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A Neural Network Pruning Approach

based on Compressive Sampling

Jie Yang, Abdesselam Bouzerdoum, Son Lam Phung

Abstract- The balance between computational complexity

and the architecture bottlenecks the development of Neural

Networks (NNs), An architecture that is too large or too small

will influence the performance to a large extent in terms of

generalization and computational cost. In the past, saliency

analysis has been employed to determine the most suitable

structure, however, it is time-consuming and the performance

is not robust. In this paper, a family of new algorithms

for pruning elements (weighs and hidden neurons) in Neural

Networks is presented based on Compressive Sampling (CS)

theory. The proposed framework makes it possible to locate the

significant elements, and hence find a sparse structure, without

computing their saliency. Experiment results are presented

which demonstrate the effectiveness of the proposed approach.

NOMENCLATURE

I Bias vector between hidden and output layer

() Bias vector between input and hidden layer

A Network targets

B Output from the reduced network

C Input matrix for the hidden layer

d1 Number of input dimensions

d2 Number of output dimensions

Nhn Number of initial hidden neurons

N r n Number of remaining neurons after pruning

N; Number of training samples

P Network inputs

V Original weight matrix between hidden and output

layer

W Original weight matrix between input and hidden

layer

Z Output from the original network

I. INTRODUCTION

H
OW to design an exact topology for Neural Networks

(NNs) is one of the most important issues faced by

researchers over the past two decades [1]-[7],[18]-[19]. The

problem seems to be an awkward predicament in that it

is difficult to find the balance between the computational

complexity and the generalization ability of a network. A too

large network architecture may result in poor generalization

on the test data even if it can obtain high accuracy on

the training data. On the other hand, a too small structure

requires more training time to converge to a local minimum,

which may not yield satisfactory performance. A variety of
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approaches have been developed to deal with this problem,

which can be broadly categorized as follows:

• Network Pruning, which is based on the saliency analy

sis on each element (weights or hidden neurons) [2]-[7];

• Network Construction, which begins with a small net

work and incrementally adds hidden neurons during the

training process [18];

• Other algorithms such as Evolutionary Pruning [19].

In this paper we are concerned with pruning methods;

some traditional pruning algorithms are discussed briefly in

Section I I. Generally speaking, Network Pruning is often

cast as three sub-procedures: (i) define and quantify the

saliency for each element in the network; (ii) eliminate

the least significant elements; (iii) re-adjust the remaining

topology. To this end, the following questions may be raised:

1) What is the best criterion to describe the saliency, or

significance of elements?

2) How to eliminate those unimportant elements with

minimal increase in error?

3) How to make the method converge as fast as possible?

To overcome these difficulties, we offer another insight

into Network Pruning in this paper. Our approach is in

spired by Compressive Sampling (also known as Compressed

Sensing) theory, which addresses sparse signal representation

[8]-[10]. The method can help in recovering signals that

have a sparse representation from a number of measure

ments/projections of dimensionality lower than the number of

samples required by the Shannon/Nyquist Sampling theory.

Thus, if we consider the topology of a neural network as a

sparse structure, then CS can be employed to reconstruct this

topology.

In this paper, we propose a family of new algorithms

to obtain the optimal topology for pruning weights and

hidden neurons based on CS. The main advantage of our

approach is that the proposed algorithms are capable of

iteratively building up the sparse topology, while maintaining

the training accuracy of the original larger architecture.

The remainder of the paper is organized as follows. The

next section presents a brief review of traditional pruning

algorithms and Compressive Sampling theory. Then Section

I I I details the development of the new network pruning

approach. By describing the link between pruning NNs

and CS and introducing two definitions for different sparse

matrices, the algorithms for pruning weights and hidden

neurons are given in Section I I 1-Band C, respectively. The
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implementation issues and experimental results are discussed

in Section IV, followed by concluding remarks.

II. BACKGROUND

This section introduces basic notions about pruning algo

rithms and Compressive Sampling theory, which will be used

in the remainder of the paper.

