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Abstract. A neural networks approach is applied to the derivation of the operating rules of an
irrigation supply reservoir. Operating rules are determined as a two step process: first, a dynamic
programming technique, which determines the optimal releases by minimizing the sum of squared
deficits, assumed as objective function, subject to various constraints is applied. Then, the resulting
releases from the reservoir are expressed as a function of significant variables by neural networks.
Neural networks are trained on a long period, including severe drought events, and the operation
rules so determined are validated on a different shorter period. The behaviour of different operating
rules is assessed by simulating reservoir operation and by computing several performance indices of
the reservoir and crop yield through a soil water balance model. Results show that operating rules
based on an optimization with constraints resembling real system operation criteria lead to a good
performance both in normal and in drought periods, reducing maximum deficits and water spills.
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1. Introduction

The occurrence of severe and frequent droughts in the last years has pointed out
the need to improve reservoir operation rules, to aid water supply operators to
cope with the risk of dramatic water deficiency to users (Cancelliere et al., 1998).
Traditional approach to reservoir operation studies is based on the use of optimiz-
ation and simulation models. In particular, definition of operating rules has been
generally pursued by making use of optimization techniques, which allow to cal-
culate, on the basis of a given inflow series to the reservoir, the corresponding
series of optimal releases, i.e. releases which minimize or maximize a given ob-
jective function (Yeh, 1985; Simonovic, 1992; Wurbs, 1993). Then, following an
approach proposed by Young (1967), such series of optimal releases have been
generally expressed as a function of reservoir state variables and hydrologic in-
put (storage, inflows, etc.), by regression equations which ultimately allow the
water managers to determine the water to be released as a function of available
information (Bhaskar and Whitlach, 1987; Karamouz and Houck, 1987).

Application of regression techniques however finds a limitation in the necessity
to define explicitly the mathematical form of the link between independent and de-
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pendent variables. To partly overcome such difficulty, a new interpolation method
based on Neural Networks (NN) has been recently applied to the determination of
operating rules. NN are able to approximate a wide range of multivariate linear and
non-linear functions, while maintaining very good generalization capabilities, and
therefore they are ideal candidates when the relationship among the variables is
unknown.

Reviews of the state of the art about NN applications in hydrology were recently
published in ASCE (2000) and Govindaraju and Ramachandra (2000), showing the
increasing interest in neural networks during last years in many hydrology related
areas, such as rainfall-runoff modeling, streamflow forecasting, ground water, pre-
cipitation forecasting, and water quality issues. In water management, NN have
been applied for deriving reservoir operating policies with respect to different types
of water supply systems (Raman and Chandramouli, 1996; Rossi et al., 1999; Jain
et al., 1999; Cancelliere et al., 2000; Chandramouli and Raman, 2001).

In the present article the combined use of a soil water balance model, dynamic
programming and neural networks techniques is applied for deriving operating
rules of an irrigation supply reservoir. In particular, water demands are computed
by averaging monthly irrigation requirements obtained through a soil water balance
model, then optimal releases are computed by the application of Dynamic Pro-
gramming (DP) adopting the sum of squared deficits objective function. Operating
rules are derived by expressing the results of DP optimization on a long training
period containing a severe drought period using NN techniques; then the obtained
operating rules are validated by simulating the behaviour of the reservoir on a
different short period. The behaviour of the different trained networks (operating
rules) is assessed by simulation in terms of squared deficits with respect to water
demands, of reservoir performance indices (including reliability and vulnerability)
and of a crop yield index.

2. Theory

2.1. DYNAMIC PROGRAMMING MODELS

Determination of optimal releases from an irrigation reservoir must take into ac-
count, either implicitly or explicitly, how such releases will affect agricultural yield
losses. Although exact agricultural yield losses consequent to deficits are difficult
to be estimated, due to their dependence on several factors such as the type and
timing of the crop being irrigated, its stage of growth, etc., in general terms, they
can be approximated by a function of the ratio between actual and maximum
evapotranspiration (Doorenbos and Kassam, 1979).

