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A Neural Reward Prediction Error Revealed by a Meta-Analysis of ERPs
Using Great Grand Averages

Thomas D. Sambrook and Jeremy Goslin
University of Plymouth

Economic approaches to decision making assume that people attach values to prospective goods and act

to maximize their obtained value. Neuroeconomics strives to observe these values directly in the brain.

A widely used valuation term in formal learning and decision-making models is the reward prediction

error: the value of an outcome relative to its expected value. An influential theory (Holroyd & Coles,

2002) claims that an electrophysiological component, feedback related negativity (FRN), codes a reward

prediction error in the human brain. Such a component should be sensitive to both the prior likelihood

of reward and its magnitude on receipt. A number of studies have found the FRN to be insensitive to

reward magnitude, thus questioning the Holroyd and Coles account. However, because of marked

inconsistencies in how the FRN is measured, a meaningful synthesis of this evidence is highly

problematic. We conducted a meta-analysis of the FRN’s response to both reward magnitude and

likelihood using a novel method in which published effect sizes were disregarded in favor of direct

measurement of the published waveforms themselves, with these waveforms then averaged to produce

“great grand averages.” Under this standardized measure, the meta-analysis revealed strong effects of

magnitude and likelihood on the FRN, consistent with it encoding a reward prediction error. In addition,

it revealed strong main effects of reward magnitude and likelihood across much of the waveform,

indicating sensitivity to unsigned prediction errors or “salience.” The great grand average technique is

proposed as a general method for meta-analysis of event-related potential (ERP).

Keywords: feedback related negativity (FRN), event-related potential (ERP), reward prediction error

(RPE), meta-analysis, great grand average
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Explaining human behavior under choice requires understanding

how humans assign value to goods and actions. This valuation occurs

at a nexus of psychological influences running from high level pro-

cesses such as framing effects and counterfactual comparisons down

to basic physiological influences such as satiation. It is likely to be

dependent on an individual’s knowledge both through conscious

extrapolation from experience and simple reinforcement learning.

Early attempts to explain human valuation were aimed at

demonstrating that choice was entirely rational, and embodied

key axioms of neoclassical economics such as expected utility.

This approach employed a black box methodology, observing

the “revealed preferences” of outward behavior in favor of the

underlying apparatus of valuation, and treating humans only “as

if” they computed utilities (Friedman, 1953; Samuelson, 1937).

These assumptions have come under attack from the field of

behavioral economics, which has succeeded in documenting

widespread and consistent deviations from rational choice. A

fully psychological approach, behavioral economics has en-

deavored to open the black box and consider a more varied set

of internal representations than the simple axioms of neoclas-

sical economics. This requires extra discriminatory power.

However, behavioral economics still largely relies on observing

behavior under real or hypothetical choice. There is thus a

possibility that the limits of this methodology may ultimately be

reached, leaving “too many theories chasing too few data”

(Glimcher, Camerer, Fehr, & Poldrack, 2009).

For this reason, the emerging field of neuroeconomics uses the

methodologies of neuroscience to test economic theories of human

behavior. Because neuroscience can perhaps be characterized as a

case of too much data backed up by too little theory, a mutually

beneficial relationship might be forged, in which economic theories of

human behavior are tested and supported to the degree to which the

neural correlates of their terms can be found. This might in turn allow

the replacement of the “as if” utilities of neoclassical economics with

fully neural descriptions. Paul Glimcher, one of the driving forces

behind neuroeconomics has, for example, conjectured that soon

enough evidence will have accumulated that we will be able to define

subjective value in fully material terms: as action potentials per

second, relative to a reference dependent anchoring point given by the

baseline firing rate in specific (though as yet unspecified) populations

of neurons (Glimcher, 2009).
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This is a bold stance. To what degree does the current evidence

suggest Glimcher’s claim, or one like it, might be realized? An

undoubted success story in this regard is the literature on single

cell activity. This suggests that single cells can indeed code a

utility signal which is independent of the stimuli that signal it, and

which varies with changes in either of the two determinants of

utility: reward magnitude and reward likelihood. Populations of

such cells have been shown both for reward prospects (Platt &

Glimcher, 1999), and their receipt (Schultz, 2010).

