT_MET”, indicating that the initia-

tor methionine had been cleaved off, we prepended

the missing “M” to the sequence.

bA comment in NO27 SOYBN said that “Despite the similarity of their structures, the nodulins are located in different subcellular
compartments.”
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2.4. Division of data sets by

systematic group

By using the information in the SWISS-PROT

“OS” line, the resulting data sets were divided

into prokaryotic and eukaryotic entries, and the

prokaryotic data sets were further divided into

Gram-positive eubacteria (Firmicutes) and Gram-

negative eubacteria (Gracilicutes), excluding My-

coplasma and Archaebacteria. Additionally, two

single-species data sets were selected, a human sub-

set of the eukaryotic data, and an E. coli subset of

the Gram-negative data.

The numbers of signal peptides and cytoplasmic

and nuclear proteins in the five organism groups are

shown in Table 1.

2.5. Redundancy reduction

Redundancy in the data sets was avoided by exclud-

ing pairs of sequences which had more than a certain

number of identities (exact matches) in an alignment

made with a protein identity matrix of high relative

entropy.1 The cutoff value which gave the best sep-

aration between functionally homologous and non-

homologous signal peptide sequences was established

for eukaryotes and prokaryotes separately: 17 iden-

tities for eukaryotes and 21 for prokaryotes. In this

context, a sequence pair is defined to be functionally

homologous if both cleavage sites are aligned at the

same position.20

While investigating the pairwise similarities be-

tween signal peptide sequences, we found a number

of sequence pairs with similarity above the thresh-

old but without aligned cleavage sites.20 By man-

ually checking the references to these examples in

the human signal peptide data set, a number of

database errors were found. Five entries were found

to lack experimental evidence for their cleavage

sites: “ELNE_HUMAN”, “FCG3_HUMAN”, “FCGA_HUMAN”,

“FCGB_HUMAN”, and “FCGC_HUMAN”. These have been

discarded. Three entries were found to have

the cleavage site indicated at a wrong position:

“HA22_HUMAN”, “SOMV_HUMAN”, and “SOMW_HUMAN”.

The cleavage sites of these have been changed

accordingly.

The other data sets have not been through this

type of error checking. Therefore, the human signal

peptide data set is probably more error-free than the

other signal peptide data sets.

We applied the same cutoff to non-signal-peptide

sequences, even though the cutoff has been deter-

mined for signal peptide sequences specifically, since

these merely serve as background to the signal pep-

tide sequences. Redundancy reduction was not ap-

plied to the signal anchor data, since these were not

going to be used as training data.

After computing all pairwise alignments within

each of the data sets, redundant sequences were re-

moved using algorithm 2 of Hobohm et al.,13 which

guarantees that no pairs of homologous sequences

remain in the data set. This procedure removed

13–56% of the sequences. The numbers of non-

homologous signal peptide sequences remaining in

the data sets are also shown in Table 1.

Table 1. The number of sequences in the data sets before (“tot.”)
and after (“red.”) redundancy reduction. The organism groups are:
Eukaryotes (“euk”), human, Gram-negative bacteria (“gram−”),
E. coli (“ecoli”), and Gram-positive bacteria (“gram+”). The human
data are subsets of the eukaryotic data, and the E. coli data are
subsets of the Gram-negative data. No prokaryotic signal anchor
sequences were used. The signal anchor sequences have not been
redundancy-reduced.

Signal Cytoplasmic Nuclear Signal

Peptides Proteins Proteins Anchors

tot. red. tot. red. tot. red. tot.

euk 2275 1011 854 269 1007 551 97

human 614 416 138 97 188 154 28

gram− 383 266 293 186 − − −
ecoli 119 105 128 119 − − −
gram+ 187 141 123 64 − − −
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It is not surprising that the E. coli set was the

least redundant, since protein families are known to

be rare in E. coli.25 The largest degree of redundancy

was found in the eukaryotic set which included pro-

tein families from single organisms as well as homolo-

gous proteins sequenced in many different organisms.

Haemophilus influenzae sequences

The Haemophilus influenzae Rd genome is the first

genome of a free living organism to be completed.10

We have downloaded the sequences of all the pre-

dicted coding regions in the H. influenzae genome

from the WWW server of The Institute for Genomic

Research at http://www.tigr.org/.

2.6. Neural network algorithms

The signal peptide discrimination problem was posed

to the network in two ways: Recognition of the cleav-

age sites against the background of all other sequence

positions, and classification of amino acids as belong-

ing to the signal peptide or not. In the latter case,

negative examples included both the first 70 posi-

tions of non-signal peptide proteins, and the first 30

positions after the cleavage site of proteins with sig-

nal peptides. Both symmetric and asymmetric ver-

sions of the windows were used, i.e. the number of

positions included to the left and right of the site to

be classified were varied independently.

The amino acid sequence input was sparsely en-

coded when presented to the neural algorithms, using

21 input values for each position in the input win-

dow, one for each amino acid and one for “empty”,

such that windows including positions to the left of

the N-terminal could be encoded also. For each po-

sition in the window, the amino acid was coded by

setting one of the 21 input units to 1.0 and all others

to 0.0.8,22

The sequence data were presented to the network

using moving windows of a size varying from 5 to 39

positions. Networks with 0 to 10 hidden units were

used. Thus, the largest network used had 39× 21 =

819 input values, and (819+1)×10+(10+1) = 8211

parameters (weights and thresholds).