Direct determination of optimal releases that minimize yield losses however
can be cumbersome, due to the dependence of actual evapotranspiration ETa on
present and past releases through the soil water balance. In this work, following
a consolidated approach, optimal releases have been computed using as objective
function the sum of the squared deficits with respect to fixed mean monthly crop
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requirements as demand levels. Adopting such demand levels Dt , the optimization
problem can be stated as follows:

Minimise: s =
N∑

t=1

(Dt − Ut)
2 , (1)

subject to the reservoir hydrological balance constraints:

St = St−1 − Ut + It − Et t = 1, . . ., N (2)

0≤St≤K

0≤Ut

where

t = current time interval (month);

Dt = irrigation demand in stage t ;

Ut = release from reservoir in stage t ;

St = volume stored in the reservoir at the end of stage t ;

K = storage capacity of the reservoir;

It = reservoir inflow during stage t ;

Et = evaporation losses from reservoir during stage t ;

N = total number of optimisation stages.

Note that in the above formulation, other losses besides evaporation have been
neglected, although they could be easily included, if significant. Implementation
of the above optimization problem within a DP framework can be pursued by
considering the following recursive equation for any stage t :

f n
t (St ) = min

[
Zt + f n−1

t+1 (St+1)
]

, (3)

where Zt = (Dt − Ut)
2 when Ut≤Dt

and Zt = (Ut − Dt) when Ut > Dt

subject to the state Equation (2) and to the constraints on stored volume and re-
leases. Note that the two conditions on Zt in Equation (3) allow to take into account
the presence of spills, which otherwise would have the same weight of deficits thus
leading to unrealistic solutions. More specifically, if a quadratic objective function
would be considered also for spills, the algorithm would tend to distribute spills
over several stages, by reducing the stored volume, which is in contrast with a
reservoir management mainly devoted to water conservation.

Straight application of the above algorithm however can lead to unrealistic se-
quences of releases, since a perfect knowledge of future inflows and evaporation
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rates is assumed, and thus apparently unnecessary deficits might be imposed on
demands because of the presence of drought periods possibly far ahead in the
future. Therefore, the above algorithm has been slightly modified by introducing
a penalty term enforcing more realistic solutions. In particular, reservoir releases
equal to irrigation demands were imposed when reservoir storage exceeds a fixed
percentage of maximum storage. In the following, this DP approach is called CDP
(Constrained DP).

2.2. SOIL WATER BALANCE MODEL

Evaluation of crop water requirements and of agricultural yield losses requires the
computation of total actual evapotranspiration in a given month. In general terms,
the actual evapotranspiration rate will depend on the maximum evapotranspiration
rate for that month and for the particular crop under investigation, as well as on the
soil water content. The latter must be assumed variable during a given month and
therefore in general the evapotranspiration rate will vary along the month. Com-
putation of total evapotranspiration in a given month must therefore be preceded
by the determination of the soil water content as a function of time, which can be
pursued by means of a simplified soil water balance model.

Assume that the soil water balance in a given month can be represented by
the continuity equation for the top soil layer of capacity Cmax, where all inputs and
outputs besides vertical infiltration and evapotranspiration are neglected, expressed
by a differential equation of the type:

R(τ) − ETa(τ ) = dC(τ)

dτ
, (4)

where

R(τ) = infiltration rate (net irrigation and/or net precipitation) assumed
constant (e.g. mm day−1);

ETa(τ ) = rate of actual evapotranspiration (e.g. mm day−1);

C(τ) = soil water content (e.g. mm), Ct(τ)≤Cmax;

τ = is the current time within the month t , varying from the
beginning (τ = 0) to the end of the month (τ = T ) (0≤τ≤T ).

Further, assume that the rate of actual evapotranspiration is a function of the soil
water content C(τ) like the one depicted in Figure 1.

In Figure 1 ETm is the maximum evapotranspiration for the given month and
OYT (Optimum Yield Threshold) is a threshold level for C below which the plant
is assumed under stress and consequently the actual evapotranspiration is less than
the maximum one, leading to some crop yield reduction.

The aim here is to determine the soil water content at the end of the month
C(τ = T ), given initial condition Co and precipitation plus irrigation rates R
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Figure 1. Actual evapotranspiration ETa(τ ) as a function of the soil water content C(tau).

constant. Further, knowledge of C(T ) will provide directly the total actual evapo-
transpiration in the month by means of a water balance. Note that the assumption
of infiltration rate R constant throughout the time interval is not limiting since one
can always split the integration of Equation (4) into sub-periods where R can be
assumed constant.

Integration of Equation (4) is not straightforward due to the particular form of
ETa(C). However it can be integrated by considering two separated regions namely
C ≤ OYT (region 1) and C > OYT (region 2). As long as C(τ) remains within each
of these two regions, Equation (4) can be integrated directly.