However, such effects need to be demonstrated in larger neural

structures if they are to be credible determinants of actual choice

behavior, and be accessible by noninvasive techniques suitable for

human subjects. Functional MRI (fMRI) has been the dominant

methodology here, with over 200 articles on reward valuation

published in the last decade, including a number explicitly inves-

tigating the terms that underlie behavioral economics’ preeminent

theory: prospect theory (Tversky & Kahneman, 1992). These

studies have shown that activation of certain key areas, particularly

the striatum and ventromedial prefrontal cortex, is correlated with

the value of anticipated or received rewards. However, individual

experiments show wide variations in activated structures, with four

recent meta-analyses of the literature (Bartra, McGuire, & Kable,

2013; Diekhof, Kaps, Falkai, & Gruber, 2012; Garrison, Erdeniz,

& Done, 2013; Liu, Hairston, Schrier, & Fan, 2011) showing

striking disparities in the broad topography of reward processing.

fMRI is limited by its poor temporal resolution, particularly with

regard to the valuation of outcomes, which, unlike the decisions

that precede them, are strongly temporally delimited. For this

reason, the event-related potential (ERP) technique, which shows

excellent temporal resolution, has a role to play in the investigation

of valuation in the human brain.

The purpose of the present article is to assess the evidence that

an ERP component known as feedback related negativity performs

a neuroeconomic valuation. Although this component has been

intensively studied, inconsistencies in its reported behavior have

obscured its true nature. It is possible, however, that these incon-

sistencies actually arise from the diverse ways in which the com-

ponent is quantified. We develop a novel technique, “great grand

averaging,” that allows a common quantification of the component

to be made, post hoc, to experiments in the existing literature.

These are then subjected to meta-analysis.

Feedback-Related Negativity

ERP studies have revealed an electrophysiological component

known as feedback-related negativity (FRN) that has been claimed

to represent valuation of an outcome. Specifically, it has been

claimed by Holroyd and Coles (2002) that this component repre-

sents a reward prediction error (RPE), that is, a signed value

corresponding to the difference between the amount of reward

obtained and the prior expected value of the reward. Expected

value refers not to the value of the most likely outcome, but rather

to a weighted average of all possible outcomes multiplied by their

respective likelihoods, and in this respect is an “average outcome.”

Positive RPEs are produced by outcomes better than expected

value, negative RPEs by those worse.

Much of neuroeconomics (and nearly the entirety of behavioral

economics) is concerned with the valuation of prospects before

their receipt, because this is what is presumed to drive choice.

RPEs can be used to investigate this question by holding outcomes

constant but varying prospects, with the valuation of a prospect

then inferred from the RPE. Furthermore, as RPEs are central to

theories of reinforcement learning, they can be used to predict

future choice. A positive RPE reinforces the propensity to make

the choice that brought it about, a negative RPE promotes the

switch to an alternative. The degree of behavioral adjustment

should be proportional to the size of the RPE, thus both the RPE’s

sign and its size are important. Formal models of reinforcement

learning (e.g., Sutton & Barto, 1998) use such quantitative RPEs

ubiquitously, and have demonstrated power in solving complex

problems (producing world class backgammon play, for example),

and model learning behavior very effectively.

The FRN is a scalp-recorded electrical potential, strongest at the

frontocentral midline, which occurs 200 ms–350 ms after feedback

on whether a reward or nonreward is obtained. At minimum, it has

been shown to be a very reliable indicator of the valence of an

outcome. That is, it can categorically distinguish between positive

RPEs and negative RPEs, showing a relatively negative voltage for

the latter. However, while this behavior is consistent with an RPE

encoding function, Holroyd and Coles’ theory requires it to show

two further properties beyond this categorical distinction. First, the

FRN must be sensitive to how much better or worse than expected

value an outcome is, that is, the FRN must vary in proportion to the

size of the RPE. Moreover, because increases in the size of

positive RPEs amount to an improved outcome, but increases in

the size of negative RPEs amount to a poorer outcome, if the FRN

encodes RPEs on a common scale of reward it should show a

Valence � RPE Size interaction. If it is responsive simply to the

main effect of RPE size this suggests an encoding of absolute, or

unsigned RPE size, that is, a response to salience. Second, the

component should be sensitive to RPE size regardless of how this

is determined. It should therefore be modulated by both of the two

determinants of RPE size: reward magnitude and reward likeli-

hood.