During training, the sequences were padded with

a number of “empty” characters corresponding to the

left-hand window size before the initial methionine,

in order to represent the fact that some of the win-

dows are located close to the N-terminal of the pro-

tein. This may constitute important information for

the signal peptide recognition system. However, we

found that this padding did not change test perfor-

mances significantly. The test performances reported

in the results section are calculated without padding.

Instead, at positions in the window which are outside

the limits of the sequence, all input values are set to

zero.

The neural networks were trained using back-

propagation. When training the networks we used

the error function suggested by McClelland

E = −
∑
α,i

log(1− (Oαi − Tαi )2) , (1)

instead of the conventional error function26

E =
∑
α,i

(Oαi − Tαi )2 (2)

where Oαi and Tαi are the output and target values

respectively for training example α. This logarithmic

error function reduced the convergence time consid-

erably, and also had the property of making a given

network learn more complex tasks (compared to the

standard error measure) without increasing the net-

work size. The learning rate was kept constant at

0.025. The weights were updated in on-line mode,

with the training examples shuffled in random or-

der for each training cycle. Training targets values

were 1.0 for positive examples (cleavage sites or sig-

nal peptide positions) and 0.0 for negative examples.

When evaluating the network output, a cutoff of 0.5

for positive assignment was always used.

Based on the numbers of correctly and incorrectly

predicted positive and negative examples, we calcu-

late the correlation coefficient,17 defined as:

C =
(P tN t)− (NfP f )√

(N t +Nf)(N t + P f )(P t +Nf )(P t + P f )
,

(3)

where P t and P f are the numbers of true and false

positives, while N t and Nf are the numbers of true

and false negatives. The correlation coefficient of

both training and test sets were monitored during

training, and the performance of the training cycle

with the maximal test set correlation was recorded

for each training run. The networks chosen for fur-

ther analysis and inclusion in the mail server have

been trained until this cycle only.
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Test performances have been calculated by cross-

validation: Each data set was divided into five ap-

proximately equal-sized parts, and then every net-

work run was carried out with one part as test data

and the other four parts as training data. The perfor-

mance measures were then calculated as an average

over the five different data set divisions.

2.7. Quantification of sequence

information content

When a large set of sequences is aligned the Shan-

non entropy of information measure29 can be used

to quantify the randomness in each column. The in-

formation content, defined as the difference between

maximal and actual entropy, is computed by the

formula

Ij = Hmax −Hj = log2 20 +
∑
α

nj(α)

Nj
log2

nj(α)

Nj
,

(4)

where nj(α) is the number of occurrences of the

amino acid α and Nj is the total number of letters

(occupied positions) at position j. The unit of infor-

mation is bits.

The information content is displayed in the form

of sequence logos,28 where the amino acid symbols

are used to represent the value of I at a given posi-

tion. The sum of the height of the letters indicates

the value of I, and the height of each letter represents

its frequency at that position.

3. Results

3.1. Characterisation of the signal peptides

The length distribution of the signal peptides is

shown in Fig. 1. Signal peptides from Gram-positive

bacteria are considerably longer than those of other

organisms. This has previously been observed in a

similar but less comprehensive study.38 Signal pep-

tides shorter than 15 are extremely rare and may

represent errors in the database. This may also be

the case for the other extreme of the distribution, i.e.

signal peptides longer than, say, 35 for eukaryotes,

40 for Gram-negative bacteria, and 45 for Gram-

positive bacteria.

The sequence patterns at the cleavage site are

shown as sequence logos28 in Fig. 2. The sequence

logo depicts an alignment of signal peptide sequences

Fig. 1. Distribution of lengths of the eukaryotic and
prokaryotic signal peptides. The average length is 22.6
amino acids for eukaryotes, 25.1 for Gram-negative bac-
teria, and 32.0 for Gram-positive bacteria.

aligned by the cleavage sites. The cleavage site

pattern shows differences between eukaryotes and

prokaryotes. The (−3, −1) rule is clearly visible

for all three data sets; but while a number of dif-

ferent amino acids are accepted in the eukaryotes,

the prokaryotes accept almost exclusively Alanine in

these two positions.

In the first few positions of the mature pro-

tein (downstream of the cleavage site) the prokary-

otes show certain preferences for Ala, negatively

charged (D or E) amino acids, and hydroxy amino

acids (S or T), while no pattern can be seen for the

eukaryotes.

The h-region is clearly visible, in the prokaryotes

dominated by Leu (L) and Ala (A) in approximately

equal proportions, and in the eukaryotes dominated

by Leu with some occurrence of Val (V), Ala, Phe

(F) and Ile (I). Note that the h-regions of Gram-

positive bacteria are much more extended than those

of Gram-negative bacteria or eukaryotes.

In the leftmost part of the alignment, the posi-

tively charged residue Lys (K) (and to a smaller ex-

tent Arg (R)) is seen in the prokaryotes; while the

eukaryotes show a somewhat weaker occurrence of

Arg (barely visible in the figure) and almost no Lys.

This corresponds well with the hypothesis that posi-

tive residues are required in the n-region for prokary-

otes where the N-terminal Met is formylated, but not

necessarily for eukaryotes where the N-terminal Met

in itself carries a positive charge.31 Met (M), indicat-

ing the N-terminals of the sequences, can be seen in

both logos.