Theorem 1: There exists a time function j3 (t ) E (0, 1),

which depends only on the dictionary, for any sample y,

such that the residual error calculated with the OMP or MP

algorithms decays as:

Ilrt 11
2

< j3(t) Ilrt- 1112
(2)

where r! == y - Dxt denotes the reconstruction error after t

iterations. More precisely, we have:

where Ilxllo (known as la-norm) is the cardinality of x,

or the number of nonzero elements in x. Several alterna

tive algorithms or strategies have been developed including

Greedy Algorithms (such as Orthogonal Matching Pursuit

(OMP) [11] or Matching Pursuit (MP) [20]) and Non-convex

local optimization like FOCUSS [21] algorithm. In this

paper, we are concerned with the Greedy Algorithms, whose

convergence is demonstrated by the following theorem [17]:

B. Compressive Sampling

Recently, a siginificant research effort has been devoted to

the problem of Compressive Sampling (CS) [8]-[10]. This

theory supposes that if we allow for a degree of residual

error E, CS guarantees the success of recovering the given

signal under some conditions from a number of projections

(measurement vectors). We refer the reader to [8]-[10] for a

more detailed discussion on CS and its wide applications.

According to the number of measurement vectors (also

known as measurement samples in CS), the CS problem

can be categorized into Single-Measurement Vector (SMV)

[11] or Multiple-Measurement Vector (MMV) [12], [13].

Mathematically, the SMV problem is expressed as follows.

Given a measurement sample y E H'" and a dictionary

D E H'"?" (the columns of D are referred to as the atoms),

we seek a vector solution satisfying:

A. Traditional Algorithms for Pruning NNs

The general framework for Network Pruning can be de

scribed as follows:

1) Set a large enough architecture for the NNs and train

with any learning method (e.g. back propagation algo

rithm), until the stopping criterion is met;

2) Compute the saliency of each element and eliminate

the least important ones;

3) Retrain the pruned network. If the change of output

between the original and pruned network is small

enough, then go to step 2; otherwise stop and output

the network architecture.

Roughly, the methods for pruning can be classified into

two categories: weight pruning and hidden neuron pruning.

Examples of weight pruning algorithms include Optimal

Brain Damage (OBD) [2], Optimal Brain Surgeon (OBS) [3],

and Magnitude-based pruning (MAG) [5]. On the other hand,

Skeletonization (SKEL) [6], non-contributing units (NC) [7]

and Extended Fourier Amplitude Sensitivity Test (EFAST)

[14] all implement hidden neuron pruning.

(5)
. { C == Il(WP + B)

min IIA - ZII s.t. Z = h(vC + "()

where Z denotes the network output matrix, C the hidden

unit output matrix, W is the hidden unit weight matrix, V

is the output layer weight matrix, 11 and 12 denote the

activation functions, and B and I are the bias terms. Our

II rtl1 2
< j3(t-l) Ilrt- 1112< ... < j3t(O) Il rol1 2

== j3t(O) IIYl12
(3)

Furthermore, for the OMP algorithm we have the following

theorem [11]:

Theorem 2: Given an arbitrary d-sparse signal x E R",

n 2:: d and a random m x n linearly independent matrix

D. OMP can represent x with probability exceeding 1 - 8

when the following condition is satisfied: m 2:: K d log(nj8),

where K is an absolute constant, and 8 E (0,0.36).

While, the SMV problem aims to find a sparse signal

representation, the MMV problem aims to find a joint

sparse representation of several signals, or a sparse matrix

representation [13]. The MMV can be stated as follows (to

avoid confusion, we use the upper-case letters Y and X to

emphasize that they are matrices rather than vectors):

(Q) : min Ilm(X)11 s.t. Y == DX (4)

where Y E Rmxk, X E R n x k and m(X) is the matrix

norm.

III. PROBLEM FORMULATION AND METHODOLOGY

A. Overview of Methods

In this section, we formulate the problem of Network

Pruning as a Compressive Sampling problem. Before we

explain our main idea, it is necessary to introduce some basic

definitions.

Definition 1: (S-sparse (I) Matrix) given an arbitrary

matrix X E ti--». if Ilxillo ::; S where Xi is any column

in X, then X is called an S-sparse (I) Matrix, which we

denote as Sl(X).