In particular, when C(τ) ≤ OYT the following differential equation will hold:

R(τ) − kC(τ) = dC(τ)

dτ
, (5)

with k = ETm/OYT, and the constraint C(τ)≥0.
When C(τ) > OYT, the following differential equation will be valid:

R(τ) − ETm(τ ) = dC(τ)

dτ
(6)

with the constraint C(τ)≤Cmax.
Therefore it is necessary to distinguish between the two regions. Furthermore,

it is evident that the behaviour will change according to whether R > ETm or R ≤
ETm. Thus, integration of Equation (4) can be carried out considering four distinct
cases, as shown in Table I.

Once the soil water content at the end of the month τ − T is known, it is also
possible to compute the total evapotranspiration during the interval (0, T ) ETaT .
This can be computed simply by considering the overall water balance during the
interval (0, T ):

R·T − ETaT = C(T ) − Co⇒ETat = Co − C(T ) + R·T . (7)



76 A. CANCELLIERE ET AL.

.



DERIVING IRRIGATION RESERVOIR OPERATING RULES 77

The above relationship, along with the integration of Equation (4) allows to de-
termine the total evapotranspiration in a given interval, given irrigation release,
precipitation depth, maximum evapotranspiration and initial soil water content Co.

2.3. MULTILAYER FEED-FORWARD NEURAL NETWORKS

A neural network can be defined as ‘a massively parallel distributed processor
that has a natural propensity for storing experimental knowledge and making it
available for use’. This technique finds inspiration from biological neural systems,
so that the processing units are called neurons; they can be variously connected,
composing different structures of neural networks. It resembles the brain in two
respects:

(1.) Knowledge is acquired by the network through a learning process;

(2.) Interneuron connection strengths known as synaptic weights are used to store
the knowledge’ (Govindaraju and Ramachandra, 2000).

Some of the reasons why NN should be preferred to other techniques are the fol-
lowing:

a) In opposition to Artificial Intelligence approach, NN require no programming:
they can be trained directly from the data;

b) NN are massively parallel: this allow them to gain high speed performance in
decision making;

c) NN have, under some hypotheses, the ability to generalize, i.e. to extend their
decision making to novel data not seen by the network during the training;

d) NN can be successfully applied when a complex decision region is required:
for example in classification or pattern recognition.

The most commonly used architecture of NN is the multilayer feedforward neural
network, characterized by the presence of one or more hidden layers, whose com-
putation nodes are called hidden neurons or hidden units. The nodes in the input
layer simply apply the input signals to neurons (computation nodes) in the first
hidden layer. The output signals of the second layer are used as inputs to the third
layer, and so on until the last layer. The neurons in each layer receive as their
inputs only the outputs of all the neurons in the preceding layer, i.e. the input signal
propagates through the network in a forward direction, on a layer-by-layer basis.
These neural networks are commonly called multilayer perceptrons (MLPs).

The input signal to the generic neuron is constituted by a linear combination of
the outputs of neurons belonging to the preceding layer; such input signal is then
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processed by a so called activation function, which is non decreasing and ranged
between 0 and 1. The logistic function is usually used:

ϕ(ξ) = 1

1 + e−ξ
, (8)

where ξ is the input signal to the neuron and ϕ (ξ ) the output (Hassoun, 1995).
This function is largely used because of the convenient mathematical expression of
its derivate, which allows simplification in deriving training algorithms.

If the function to be mapped is linear, the following activation function can be
used:

ϕ(ξ) = ξ , (9)

with no hidden layer. In this case the network is equivalent to a linear regression
equation.

The link between neurons belonging to different layers is made by linear rela-
tionship whose coefficients, called weights, constitute the set of parameters, to be
estimated by appropriate algorithms. The search of optimal weights vector, i.e. the
training algorithm, is performed on the basis of a comparison between targets and
NN output values, choosing the set of parameters that generate the minimum error.
Although it is possible to utilize traditional numeric optimization procedures, such
as conjugate gradient descent, generally the training is done by the so called back-
propagation method. Back-propagation is essentially a gradient descent method
that minimizes the network error function:

E =
∑

P

∑
p

(di − yi)
2 , (10)

where di and yi are the estimated and the target value, respectively, p is the number
of output nodes and P the number of training patterns.