Prediction of Signal Peptides 587

Fig. 2. Sequence logos of signal peptides, aligned by their cleavage sites. The total height of the stack of letters at each
position shows the amount of information, while the relative height of each letter shows the relative abundance of the
corresponding amino acid. Positively and negatively charged amino acids are shown in blue and red respectively, while
uncharged amino acids are coloured from light green to dark green according to their hydrophobicity according to the
GES scale.9

As far as length distribution and sequence logos

are concerned, human signal peptides show no signif-

icant differences compared to those of all eukaryotes,

nor did signal peptides of E. coli compared to those

of Gram-negative bacteria in general.

3.2. Network architecture and

single-position performance

The trained networks provide two different scores

between zero and one for each position in an

amino acid sequence. The output from the signal/

non-signal peptide networks, the S-score, can be in-

terpreted as an estimate of the probability of the

position belonging to the signal peptide, while the

output from the cleavage site/non-cleavage site net-

works, the C-score, can be interpreted as an estimate

of the probability of the position being the first in the

mature protein (position +1 relative to the cleavage

site).

In Fig. 3, two examples of the values of C- and S-

scores for signal peptides are shown. A typical signal

peptide with a typical cleavage site will yield curves
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(a)

(b)

Fig. 3. Examples of predictions for sequences with verified cleavable signal peptides. The values of the C-score (output
from cleavage site networks), S-score (output from signal peptide networks), and Y-score (combined cleavage site score,
Yi =

√
Ci∆dSi) are shown for each position in the sequences. The C- and S-scores are averages over five networks trained

on different parts of the data. Note: The C-score is trained to be high for the position immediately after the cleavage
site, i.e. the first position in the mature protein. The true cleavage sites are marked with arrows. (a) is an example of a
sequence with all positions being correctly predicted according to both C-score and S-score. (b) has two positions with
C-score higher than 0.5 — the true cleavage site would be incorrectly predicted when relying on the maximal value of the
C-score alone, but the combined Y-score is able to predict it correctly.

as those shown in Fig. 3(a), where the C-score has

one sharp peak that corresponds to an abrupt change

in S-score. In other words, the example has 100%

correctly predicted positions, both according to C-

score and S-score. Less typical examples may look

like Fig. 3(b), where the C-score has several peaks.

For each of the five data sets, one signal/non-

signal peptide network architecture and one cleavage

site/non-cleavage site network architecture was cho-

sen on the basis of test set correlation coefficients.

We did not pick the architecture with the absolute

best performance, but instead the smallest network

that could not be significantly improved by enlarg-

ing the input window or adding more hidden units.

The correlation coefficients were cross-validated (av-

eraged over the five different data set partitions) be-

fore this analysis. The optimal network architecture

and correlation coefficients for all the data sets are

shown in Table 2.

As mentioned in the Methods section, the cutoff

for assigning a positive was 0.5 for both C-score and

S-score. This was also found to be the optimal cutoff

value according to correlation coefficient, except for

the Gram-positive data set where the C-score corre-

lation coefficient could be increased to 0.56 by low-

ering the cutoff to 0.4.

As is apparent in Table 2, the C-score problem is

best solved by networks with asymmetric windows,

i.e. windows including more positions upstream than

downstream of the cleavage site. This corresponds

well with the location of the cleavage site pattern in-

formation as shown in Fig. 2. It is also in good corre-

spondence with the logos that the left-hand window

size is much larger for the Gram-positive data set

than for the others. However, it is surprising that the

performance for the Gram-negative data set could

not be enhanced by enlarging the left-hand window

beyond position −11.
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Table 2. Optimal neural network architecture and prediction accuracy for classifying single
positions. “C-score” refers to prediction of cleavage sites versus non-cleavage sites, while “S-score”
refers to prediction of signal peptide positions versus non-signal peptide positions. CC and CS
are the correlation coefficients for C-score and S-score, respectively. Correlation coefficients are
cross-validated averages over five test sets. The cutoff for positive assignment (cleavage site for
the C-score and signal peptide position for the S-score) is 0.5 in all cases.

The columns labeled “window” and “h-units” show the configuration of the input window
and the number of hidden units in the optimal network. The C-score windows include a number
of positions to the left and right of the potential cleavage site, while the S-score windows include
the position to be classified plus a number of positions to the left and the right.

Results are shown for each data set (see Table 1 for abbreviations). “human by euk” refers
to results obtained when using networks trained on all eukaryotic data to test human data; while
“ecoli by gram−” refers to results obtained when using networks trained on all Gram-negative
data to test E. coli data.

C-score S-score

window h-units CC window h-units CC

human 15+ 4 2 0.61 13 +1+ 13 4 0.89

euk 17+ 2 2 0.60 13 +1+ 13 4 0.90

human by euk −′′− −′′− 0.58 −′′− −′′− 0.90

ecoli 15+ 2 2 0.76 21+ 1 + 17 0 0.83

gram− 11+ 2 2 0.73 9+1+9 3 0.81

ecoli by gram− −′′− −′′− 0.80 −′′− −′′− 0.83

gram+ 21+ 2 0 0.54 9+1+9 3 0.82

The S-score problem, on the other hand, is appar-

ently best solved by symmetric windows, the only

exception being the network trained on the small

E. coli set where the slightly skewed 21 + 1 + 17

did perform better than a symmetric window. How-

ever, the E. coli set was equally well predicted by the

network trained on the Gram-negative data, using a

much smaller window.

The difference between the optimal architectures

for different data sets may appear large but they do

not necessarily reflect a significant variation between

the characteristics of the data sets. It seems remark-

able that the E. coli set shows an optimal SP window

of 21 + 1 + 17 when the optimal SP window for the

Gram-negative set is only 9 + 1 + 9; but this should

be seen in comparison with the hidden layer size.