Definition 2: (S-sparse (II) Matrix) given an arbitrary

matrix X E Rnxk, if IIXllo < S, where IIXllo ==

11(llxlllo' Il x21lo' Ilx31Io' ... ' Ilxnllo)Tllo is the number of
rows that contain nonzero elements, then X is called an S-

sparse (II) Matrix, which we denote as S2(X).
Without loss of generality, consider a trained two-layer

feed-forward network. Given a set of training input patterns,

which are stored in a matrix P, and the desired output

patterns, stored in a matrix A, then the mathematical model

for training the NN can be expressed in the form of the

following expansion:

(1)(P) : min Ilxllo s.t. y == Dx
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Where C* = !I (Wp) denotes the actual input matrix of the

hidden layer for the pruned network. Similarly, Equation (7)

for pruning hidden neurons is changed to:

Pruned Weights

S-sparse (II) Matrix

S-spa rse (I) Matrix

Pruned Hidden Neurons

Pruned NNs with S-sparse (I) and S-sparse (I I) weight Matrices
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Fig. I.

Input: the signal matrix Y E If"x k, the dictionary D E If"x n,

Maximal iteration M
Output: an n x k matrix X

Procedure:

I): For Yi E Y, i E [1, k] execute any traditional SMV method using (1ft,D)
with M iterations and obtain Xi ;

2): Replace the i t h column of X by Xi.

TABLE [

ALGORI THM I : SMVSl A LGORI THM FOR S-sparse (1) Matrix

(8)
s.t. [f 1

1 (C) ]'1' = (p)'1'(W)'1'

s.t. [f 2
1 (Z) jT = (6 *)'1'(V)'1'{

minw [S1(,!V) ]

minv [S1(V)]

{
minw [S1(W)]
min v [S1(V)]

min v [S2(V) ] s.t . Z = !2 (V (!I (W P + e)) +')' ) (7)

Note that W P + e [W,e][P,1]'1' WP, and

[V,')'][(!I (WP + e),1]'1' = VO, so the problem in (6) can

be rewritten as:

s .i , C = !I (WP + e)
s.t. Z = !2(V(!I (WP + e)) + ')')

(6)

On the other hand, pruning hidden neurons can be con

sidered as a special case of pruning weights in that if all

weights from a certain hidden neuron are pruned, the neuron

would be removed as well. This process is equivalent to

finding a V with most of its rows are zero , i.e. an S

sparse (I I) Matrix V . Consequently, We define the following

optimization problem:

aim is to find a minimal topology in terms of the number

of weights or hidden neurons while minimizing the increase

in error given by II A- ZII. When pruning weights from W

or V, the behavior acts like setting, from a mathematical

viewpoint, the relating elements in W or V to o. Then the

goal of finding the smallest number of weights in NNs within

a range of accuracy can be equated to finding an S-sparse (I)

Matrix W or V . Therefore, the problem of pruning weights

can be cast as follows:

Comparing the modified optimization problem with (4), we

can see here (p) '1', (0) '1' and (6 *) '1' serve as the ditionary

D and [jl 1 (C)] and [f 2
1(Z )] play the role of the signal

matrix Y in (4) . Note that one can replace Z with A in

(8) or (9) since Z is very close to A after training the

original network; the experimental results in Section IV - C

show similar performance between the two methods. In doing

so, the process of pruning NNs can be regarded as finding

different sparse solutions for weight matrix W or V . Fig . 1

illustrates the difference between S-sparse (I) and S-sparse

(I I) network topologies.

B. Pruning Weights

Obviously, the problem of finding an S-sparse (I) Ma

trix can simply be calculated from the sparse representa

tions for Multi-SMVs simultaneously. This algorithm, named

SMVSI in our paper, is summarized in Table I.
Without loss of generality and simplicity, we focus on

the aMP [11] algorithm as the SMV method in SMVSI.
Consequently, the procedure for pruning weights based on

Algorithm 1 is given in Table II , which we denote as CSPI

(Compressive Sampling based Pruning 1):