A large number of studies have tested for these effects, as either

a primary or secondary objective. Although their methods vary

greatly, broadly, a typical FRN task involves a series of indepen-

dent trials in which participants are offered a choice of icons to

select on a screen, and on each occasion make a selection that they

believe will maximize their reward for that trial. After a short

delay, feedback is provided on that choice, depicting whether a

reward has been obtained or not, or the size of the particular

reward. ERPs are time locked to the onset of feedback for each

trial and averaged with other trials of that condition for each

participant. These individual subject averages are used as data

points for statistical tests, and are themselves included in a grand

average ERP presented in the published article. Where the FRN’s

further modulation by RPE size is studied, this variable is most

often manipulated as a simple categorical variable of large versus

small RPEs. This variable is then crossed with the valence vari-

able. The size of the RPE is varied using either outcome magnitude

or outcome likelihood, or occasionally both. Typically, likelihood

experiments offer a fixed magnitude reward which is either ob-

tained (positive RPE) or missed (negative RPE) and manipulate

RPE size by varying expected value, either by varying the likeli-

hood of reward across blocks, or providing a cue on each trial

signaling the likelihood of reward. In contrast, magnitude experi-

ments typically hold expected value constant, often at a value of
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zero, give feedback indicating either a gain (positive RPE) or a loss

(negative RPE), and vary the magnitude of the outcome.

Note that the “negativity” denoted by the FRN component

merely refers to the voltage of the waveform produced by negative

RPEs relative to that produced by positive RPEs, and should not be

taken to imply that negative RPEs have a privileged role in

generating this voltage difference. This touches on an important

methodological point, that ERP waveforms on their own can be

difficult to interpret since their peaks and troughs are the sum of

many individual components, some experimental, some incidental.

For this reason, some electrophysiological components are de-

scribed not by measuring deflections on the waveforms of indi-

vidual conditions, but by those arising on the difference wave of

two waveforms corresponding to the two levels of an experimental

variable. In the case of the FRN, this variable is valence, with the

component made apparent in a difference wave created by sub-

tracting the positive RPE waveform from the negative RPE wave-

form. The simulated data in Figure 1 demonstrates this differenc-

ing process, and in doing so also depicts the predictions of Holroyd

and Coles’ theory.

Figure 1 raises an important issue of nomenclature, as the FRN

is typically operationalized as the difference between good (posi-

tive RPE) and bad (negative RPE) outcomes, that is, a valence

main effect. However, Holroyd and Coles claimed the FRN en-

coded a quantitative RPE, incorporating RPE size as well as

valence, entailing a Valence � RPE Size interaction. To keep the

distinction clear, we follow precedent in the present paper by using

the term FRN to refer to a component responsive to the main effect

of valence. We use the term RPE-FRN to refer to a component

responsive to the interaction of valence and RPE size, the hypoth-

esis under test in this meta-analysis. The simplest demonstration in

support of Holroyd and Coles would be a single component

showing both such effects in the same interval. However, it is also

possible that the effects will be asynchronous, suggesting a quan-

titative RPE encoder of the kind envisaged by Holroyd and Coles

accompanied by other components merely coding the sign of an

RPE but not its size. In the simulated data of Figure 1, for example,

the RPE-FRN in Pane e occupies a briefer interval than the FRNs

in Panes c and d. This important distinction between FRN and

RPE-FRN notwithstanding, at many points in the forthcoming

discussion a point refers equally to both terms. Except in cases

where we wish to make a point specific to the Valence � RPE Size

interaction we refer simply to “the FRN.”

Existing Evidence for Modulation of the FRN by

Magnitude and Likelihood

In their original article, Holroyd and Coles (2002) confirmed

that the FRN could be modulated by reward likelihood. Although

their claim that the FRN constituted an RPE has proven highly

influential, at the time of its publication the supporting evidence

was limited to this single experiment, with no examination of

potential magnitude effects. Now, after more than a decade of

research on the FRN, we are in a much better position to assess

whether Holroyd and Coles’ account is supported by the evidence.