The difference between the 21 + 1 + 17 network

without hidden units and the 9 + 1 + 9 network

with 3 hidden units is not very large, neither with

respect to performance nor to total number of free

parameters in the neural network.

3.3. Predicting cleavage site location

using the C-score

The networks described in the previous section are

selected for the best correlation coefficient when a

cutoff of 0.5 for the assignment of single positions is

used. However, the performance of the C-score net-

works may also be measured at the sequence level

by assigning the cleavage site of each signal peptide

to the position in the sequence with the maximal

C-score and calculating the percentage of sequences

with the cleavage site correctly predicted by this as-

signment. This is how the performance of the weight

matrix method33 is calculated.

Evaluating the network output at the sequence

level can improve the performance; even when the

C-score has no peaks or several peaks above the cut-

off value, the true cleavage site is often found at the

position where the C-score is highest.

The training process has been investigated in

closer detail for the C-score networks in order to

check the correspondence between single-position

and sequence level performance. This has been done

for the architectures found in the previous section

only, since the sequence level evaluation requires

too much computation to carry out for every pos-

sible architecture. In an earlier study using smaller

data sets18 we found that the optimal architectures

did not differ significantly from single-position to se-

quence level performance.

When analyzing the training process, however,

we found that the sequence level performance in
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Table 3. Neural network prediction accuracy for locating cleavage sites
in signal peptide sequences using cleavage site (C-score) networks. The
columns labeled “% correct” show the percentage of sequences with
correctly predicted cleavage sites (cross-validated averages over five test
sets), where the cleavage site is predicted to be at the position where the
C-score is highest.

The network architectures are the same as in Table 2. In the left half
of the table, the training of the networks was stopped at the cycle where
single-position performance (CC ) was optimal, as is the case in Table 2.
In the right half of the table, the training was stopped at the cycle where
sequence-level performance (% correct) was optimal. The columns labeled
“cycle” show the average number of cycles the networks were trained.

C-score

Optimized by: single position (CC ) entire sequence (% correct)

cycle % correct cycle % correct

human 26.4 63.2 20.8 66.8

euk 17.6 67.5 13.8 69.6

human by euk −′′− 66.0 −′′− 67.4

ecoli 34.4 76.0 17.8 82.7

gram− 26.4 73.2 27.0 78.1

ecoli by gram− −′′− 81.3 −′′− 86.8

gram+ 21.8 60.7 8.4 66.4

almost every training run peaked at an earlier point

in the training than the single-position performance

did. In Table 3 the sequence level performance is

shown for two versions of the networks, stopped at

the point in the training where either the single-

position or the sequence level performance was op-

timal. For the final prediction method we have

chosen those versions optimized for sequence level

performance.

For every cycle in the training process, we cal-

culated the sequence level performance, the average

scores for both categories, and the single-position

correlation coefficient for a range of cutoffs at in-

tervals of 0.01. Since the data set is very skewed (i.e.

the number of cleavage site positions is much smaller

than the number of non-cleavage site positions), the

network initially reduces the error by forcing the out-

put to be close to zero for all examples, and then it

gradually raises the output value for the positive ex-

amples selectively. The optimal cutoff (i.e. the cutoff

that gives the best correlation coefficient) tends to

grow during the training process. When the network

training is stopped before the single-position correla-

tion coefficient (for a cutoff of 0.5) reaches maximum,

the scores for the positive examples are therefore of-

ten lower than 0.5, and a smaller cutoff value may

give a better separation between positive and nega-

tive examples.

The five networks trained on different data par-

titions are optimized individually for sequence level

performance, i.e. they have been stopped at different

points in the training. This has made it necessary

to modify the C-score values in order to make the

output from the five different networks comparable.

We have scaled the output of each individual net-

work so that the optimal cutoff for single-position

performance is 0.5, also for the networks optimized

for sequence level performance.

3.4. Predicting cleavage site location

using a combined score

If there are several C-score peaks of comparable

strength, the true cleavage site may often be found by

inspecting the S-score curve in order to see which of

the C-score peaks that coincides best with the tran-

sition from the signal peptide to the non-signal pep-

tide region. In order to formalize this and improve

the prediction, we have tried a number of linear and

non-linear combinations of the raw network scores

and evaluated the percentage of sequences with cor-

rectly placed cleavage sites in the five test sets. The

best of the mathematically simple measures was the

geometric average of the C-score and a smoothed

derivative of the S-score. We have termed this com-

bined measure the Y-score:
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Table 4. Neural network prediction accuracy for
locating cleavage sites in signal peptide sequences
using a combined score (Y-score) of cleavage site
and signal peptide networks.

The Y-score is the geometric average of the C-
score and a derivative of the S-score calculated over
a window of 2d positions: Yi =

√
Ci∆dSi. The op-

timal value for d is shown for each data set. As in
Table 3, “% correct” is the percentage of sequences
with correctly predicted cleavage sites. The net-
work architectures are the same as in Table 2. For
the “human by euk” and “ecoli by gram−” results,
the d values are those determined for the “euk”
and “gram−” networks respectively.

Y-score

d % correct

human 8 68.0

euk 17 70.2

human by euk −′′− 67.9

ecoli 7 83.7

gram− 19 79.3

ecoli by gram− −′′− 85.7

gram+ 8 67.9

Yi =
√
Ci∆dSi , (5)

where ∆dSi is the difference between the average

S-score of d positions before and d positions after

position i:

∆dSi =
1

d

 d∑
j=1

Si−j −
d−1∑
j=0

Si+j

 . (6)

For each data set, we chose the d value that resulted

in the best sequence level performance. The d values

and the resulting prediction accuracies are given in

Table 4. The difference between the results of d val-

ues was not large for d ≥ 7. Consequently, the differ-

ent optimal d values for different data sets probably

does not reflect a significant variation between the

data sets.