Remark 1: An important question that arises is "will the

CSP I algorithm converge?" Here, what we need to point out

is that the convergence of CSP 1 is only influenced by the

number of samples and orthogonality of data. We take the

process of calculating W as example. Firstly, we note that the

CSPI algorithm is a procedure for rebuilding each column

[(W )'1'] i E [(W )'1'] using aMP:

min 1I[(Wf]ill
o

s .i , [[f l
1
(C)]'1' ]i = (Pf [(Wf ]i (10)

where [[j l 1 (C)]'1' ]i denote the corresponding ith column

in matrix [[f 1
1 (C)]'1' ]. Thus, assuming that the columns of

(p)'1' (the dictionary) are linearly independent and K is a

~osi~ive constant. According to Theorem 2, suppose that

11[(W)T]ill < d when it satisfies N s ~ Kdlog(Nh n jo) ,

after d iter~tions , CSPI is guaranteed to find the sparsest

solution in each column [(W )'1'] i E [(W )'1'] with probability

exceeding 1 - o.Therefore, convergence of CSPI is guaran

teed. Unfortunately, the above claim is built on the success of

pursuit algorithms, depending on the number of samples and

orthogonality of data, and thus convergence is not always

guaranteed. However, according to Theorem 1, the aMP

method, with the residual error decreasing, is still known to

perform very well [11].

Remark 2: The computational complexity of the above
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TABLE II

ALGORITHM 2: CSP1

Input: the trained network and Maximal iteration Ml and M2.

Output: a pruned network with Wand V.
Procedure:

1): Compute C = 11 (W P + 8);

2): Find W by (W)T = SMVSI([11
1(C)]T, (p)T, Ml) ;

3): Compute (V)T = SMVSI([li
1(Z)]T,

(C*)T, M2).

algorithm depends on the number of weights (how large

the original network is) as well as the remaining weights.

Table I I I summarizes the computational complexity for all

algorithms in terms of the number of floating operations

(flops). Note that the existing methods including MAG, OBD

to OBS only remove one element (weight) in one pruning

iteration, which is costly in term of computation. On the

contrary, CSP1 focuses on the remaining weights rather than

the eliminated ones, which speeds up the pruning process,

as can be seen from Table III (where Ni; Nhn, and N rn
denote the number of training samples, initial hidden neurons

and remaining neurons after pruning, respectively).

TABLE III

COMPARISON OF COMPUTATIONAL COMPLEXITY OF DIFFERENT

PRUNING ALGORITHMS.

Algorithm Computation Cost Flops

MAG O(NhnNs) O(Nhn - N rn)
OBD O(NhnNs) O(Nhn - N rn)
OBS O(Ntn N s) O(Nhn - N rn)
CSPI O(Nhnlog(Ns)) - O(NhnNs) O(Nrn)

c. Pruning Hidden Neurons

It is worth noting that we cannot apply CSP1 algorithms

directly to calculate an S-sparse (II) Matrix. Fortunately,

methods used in SMV have already been extended to solve

this problem (we refer to them as M MVS I I algorithm in

this paper) including MMV (Orthogonal) Matching Pursuit

and (Regularized) M-FOCUSS Algorithm [12], [13]. In par

ticular, we propose two important properties of the above

pursuit methods by showing the sparse solution as well as

their convergence.

Theorem 3: If X is a matrix solution obtained by any

MMVSII pursuit method, then X is an S-sparse (II)

Matrix.

Proof: As for the MMV (Orthogonal) Matching Pursuit,

the algorithms select only one atom from the dictionary

which has the largest inner product value [12], [13] with

the residual error at each iteration. Then it is obvious that

the solution is a T-sparse (II) Matrix at Tth iteration. On

the other hand, the (Regularized) M-FOCUSS Algorithm

provides a solution that minimizes IIY - DXII as well as

(2::: XTj) 1/2, with Xij denoting the element in the ith row

and the jth column in X. It can be shown that the result

is necessarily sparse, which could be extended easily from

[21]. •

Theorem 4: For all of the above MMVSII pursuit

methods, the objective function IIY - DXII decreases, i.e.,

IIY - D(X)t+111 == k IIY - D(X)tll , where k E (0,1) is a

constant [12].

Since the comparison between the above algorithms is

done in [12], here we are concerned with the M-FOCUSS

algorithm for its efficiency. We list the framework for pruning

neurons based on the M-FOCUSS algorithm in Table IV

(interested readers can easily implement this algorithm using

any MMVSII pursuit method by simply replacing the M

FOCUSS algorithm):

TABLE IV

ALGORITHM 3: CSP2 (COMPRESSIVE SAMPLING BASED PRUNING 2)

Input: the trained network and the parameter 8.