This error is propagated backward through the network to each node, and the
weights are adjusted based on equation:

"wij (n) = α
∂E

∂wij

+ η"wij (n − 1) , (11)

where "wij (n) and "wij (n − 1) are the weights increment between node i and j

during the nth and (n – 1)th iteration. In Equation (11) α and η are called learning
rate and momentum. Learning rate influence the speed of convergence, but can
lead to oscillation in the weights, so the momentum factor is used to stabilize the
solution.

Back-propagation is an iterative algorithm, thus it needs some index to decide
when it must be stopped. Usually a quadratic form index is adopted, which gives
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the root mean squared errors (RMSE) between targets and network outputs:

RMSE =
√∑N

i=1(di − y1)2

N
. (12)

3. Application

3.1. SYSTEM UNDER INVESTIGATION: IRRIGATION REQUIREMENTS

Pozzillo reservoir on Salso river (tributary of Simeto river, the main Sicilian water
course) was selected as a case-study. Net storage is equal to 123 × 106m3 while
the basin area is equal to 577 km2. The reservoir is part of a multipurpose system
(hydroelectric, irrigation, and municipal) which includes another reservoir, three
diversions, and five hydroelectric plants.

The system supplies the Catania Plain irrigation district whose water convey-
ance and distribution network is operated by the Land Reclamation Consortium.
The irrigated area of the district is about 18.000 ha, and citrus is the prominent
crop (more than 90%). Irrigation volumes are delivered by the Land Reclamation
Consortium at fixed intervals, and microirrigation is the most widespread irrigation
technique.

Operation of Pozzillo reservoir started on 1964. Recent drought events have
pointed out the need of revised operating rules, able to cope effectively with water
deficiency and to mitigate the worst irrigation deficits. For example, during 1990,
at the end of a three year drought period, the annual release was only 7% of the
average, due to the depletion of the stored water in previous years.

Available data for the observation period 1962–1998 include:

– monthly streamflow series of Salso river at Pozzillo reservoir during the years
1962–1998, estimated by means of a hydrologic balance of the reservoir;

– monthly evaporation rates calculated as a function of the mean monthly tem-
perature;

– monthly areal precipitations over the irrigation district;
– monthly reference and maximum evapotranspiration for the irrigation district.

Annual streamflow series (hydrologic year October–September), shown in Fig-
ure 2, presents a high variability between the maximum value equal to 373.6 ×
106m3 (647.5 mm) which occurred on 1972 and the minimum value 3.3 × 106m3

(5.7 mm), which occurred on 1989. The mean value is 94.0 × 106m3 (162.9 mm).
The most severe drought period was experienced during the three years 1988–
1990, during which, total streamflow volume was below, 58.0 × 106m3 and crop
yield decreased significantly.
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Figure 2. Annual streamflow series (hydrologic year) of Salso river at Pozzillo dam during
the period 1962/1963–1997/1998 and mean annual streamflow.

Table II. Averaged monthly irrigation demands

May June July August September October Total

Demand (106 m3) 3.5 11.6 24.6 25.5 17.3 5.5 88.0

Since citrus is the prominent crop in the irrigation district, irrigation demands
have been computed by averaging the irrigation requirements obtained by the soil
water balance model described before, by considering losses in conveyance and
distribution of about 25%. Applying the model with relevant pedological features
of irrigated soil and with monthly values of precipitations and temperatures related
to period 1962–1991, the following values were obtained:

– mean yearly demand 357.5 mm;
– minimum yearly demand 181.0 mm in 1972;
– maximum yearly demand 600.0 mm in 1981.

Mean monthly demands during the irrigation season are reported in Table II.

3.2. NEURAL NETWORKS TRAINING

Dynamic Programming and Constrained Dynamic Programming were applied us-
ing historical inflow series during 1962–1991 period, thus obtaining the optimal
reservoir releases series Ert during the irrigation season, which in absence of spills,
are equal to Ut . Both dynamic programming models were implemented through the
generalized DP package CSUDP (Labadie, 1999). A neural network approach was
then applied to determine optimal releases as a function of available information
at the beginning of month. Since no inflows forecast was assumed, the selection of
input variables was limited to storage volume and release at previous month. The
results of the optimization models DP and CDP were used as training patterns. The
CDP model was run using a stored volume of 100 × 106 m3 as a threshold above
which satisfy fully the monthly demand.
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Determination of the operating rules was carried out by training six different
networks (one for each irrigation month). The optimal number of neurons in the
hidden layer was determined by an heuristic procedure, following the experience of
a previous study (Cancelliere et al., 2000). A preliminary analysis of both DP and
CDP results showed an almost perfect linear relationship between optimal releases
in a given month and the releases in the previous month for July–October and
June–October, respectively, as a consequence of the adopted quadratic objective
function and of the limited inflows in these months. Then, networks with three
neurons in the hidden layer and logistic activation function were adopted for the
months exhibiting a non linear relationship between input and output variables
(i.e. May-June and May for DP and CDP, respectively). In the remaining months,
one neuron networks with linear activation functions were adopted. Training was
carried out by backpropagation procedure with momentum term and considering a
stopping criterion based on an RMSE threshold.