The Y-score gives a certain improvement in se-

quence level performance (% correct) relative to the

C-score, but the single-position performance (CC) is

not improved (results not shown). An example where

the C-score alone gives a wrong prediction while the

Y-score is correct is shown in Fig. 3(b).

3.5. Predicting sequence type

In addition to locating the cleavage site, the neu-

ral network scores can be used to predict whether a

test sequence has a signal peptide (i.e. is the start of

a secretory protein) or no signal peptide (i.e. is the

start of a cytoplasmic or, in eukaryotes, nuclear, mi-

tochondrial, or peroxisomal protein). In Fig. 4, two

examples of C-, S-, and Y-scores in non-secretory

proteins are shown, as a contrast to the scores for

signal peptide sequences shown in Fig. 3.

The simplest method of discrimination is to use

the maximal values of the scores in each sequence.

As the example in Fig. 4(b) shows, the C-score or

S-score used in isolation may lead to false positives.

The maximal values of the Y-score or the S-score

are both significantly better discriminators than the

C-score (results are shown in Table 6).

The best measure, however, is the average of the

S-score in the predicted signal peptide region, i.e.

from position 1 to the position immediately before

the position where the Y-score has maximal value. In

particular for the Gram-positive bacteria, this proved

to be significantly better than the maximal Y-score

or maximal S-score. In addition, the distributions

of the “mean S-score” measure for signal and non-

signal sequences are nicely symmetrical and very well

separated, with modes close to 0.1 and 0.9. The dis-

tributions for the eukaryotic data are shown as an

example in Fig. 5.

If the Y-score reaches its maximal value at a very

early position in the sequence of a non-signal pep-

tide, the mean S-score may be misleading because

it is averaged over a few positions only. In order

to check whether this is a significant source of false

positive predictions, we have investigated the distri-

bution of Y-score maximum positions among the se-

quences predicted to be signal peptides, but did not

find more unusually short predicted lengths among

the false positives than among the true positives.

3.6. Weight matrix results

In order to compare the strength of the neural

network approach to a more traditional computa-

tional method, we have compared our results with

the weight matrix method used by von Heijne in

1986.33 All performances in that study were sequence

level performances, given as percent correctly placed

cleavage sites. The reported training performance

— i.e. the performance of matrices constructed from

the whole sample and tested on the whole sample —

was 87% for 161 eukaryotic sequences and 100% for
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(a)

(b)

Fig. 4. Examples of predictions for sequences of non-secretory proteins (cf. Fig. 3). A typical example is shown in (a) (a
cytoplasmic protein), where all three scores are very low throughout the sequence. In (b) (a nuclear protein), the maximal
values of C-score and S-score are in fact above the cutoff values, but the C-score peak occurs far away from the S-score
decline, and the region of high S-score is too short. Maximal Y-score and and mean S-score are well below their cutoffs,
making a correct prediction possible also in this case.

Fig. 5. Distribution of the mean signal peptide score (S-score) for signal peptides and non-signal peptides (eukaryotic data
only). “Non-secretory proteins” refer to the N-terminal parts of cytoplasmic or nuclear proteins, while “Signal anchors”
are the N-terminal parts of type II membrane proteins. The mean S-score of a sequence is the average of the S-score
over all positions in the predicted signal peptide region (i.e. from the N-terminal to the position immediately before the
maximum of the Y-score). The bin size of the distribution is 0.02.
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36 prokaryotic sequences. Test performance — cal-

culated by cross-validation, as in the present work

— was 78% for eukaryotes (average of seven sub-

samples) and 89% for prokaryotes (average of four

subsamples).

We have followed the method of von Heijne33

with one minor exception: Instead of using standard

average amino acid frequencies measured for soluble

proteins in general, we calculate the average amino

acid frequencies from the training set used for con-

structing the matrix. In an earlier work, we found

this approach to give better results.18

While using the weight matrices, we regard zero

counts at the positions −1 and −3 relative to the

cleavage site as significant because of the (−3, −1)-

rule. At all other positions, counts of 0 are regarded

as effects of limited data set size, so they are treated

as counts of 1.

We have only compared the performance for

cleavage site location using the maximal value of the

neural network C-score or the corresponding weight

matrix score. We have not tried to assign a cut-

off value for cleavage site assignment and therefore

no single-position correlation coefficient is available.

The performances given in Table 5 are calculated at

the sequence level, as in Tables 3 and 4.

Previously, we have found that the weight ma-

trix is unable to solve the problem of distinguish-

ing signal peptide positions from non-signal peptide

positions.18 Therefore, no attempt was made here to

calculate scores equivalent to the S- or Y-scores using

weight matrices.

In a pilot study made with a smaller data set, we

found that the performance in calculating cleavage

site score was smaller for the weight matrix than for

the neural networks. Even neural networks without

hidden units were found to perform slightly better

than the weight matrices.18

With the full data sets, however, the weight ma-

trix method was not always weaker than the C-score

neural networks (compare Table 5 to Table 3). It

performed equally well as or better than these neural

networks for the Gram-negative, E. coli, and human

data sets. With the Gram-positive data set, the neu-

ral networks became better than the weight matrix

method after optimization for sequence level perfor-

mance, and only with the eukaryotic data set did

the neural networks outperform the weight matrix

method without special optimization.