Output: a pruned network with V.
Procedure:

Compute (V)T = M - FOCUSS([I:;l(Z)]T, (C)T, 8),

where 8 is the minimal value used to stop iterations.

Remark 3: As for the convergence of the CSP2 algorithm,

it is guaranteed by Theorem 4. In particular, [13] proves that

M-FOUCSS can recover any matrix using (JL-1 + 1)/(1 +
Vk) atoms at most, where JL only depends on the dictionary

and k is the number of columns in the dictionary. This means

that the optimal upper bound for the remaining number of

neurons would be less than (JL -1 + 1)/ (1 + y(h,).

Remark 4: If we use CSP2 between the input and hidden

layers, the process is transferred into a feature selection for

input data. In other words, we have the following optimiza

tion problem:

We leave this for the future development.

IV. EXPERIMENT RESULTS AND ANALYSIS

Experiment are conducted using two different benchmark

problems taken from from Proben1 [4]: the Cancer1 clas

sification problem and the Flare 1 function approximation

problem. The Cancer 1 problem is created based on the

diagnosis ofbreast cancer to classify a tumor as either benign

or malignant. Flare 1 is the prediction of solar flares that will

occur during the next 24 hours. Table V below presents the

two data sets.

TABLE V

DATASET FOR EXPERIMENTS

Description

Types I Training examples I Test examples

Cancer1 Classification I 350 I 175

Flare1 Approximation I 533 I 267

A. Experiment Results

In this paper, we compare our algorithms with those

of Neural Network Simulator (SNNS), a simulator for

NNs which can be downloaded from http://www.ra.cs.uni

tuebingen.de/SNNS/. All the traditional algorithms, such as

MAG, OBS, OBD, NC, SKETL, are available in SNNS.
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The CSPI method introduces two parameters, M1 and

M2, corresponding to 2 sub-procedures as shown in Table

II; Since d1 (the dimension for input data) and N hn (the

maximum number of hidden units) are the row dimensions

of (W)T and (V)T in (8), respectively, these two parameters

have the following scale:

otherwise, the solutions will not be sparse any more. Con

sequently, we set the parameters in our CSPI algorithm

as follows: M1 = [dI/4,dI/3 ,dI/2, 2dI/3 ] and M2 =

[N hn/ 10, Nhn /8, Nhn /6, Nhn /4 ]. In CSP2 algorithm, there

is only one user set parameter 6 controlling the stopping

criterion. Generally speaking, the smaller 6 we set, the

sparser the solution. However, it is a time-consuming process

to compute the solution for a small 6. Thus, we set the

parameter group as 6 = [e- 5 , e- lO , e- 15] .

In our experiments, we test for all of the above different

parameter combinations for CSPI and CSP2. In other words,

one whole process consists of 4 x 4 loops in CSPI and 3

loops in CSP2, respectively, and we take the best result as the

output. Furthermore, all the following experiments begin with

a fully-connected 2-layer network with 128 hidden neurons.

We run all the algorithms 20 times to collect the statistics

shown in Tables V I and V II.

TABLE VI

CO MPARISO NS FOR DIFF ER ENT ALG O RIT HMS ON C ANC ER I PRO BLEM

Traing Epoehs- 500 MAG aBS aBO CSPI

Weight 1236 1236 1245 666

MSE 0.01442 0.01846 0.03680 0.0172

Time(s) 1.41 24.49 39.68 0.145

Traing Epoehs- 500 NC SKETL mAST CSP2

Hidden Neurons 104 107 6 9

MSE 0.03136 0.03406 0.03129 0.0174

Time(s) 180.31 25.76 13.68 6.31

TABLE VII

C OMPARISO NS FOR DI FFER ENT A LG O RIT HMS ON F LA RE I PROBL EM

Traing Epochs- 50 MAG aBS aBO CSPI

Weight 3454 3245 2359 807

MSE 0.06213 0.07123 0.05856 0.0036

Time(s) 0.53 86.14 21.56 0.219

Traing Epochs- 50 NC SKETL EFAST CSP2

Hidden Neurons 127 126 6 5

MSE 0.07965 0.07725 0.01638 0.0034

Time(s) 33.57 6.68 9.12 13.58

Fig. 2 presents the Receiver Operating Characteristic

(ROC) curves of the CSPI and CSP2 algorithms for the

classification problem.