After training of the networks, a simulation model that determines monthly net
releases Ert according to the NN operating rules was applied and the following
reservoir performance indices were computed:

– sum of squared deficits )(Dt − Ert)
2;

– volumetric reliability )Ert/)Dt ;
– deficit frequency;
– minimum of the ratios between monthly actual and maximum evapotranspira-

tion, min (ETat /ETmt), which was assumed as a proxy of agricultural yield.

Actual evapotranspiration in each month consequent to irrigation releases has been
computed by means of the integration of the soil water balance.

In Table III are reported, for each set of NN considered, the input variables,
the sum of squared deficits, the volumetric reliability, the deficit frequency and the
minimum of the ratios between monthly ETa and ETm in 1962–1991 period. The
results of DP and CDP optimization runs are also reported for comparison.

It can be inferred from the table that NN(DP), trained using as data pattern
DP results, are more conservative than NN(CDP), thus leading to a lower sum of
squared deficits. However, NN(DP) never satisfy fully the monthly demand (deficit
frequency 100%), regardless of the storage levels, which is obviously unacceptable
from a practical standpoint. NN(CDP) on the other hand release the demand Dt

when storage is bigger than threshold fixed in CDP optimization, thus leading to
a lower deficit frequency (69%) and a slightly higher volumetric reliability. The
difference of behaviour of the two rules can be inferred from Figure 3 where the
releases in the month of May are plotted vs. initial storage in the same month for the
two optimization runs and for the two NN rules. The plot shows that DP releases
present a fairly large spread even for full reservoir levels (from no release to full
demand), and consequently the trained NN(DP) never release fully the demand
since it is not able to capture such variability. CDP releases on the other hand are
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Table III. Input variables, sum of squared deficits, volumetric reliability, deficit frequency and min-
imum monthly ratio between actual and maximum evapotranspiration during 1962–1991 period for
analyzed neural networks and optimization models DP and CDP

Months )(Dt−Ert )
2 )Ert/)Dt Deficit min(ETat /

July– (106 m3)2 (%) frequency ETmt )

May June October (% months) (%)

NN(DP) St−1 St−1; Ert−1 3925 81 100 27

Ert−1

NN(CDP) St−1 Ert−1 Ert−1 4057 83 69 27

DP – – – 2497 82 76 36

CDP – – – 3987 83 49 27

Figure 3. DP and CDP optimal releases for May and NN releases as functions of storage
volume.

always equal to the demand for storage levels above 100 × 106 m3 and NN(CDP)
reflects such behaviour, thus leading to more realistic operating rules.

3.3. VALIDATION OF OPERATING RULES

The validation of the selected operating rules was performed by simulating reser-
voir operation during 1992–1998 period, not included in the training period. A
simulation applying the so called SOP (Standard Operating Policy) rule, i.e. a
policy that releases the demand in each month if there is available water stored,
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was also carried out for comparison purposes. Such policy can be considered close
to the management practices currently in use for Pozzillo reservoir. Further, op-
timization of releases during the same period using DP and CDP was also carried
out. Such optimization runs represent a theoretical optimal management, under the
perfect knowledge of the future and as such, they are useful only for comparison
purposes.

Results of simulation and optimization runs were compared on the basis of the
following reservoir performance and crop yield indices:

– volumetric reliability )Ert/)Dt ;
– sum of squared deficits )(Dt − Ert)

2;
– deficit frequency;
– deficit mean length;
– maximum seasonal deficit;
– total spills;
– minimum (ETat /ETmt).

The above indices are reported in Table IV, from which it can be inferred that
both NN(DP) and NN(CDP) outperform the SOP rule in terms of smaller sum
of squared deficits, smaller maximum seasonal deficit and greater minimum ratio
between actual and maximum evapotranspiration. On the other hand, SOP leads
to greater volumetric reliability, less average length of deficit periods and smaller
spills. The above findings are consistent with the fact that NN rules are conservative
while the SOP does not impose deficits unless it is necessary to do so.