Table 5. Weight matrix prediction accuracy for
locating cleavage sites in signal peptide sequences.
“% correct” is the percentage of sequences with
correctly predicted cleavage sites, where the cleav-
age site is predicted to be at the position where the
weight matrix score is highest.

Weight matrix

window % correct

human 15 + 8 66.7

euk 17 + 8 65.9

human by euk −′′− 63.7

ecoli 15 + 2 83.8

gram− 15 + 4 78.9

ecoli by gram− −′′− 83.8

gram+ 21 + 2 63.6

The combination of cleavage site and signal pep-

tide networks (the Y-score, compare Table 5 to

Table 4) improves the performance of the network

method to a higher level than the weight matrix

method for most of the data sets, though only to

the same level for the Gram-negative and E. coli

sets.

The optimal matrix windows were in three cases

(eukaryotic, human, and Gram-negative) larger than

those found to be optimal for neural networks.

This is not peculiar, since the networks in these

cases had two hidden units and therefore more

parameters.

The results are considerably worse than the 78%

and 89% found by von Heijne in 1986, even though

the optimal windows are larger. This may reflect a

larger variation in the examples of the signal pep-

tides found since then. It may, of course, also re-

flect a higher occurrence of errors in our automat-

ically selected data than in the manually selected

1986 set.

The optimal window size for the weight matrix is

equal to or larger than the optimal window size for

the neural networks (compare Table 5 to Table 2).

The difference in optimal window size is remarkable

for the Gram-negative data set, where the neural net-

works performed worse than the weight matrices. In

order to check whether the poor performance of the

neural networks in this case was due to an inappro-

priate choice of window size, we analysed the train-

ing process in detail on Gram-negative data also for

networks with the 15 + 4 window (using both 0 or

2 hidden units), but the sequence level performance

did not improve relative to the 11 + 2 window.
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Table 6. Neural network prediction accuracy for classification
of sequences as signal peptides or non-signal-peptides, measured
by the correlation coefficient (CSP ). Four different classification
measures are compared: The maximal values in the sequence of
the raw cleavage site score (“C-score”), signal peptide score (“S-
score”), or combined cleavage site score (“Y-score”); and the mean
value of the signal peptide score (“S-score”) averaged from position
1 to the best cleavage site (according to the Y-score).

The cutoff for positive assignment (i.e. predicting that the
sequence in question is a signal peptide) is in the range 0.37–0.57
for maximal C-score, 0.28–0.36 for maximal Y-score, 0.71–0.95 for
maximal S-score, and 0.44–0.55 for mean S-score. The network
architectures are the same as in Table 2. Correlation coefficients
are cross-validated averages over five test sets.

Maximal Maximal Maximal Mean

C-score Y-score S-score S-score

CSP CSP CSP CSP

human 0.71 0.95 0.95 0.96

euk 0.85 0.97 0.96 0.97

human by euk 0.85 0.98 0.97 0.97

ecoli 0.67 0.88 0.89 0.89

gram− 0.71 0.89 0.82 0.88

ecoli by gram− 0.75 0.94 0.83 0.92

gram+ 0.64 0.85 0.87 0.96

3.7. Signal peptides versus signal anchors

Signal anchors often have sites similar to signal pep-

tide cleavage sites after their hydrophobic (trans-

membrane) region. Therefore, a prediction method

can easily be expected to mistake signal anchors for

peptides.

In Fig. 5, the distribution of the mean S-score for

the 97 eukaryotic signal anchors is included. It shows

some overlap with the signal peptide distribution. If

the cutoffs from Table 6 are applied to the signal an-

chor data sets, 50% of the eukaryotic signal anchor

sequences are falsely predicted as signal peptides (the

corresponding figure for the human signal anchors is

75% when using human networks and 68% when us-

ing eukaryotic networks). With a cutoff optimized

for signal anchor versus signal peptide discrimina-

tion (0.62), we were able to lower this error rate to

45% for the eukaryotic data set. The mean S-score

still gives a better separation than the maximal C-

or Y-score, which indicates that the pseudo-cleavage

sites are in fact rather strong.

However, the pseudo-cleavage sites often occur

further from the N-terminal than genuine cleavage

sites do. If we do not accept signal peptides longer

than 35 (this will exclude only 2.2% of the eukary-

otic signal peptides in our data set), the percentage

of false positives among the signal anchors drop to

28% for the eukaryotic, and 32% for the human sig-

nal anchors (39% when using eukaryotic networks).

3.8. Scanning the Haemophilus

influenzae genome

We have applied the prediction method with net-

works trained on the Gram-negative data set to all

the amino acid sequences of the predicted coding re-

gions in the Haemophilus influenzae genome. Only

the first 60 positions of each sequence were analyzed.

The distribution of mean S-score (from position 1

to the position with maximal Y-score) is shown in

Fig. 6.

When applying the optimal cutoff value found

for the Gram-negative data set (0.54) we obtained

a crude estimate of the number of sequences with

cleavable signal peptides in H. influenzae: 330 out of

1680 sequences, or approximately 20%. If maximal

S-score is used instead of mean S-score, the estimate

comes out as 28%, and with maximal Y-score it is

14% (distributions not shown). If all three criteria

are applied together, leaving only “typical” signal

peptides, we get 188 sequences (11%).
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Fig. 6. Distribution of the mean signal peptide score (S-score) for all predicted Haemophilus influenzae coding sequences.
The mean S-score is calculated using networks trained on the Gram-negative data set. The bin size of the distribution
is 0.02. The arrow shows the optimal cutoff for predicting a cleavable signal peptide. The predicted number of secretory
proteins in H. influenzae (corresponding to the area under the curve to the right of the arrow) is 330 out of 1680 (20%).