From these data, the following observations can be made:

1) Both CSPI and CSP2 achieve test errors comparable

with that of the other algorithms, as well as the reduced

network topology and computational cost. For instance,

in the cancerl and flare1 problems, CSP1 produces a

network less than half the size when compared with

its counterparts;

2) Although CSP2 obtains more hidden units than EFAST

after training with the cancerl problem, its MSE and

computation time is significantly better;

3) The ROC curves in Fig. 2 indicate clearly that the gen

eralization performances of the pruned network using

the presented algorithms are better than the original

network. In fact, CSPI and CSP2 lead to 99.26% and

98.29% total classification accuracy, respectively.

B. Selection ofAlgorithm Parameters

In this section we discuss the parameters impacting the

performance of CSPI and CSP2, based on the Cancerl

problem. In CSP1, 20 trials are run with the above con

figurations; Fig. 3 show the different results. We first note

that the greater a parameter (either d lorNhn), the larger

the structure of the remaining network, and the longer the

execution time. Furthermore, CSPI achieves worst results

when M 2 = N hn/4 compared with its counterparts. It is

expected that the CSP1 algorithm, having a larger topology,

will be trapped in local minima as the training data is

over-fitted. In addition, the minimal network we obtain only

contains 282 weights, however, its error on test data is about

0.02283; on the other hand the minimal error is 0.017172 but

the corresponding number of weights is over 666. So user can

select different coefficients according to the specific purpose.

Fig. 4 presents the results obtained by CSP2. From these

results we note that the smaller the parameter 6, the higher

the probability that we can obtain a better test error. This

can be explained by the fact that the CSP2 algorithm, for

small parameter, may have a more sparse solution, and hence

achieves a smaller topology. However, we also notice that
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a network which has the same szie as the original one and

then deletes some hidden neurons. In Fig. 5, we notice that

from E pisode 2 the error on test data obtained from CSPI

did not change greatly. Actually, it is better to stop the CSPI

algorithm here in that it corresponds to the smallest number

of remaining weights. The same phenomenon can be found

in Fig. 6 as well because the topology seems to maintain the

same from E pisode 2 in CSP2. Another way we can benefit

from them is that we save the computational cost.
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it may require a higher computational cost to calculate the

topology. For the Flarel problem, the results are not shown,

but the same conclusions can be drawn .

C. Discussion

In this section, we discuss some potential methods for im

proving the performance of the proposed algorithms. Firstly,

the scale of the coefficients for CSPI is set as M2 = dI/2

and M1 E [1, Nhn/ lOJ, and the maximum number for

iterations in CSP2 is given by Iterations = 100. The

generation curves for both methods are shown in Fig. 5 and

6. We firstly note that the curves of "Error with A" overlaps

"Error with Z", confirming that the result is the same using

A or Z in Eqs. (8) and (9) since Z is very close to A after

training. Secondly, the different behavior for pruning NNs

between CSPI and CSP2 algorithm is also found: CSPI can

be regarded as reconstructing the original network by adding

weights at each iteration in that the number of weights is

increasing in Fig. 5; on the other hand, CSP2 begin with

We have extended the application of Compressive Sam

pling (CS) to design the topology of Neural Networks (NNs) .

Specifically, using the pursuit methods in CS, a novel pruning

mechanism for NNs has been presented in this paper. We

regard the different input or output for layers of NNs as a

dictionary in CS, and then the goal for finding a minimal

topology in NNs is simply changed into locating a sparse

structure. The key difference between our proposed algorithm

and the existing techniques is that we only need to focus

on the remaining elements; our method can lead to a quick

convergence and a better topology. The empirical work

demonstrates that our algorithm is an effect ive alternative

to traditional pruning methods in terms of (generalization)

accuracy and computational complexity.

There are still some open questions in the study of NNs

topology based on Compressive Sampling. For instance , is it

possible to obtain the optimal architecture without training

the NNs first since all the algorithms need to obtain a trained

topology before pruning? However, it is very time-consuming

to train a large network architecture. Moreover, we notice

that our method is an off-line mechanism, which means

the performance depends on the volume of available data .
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It would be interesting to extend the proposed methods to

online training.
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