Table IV shows also that unconstrained DP leads to overall best results in terms
of sum of squared deficits, as expected, and crop yield index. However, CDP
approach performs better in terms of volumetric reliability and deficit frequency,
and almost as well in terms of spills and crop yield index, although the sum of
squared deficits and the maximum seasonal deficit range are slightly worse. This is
consistent with the less conservative nature of CDP.

The results of the application of the two dynamic programming approaches is
fully reflected by the corresponding results obtained by applying the corresponding
neural network based operating rules. Indeed, NN(DP) lead to more conservative
rules while NN(CDP) ensure higher volumetric reliability, reduced water spills and
similar performance in terms of other indices.

In Figure 4, time series of sum of squared deficits, seasonal deficit and the
min(ETa/ETm) are shown. The presence in the validation period of a particularly
severe drought year (1995), emphasizes the opportunity to use networks in place of
SOP rule, whose simulation run leads to maximum seasonal deficit and generally
reduced annual crop yield.
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4. Conclusions

Monthly operating rules for an irrigation reservoir have been derived by interpol-
ating the results of the application of two Dynamic Programming models (DP
and CDP), based on sum of squared deficits objective function, by using neural
networks techniques. The two models differ by the presence in CDP of a penalty
term enforcing optimal releases series to follow the real system managing criteria,
taking explicitly into account the social and management constraints to release wa-
ter demand when reservoir storage volume exceeds a fixed threshold. The obtained
operating rules have been validated by simulating the behaviour of the reservoir
over a shorter period, not included in the period used for training the networks, and
through simulation of the soil water balance for evaluating a crop yield index.

Validation of selected neural networks over a seven years period showed the
superiority of networks trained on CDP pattern. In fact, networks trained on DP
pattern resulted more conservative than others, and never met the total demand,
independently from reservoir storage conditions. On the contrary, networks trained
on CDP pattern show to learn CDP operation criteria, thus obtaining best results in
terms of reservoir operation indices, and performing only slightly worse in terms
of sum of squared deficits.

Results show that the use of neural networks should improve the reservoir per-
formances during drought conditions, thus confirming the general enhancement
achieved by using neural networks in many other hydrological fields.
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Appendix

The following symbols are used in this article:

C(τ) Soil water content (mm);

Cmax Capacity of the soil (mm);

Co Initial soil water content (mm);

di Estimated values of target values (106 m3);

Dt Irrigation demand at month t (106 m3);

E Network error function (for the entire training set) (106 m3)2;

Et Evaporation losses from reservoir during month t (106 m3);

Ert Net reservoir release during month t (106 m3);
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ETa, ETa(τ ) Total actual evapotranspiration (mm) and evapotranspiration
rate (mm day−1) for a given month;

ETa(C(τ)) Rate of actual evapotranspiration as a function of soil water
content (mm day−1);

ETm, ETm(τ ) Maximum total evapotranspiration (mm) and evapotranspir-
ation rate (mm day−1) for a given month;

It Reservoir inflow during month t (106 m3);

K Storage capacity of the reservoir (106 m3);

k Slope of the function ETa(C(τ)) (for C(τ)≤Cmax);

n Number of iterations sequentially performed in back-
propagation algorithm for neural network’s training;

N Total number of optimisation stages;

OYT Optimum Yield Threshold (mm);

p Number of output nodes of the neural network;

P Number of training patterns;

R, R(τ ) Total infiltration (mm) and infiltration rate (mm day−1) for a
given month;

RMSE Root mean square error between the target and the estimated
values (106 m3);

s Objective function of the optimization algorithm;

St Volume stored in the reservoir at the end of stage t (106 m3);

t Current month;

T Time upper bound (days) of the month;

Ut Release from reservoir during month t (including spills) (106

m3);

yi Target values (106 m3);

Zt Return function of the dynamic programming algorithm;

α Learning rate of the back-propagation algorithm;

"wij (n) Weights increment between node i and j during the nth
iteration;

η Momentum of the back-propagation algorithm;

ξ Input signal to the neuron;

τ Current time (days) of the month t varying from the begin-
ning (τ = 0) to the end of the month (τ = T );

ϕ, ϕ(ξ ) Neurons’ activation function and output of the neurons.
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