Some of the sequences predicted to be signal

peptides according to S-score but not according to

Y-score may be signal anchor-like sequences of type

II (single-spanning) or type IV (multi-spanning)

membrane proteins. If we apply the slightly higher

cutoff optimised for discrimination of signal anchors

versus signal peptides in eukaryotes (0.62) to the

mean S-score, the estimate is lowered from 20%

to 15%.

As a test of this hypothesis, we have made a hy-

drophobicity analysis of the entire sequences of the

H. influenzae predicted coding regions as described

in Ref. 37. We did not apply the positive-inside rule

but only counted the number of regions with hy-

drophobicity larger than a specified cutoff in order to

get a crude estimate of the number of transmembrane

segments in each protein. Among the 188 “typical”

signal peptides, there are 54 (29%) with more than

one predicted transmembrane segment (including the

h-region of the signal peptide itself); while as many

as 69 (50%) of the 139 sequences which are predicted

to be signal peptides according to the mean S-score

but not the maximal Y-score have more than one

predicted transmembrane segment.

It has been observed that cleavable signal pep-

tides are rarely found in bacterial cytoplasmic mem-

brane proteins,7 and, as mentioned in the data sec-

tion, very few bacterial proteins have a confirmed

N-terminal signal anchor. It is therefore possible

that a better estimate of the proportion of secretory

proteins might be achieved by combining the signal

peptide prediction with a more sophisticated predic-

tion of transmembrane segments and excluding those

that have multiple transmembrane segments. We

have not done this with the present hydrophobicity

analysis method, since it is optimized to locate the

transmembrane regions of membrane proteins rather

than to discriminate between soluble and membrane

proteins.

On the other hand, the mean S-score may also

give under-predictions, if the initiation codon of the

predicted coding region has been placed too far up-

stream. In this case, the apparent signal peptide

becomes too long, and the region between the false

and the true initiation codon will probably not have

signal peptide character, possibly bringing the mean

S-score of the erroneously extended signal peptide re-

gion below the cutoff. In this analysis, there were 51

H. influenzae sequences predicted to be signal pep-

tides according to the maximal Y-score but not the

mean S-score; and these did indeed have an average

predicted length of 35.5 amino acids as contrasted

to the average length of 25.2 for the 188 typical sig-

nal peptides (which corresponds perfectly with the

average length of 25.1 for the Gram-negative data

set). An additional observation suggesting that these
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51 sequences might contain false initiation codons is

that 41 (80%) of them contain a Methionine between

position 2 and 60, while the corresponding number

for the 188 typical signal peptides is only 63%.

In conclusion, the scanning of the H. influenzae

genome illustrates both the strengths and pitfalls of

the current prediction method when it is applied on

a whole-genome basis.

3.9. Method and data publicly available

The finished prediction method is available both via

an e-mail server and a World Wide Web server. Users

may submit their own amino acid sequences in or-

der to predict whether the sequence is a signal pep-

tide, and if so, where it will be cleaved. We rec-

ommend that only the N-terminal part (say, 50–70

amino acids) of the sequences is submitted, so that

the interpretation of the output is not obscured by

false positives further downstream in the protein.

The user is asked to choose between the net-

work ensembles trained on data from Gram-positive,

Gram-negative, or eukaryotic organisms. We did not

include the networks trained on the single-species

data sets in the servers, since these did not improve

the performance.

The values of C-score, S-score, and Y-score is re-

turned for every position in the submitted sequence.

In addition, the maximal Y-score, maximal S-score,

and mean S-score values are given for the entire se-

quence and compared with the appropriate cutoffs.

If the sequence is predicted to be a signal peptide,

the position with the maximal Y-score is mentioned

as the most likely cleavage site. A graphical plot in

postscript format, similar to Figs. 3 and 4, may be

requested from the servers. We strongly recommend

that a graphical plot is always used for interpretation

of the output.

The address of the mail server is

signalp@cbs.dtu.dk. For detailed instructions,

send a mail containing the word “help” only. The

World Wide Web server is accessible via the Cen-

ter for Biological Sequence Analysis homepage at

http://www.cbs.dtu.dk/.

All the data sets mentioned in Ta-

ble 1 are available from an FTP server at

ftp://virus.cbs.dtu.dk/pub/signalp. Retrieve

the file README for detailed descriptions of the data

and the format. The FTP server and the mail server

can both be accessed directly from the World Wide

Web server.

4. Discussion

A new method which is able to identify secretory

signal peptides and predict their cleavage sites with

high accuracy, both in prokaryotes and eukaryotes,

has been developed.

The prediction performance reported in this

study corresponds to minimal values. The test sets

in the cross-validation have very low sequence sim-

ilarity; in fact, the sequence similarity is so low

that the correct cleavage sites cannot be found by

alignment.20 This means that the prediction accu-

racy on sequences with some similarity to the se-

quences in the data sets will in general be higher.