Although it is not an exhaustive review, because it only includes

experiments that meet our criteria for the forthcoming meta-

analysis, the picture from Appendix 1 would appear to suggest that

reward magnitude does not modulate the FRN in the predicted

manner. For those studies manipulating magnitude, six experi-

ments showed the expected effect, eight studies reported no effect

and three showed the opposite effect (i.e., the FRN was greater for

low magnitude outcomes). For those manipulating likelihood, the

evidence is stronger, if still not entirely consistent, with 13 studies

showing the predicted effect and six reporting no effect.

A similar review by Walsh and Anderson (2012) mirrors this

picture. Concerning the likelihood modulator, a simple sign test

applied to 25 studies showed a significant effect consistent with an

RPE coding. In comparison, magnitude could not be shown to

significantly modulate the FRN. The authors argued the absence of

magnitude effects could be because the majority of experiments

cued participants as to whether an outcome would be high or low

magnitude at the beginning of each trial. Thus, magnitude effects

in these experiments could have been lost to scaling effects. The

two studies in Walsh and Anderson’s review that were uncued

showed at least partial support for an FRN modulated by magni-

tude, and on this basis the authors argued support for the Holroyd

and Coles theory. However, this very limited sample must be

acknowledged to leave any meta-analytical basis for the magnitude

modulator unproven.

Problems With FRN Measurement and Implications

for Meta-Analysis

The ERP technique’s poor spatial resolution means that any

individual experiment using ERPs is vulnerable to spurious con-

clusions arising from overlap of the component under consider-

ation (here, the FRN) with other components occurring in the same

temporal interval. The difference wave methodology by which the

FRN is best studied will not remove interfering components which

also code valence, nor can it remove all the effects of components

that are even partially affected by valence. In gathering the data for

this meta-analysis, examination of individual studies’ waveforms

showed a remarkable variability in their character, assumed to

arise from differences in task, procedure and stimuli. This suggests

that the FRN suffers from serious overlap with unknown compo-

nents which might, quite incidentally, be responsive to any of the

three factors (valence, magnitude, likelihood) under study. Be-

cause the sources of the component overlap are unknown in each

case, a broad meta-analysis is therefore more robust than any

single experiment.

A serious hindrance to meta-analysis, however, is the lack of

consistency in how the FRN is quantified. In some articles it is

measured by the voltage of a single peak, in others the difference between

two peaks, in others the difference of one peak and the average of

surrounding peaks, and in others by the mean amplitude in a set

interval. Analysis is sometimes conducted on difference waves and

sometimes on the original simple waveforms. Perhaps most seri-

ously, the temporal interval in which the FRN is measured varies

widely. Appendix 1 shows the quantification of the FRN in each of

the studies used in this meta-analysis. It was found that both mean

amplitude measures and peak assignment are made in intervals

ranging from 50 ms to 150 ms duration, at substantially different

latencies, with some studies using intervals that do not even

overlap. The 200- to 350-ms interval after feedback, where the

bulk of the FRN measures lie, is characterized by a steep, alter-

nating, positive-negative-positive going waveform, and so differ-

ences in the interval in which the FRN is measured can have large
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Figure 1. How the FRN is studied. Panes a and b show grand average waveforms for four experimental conditions taken

from a 2 � 2 design manipulating valence (positive RPEs vs. negative RPEs) and RPE size (large vs. small). A given

experiment would manipulate RPE size using either outcome magnitude or likelihood. The simple waveforms in Panes a

and b show complex peaks which are the result of consecutive, overlapping components, many of which are unknown.

Difference waves (FRNs), constructed by subtracting the positive RPE outcome waveform from the negative RPE outcome

waveform are shown in Panes c and d. These control for components unrelated to valence, allowing the valence effect to

be more clearly seen. Comparison of Panes c and d also suggests that the amplitude of the FRN in these data is sensitive

to RPE size. This is definitively shown by differencing the difference waves in Pane e. Collectively, the figures represent

the prediction of Holroyd and Coles’ theory, with Pane a corresponding to low magnitude or likely outcomes and pane b

to high magnitude, or unlikely outcomes. See the online article for the color version of this figure.
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ramifications, with waveforms from different experiments that

look similar on the page producing opposing conclusions once

they are quantified and subjected to a statistical test. This may lead

to failures of replication. Conversely, it also possible that unex-

pected effects may go unnoticed as a result of the interval used,

leading to successful but unwarranted replication, and an inflating

of the apparent robustness of the FRN component and effects

associated with it. The consequence for meta-analysis is that the

compilation of the statistical results of FRN studies would be far

more sensitive to idiosyncrasies in how the FRN is quantified than

is desirable.