Signal peptides of eukaryotes, Gram-negative

bacteria, and Gram-positive bacteria differ in their

structure, as the sequence logos (Fig. 2) show. This

difference is reflected in the performances in vari-

ous ways. Gram-negative cleavage sites have the

strongest pattern — i.e. the highest information con-

tent — and consequently they are the easiest to pre-

dict, both at the single-position and at the sequence

level. The eukaryotic cleavage sites are significantly

more difficult to predict, both according to C-score,

Y-score, and weight matrix score. Gram-positive

cleavage sites are slightly more difficult to predict

than the eukaryotic, which would not be expected

from the sequence logos (Fig. 2), since they show

nearly as high information content as the Gram-

negative cleavage sites. On the other hand, the

Gram-positive signal peptides are by far the longest,

as seen in Fig. 1, which means that the cleavage sites

have to be located against a larger background of

non-cleavage site positions.

The S-score, which distinguishes positions in the

signal peptides from non-signal peptide positions,

shows the opposite pattern: the correlation for the

S-score is higher for the eukaryotes than for the

prokaryotes. This is may be due to the more char-

acteristic leucine-rich h-regions of the eukaryotic sig-

nal peptides, which are also apparent in the sequence

logos (Fig. 2).

Using single-species data sets did not improve the

performance. The human signal peptides are pre-

dicted equally good by the eukaryotic networks as by

the human networks, and the E. coli signal peptides



Prediction of Signal Peptides 597

are predicted even better by the Gram-negative net-

works than by the E. coli networks. In other words,

we have found no evidence of species-specific features

of the signal peptides of humans and E. coli. The

poorer performance of the E. coli networks relative

to the Gram-negative networks can be explained by

the relatively small size of the E. coli data set.

In the cleavage site versus non-cleavage site prob-

lem, the window that gave the optimal cleavage site

location was from 11 to 17 signal peptide residues,

and 2 to 4 non-signal peptide residues, depending on

the organism class. Larger windows gave a slightly

lower performance. These windows are larger than

those found to be optimal in an earlier weight-matrix

based method33: 13 + 2 for eukaryotes and 5 + 2 for

prokaryotes.c Consequently, there must be some in-

formation located outside of von Heijne’s windows

that is important for cleavage site recognition, but

is only picked up by the neural networks when using

the larger amount of data.

The optimal windows for the networks trained to

recognize cleavage sites (C-score) are highly asym-

metric. This suggests that the pattern defining the

cleavage site is located mainly in the signal peptide.

This corresponds well with the amount of informa-

tion in the sequences aligned by the cleavage site

(Fig. 2).

The optimal window size for the networks trained

to distinguish residues in signal peptides from

residues in the mature part of the proteins (S-score)

was found to be 13 + 1 + 13 for eukaryotes and

9 + 1 + 9 for prokaryotes (except the E. coli set

where 21 + 1 + 17 was found to be better), i.e. these

windows are symmetric. In other words: to decide

whether a given amino acid in a sequence belongs to

the signal peptide, it is equally important to examine

the preceding (upstream) positions as the following

(downstream) ones.

The windows of the C-score and S-score networks

may be seen as examples of local windows, recog-

nizing specific sites, and global windows, recognizing

extended sequence domains, respectively.

A combination of networks with local and global

windows attacking a biological sequence recognition

problem has previously been used with substantial

success.8,15 Here, the local networks were trained to

locate splice sites (donor or acceptor sites) in human

messenger RNA precursor (pre-mRNA), while the

global network was trained to discriminate between

coding and non-coding nucleotide sequences. The

method of combination was similar to the weighted

sum used in this project, except that all the evalua-

tion took place at the single-position level instead of

the sequence level.

In the pre-mRNA study, the combined method

was found to perform considerably better than either

the local or global networks alone. Since the combi-

nation of C-score and S-score networks (Y-score) led

to only a modest increase in performance, it would

appear that the difference between the types of infor-

mation recognized in the local and global approaches

was smaller for the signal peptide networks than for

the pre-mRNA splice site networks.

However, the value of the global S-score should

not be underestimated. It constitutes information

different from the local C-score which may be useful

in many contexts. Thus, individual sequences may

be scanned with the networks, and the scores plotted

together with the sequence as in Figs. 3 and 4. Plots

like these may be analyzed manually, and in combi-

nation with knowledge of the protein in question the

curves may give valuable clues to if and where one or

more cleavage sites may be found. Furthermore, the

mean S-score may be used to discriminate uncleaved

signal peptides (signal-anchors) from cleaved signal

peptides, as shown in Fig. 5.

In many cases, the network scores may give in-

formation of phenomena which have not been dis-

covered experimentally. For example, the plot in

Fig. 3(b) where the C-score shows two distinct peaks

may suggest that the protein has two alternative

cleavage sites, of which only one has been discovered.

Indeed, multiple cleavage may be a more widespread

phenomenon than hitherto observed.

In general, the neural network method presented

here efficiently discriminates between proteins lack-

ing a signal peptide or a signal-anchor sequence and

proteins with such targeting signals, but is less reli-

able for discriminating between signal peptides and

signal-anchor sequences. However, if the protein is

known from other information to have a signal pep-

tide, its cleavage site can be predicted with high

cIn Ref. 33, a 13 + 2 matrix was given both for the eukaryotes and for the prokaryotes, but it was stated in the text that 5 + 2 was
sufficient for maximal performance on the prokaryotes.
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confidence. When genome-wide scans are performed,

it is thus important to couple the results from this

prediction method with other data such as prediction

of additional transmembrane segments and mem-

brane topology, similarity to other proteins of known

subcellular location, etc., that might yield clues

as to whether an N-terminal segment with a high

mean S-score is a signal peptide or a signal-anchor

sequence.
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