A Novel Method: Great Grand Averages

The problem of miscellaneous measures described above

prompted us to use a novel means of meta-analysis. Typically, a

meta-analysis uses standardized effect sizes derived from individ-

ual research articles as replicates for some statistical test for an

effect of interest (most typically whether the effect size is signif-

icantly different from zero). A basic assumption of any statistical

test, meta-analytic or otherwise, is that all data constitute obser-

vations of the same phenomenon. In our case, this phenomenon

would consist of neural events comprising activity of the FRN

component. As previous discussed, it is not well established

whether the neural events measured across the range of previous

studies arise exclusively from the FRN. Moreover, the mixture of

mean voltage and peak to peak measures, and the wide range of

intervals used to quantify the FRN component also raise serious

concerns over the equivalence of effect sizes measured across the

literature.

Our meta-analysis avoided the miscellaneous measures problem

by ignoring the quantification of the FRN the authors of individual

articles had used. Instead, we took published grand average wave-

forms in all experiments that met our criteria, digitized these

waveforms to extract their coordinates and averaged these coordi-

nates across experiments to create composite waveforms repre-

senting “great grand average” (GGA) waveforms. Although this

approach is borne of necessity, there are nevertheless some bene-

fits to bypassing the quantification provided by the original authors

and going “upstream” to the published waveforms. One advantage

is that a great deal of information is thrown away in the conversion

of waveforms to unitary scores of component amplitude, and the

GGA technique retains that information up to the point of quan-

tifying the final GGA waveform. This means that effects that are

small or lie outside typically analyzed intervals, but which are

consistently present, can become noticeable.

A second advantage is the method’s potential to reduce the

effects of component overlap. In a single ERP experiment, aver-

aging across trials reduces the effect of incidental neural activity

that is peculiar to a given trial, thereby accentuating task-related

components, which are elicited on every trial. However, this does

not help reduce components that happen to be elicited by the task,

but are not the subject of the experiment. This causes component

overlap, and complicates the measurement of the component under

study. Under the GGA technique, some of this component overlap

is reduced due to the variations in the tasks used in different

experiments. Averaging across experiments reduces the effect of

incidental components which are peculiar to a given task, thereby

accentuating the component under study, which will be elicited in

all tasks. Of course, components other than the one under study

which happen to be elicited by the factors of an experiment (here

valence, magnitude, and likelihood) will not be reduced by the

GGA technique.

A third advantage arises from differences in the latency at which

the FRN occurs in the pool of experiments used to create the GGA

waveforms. This produces “smearing” of the peaks that character-

ize the feedback-locked ERP, reducing their amplitude, and wid-

ening the duration of general positive and negative deflections. For

the purposes of the study at hand, we regard such smearing as a

methodological strength. This is because it reduces the availability

of bespoke intervals in which strong, but likely unreplicable effects

can be found. This ensures a fairer test of the RPE account. Thus

what is lost in (possibly misleading) peak amplitude is gained in

reliability. It must be noted that the advantages of this meta-

analysis technique are not specific to the study of the FRN, rather,

they are highly generic and could be applied to the meta-analysis

of any ERP component.

The disadvantages of the method are that the extraction of the

data directly from the waveforms introduces a new source of

measurement error, and that disregarding the reported statistics

eliminates the only source of information concerning the within-

study variance of the studies entering the meta-analysis. These

issues are considered empirically later.

Moderators

While the variability of the waveforms produced by FRN ex-

periments has complicated their interpretation and presented meth-

odological challenges, it is possible that some of this variation is

systematically related to differences in experimental tasks, and can

thus be used to infer properties of the component. We therefore

performed the following moderator analyses.

RPE Modulator

Modulator refers to whether outcome magnitude or outcome

likelihood was used to manipulate the size of RPEs. While dem-

onstrating that the FRN is a generalized RPE encoder requires that

it be responsive to both modulators, and so their effects needed to

be established independently, a comparison of those effects is

potentially illuminating because evidence that the FRN is a gen-

eralized RPE encoder would be bolstered by a relative insensitivity

to the source of the RPE size modulation.

Control Over Outcome

The expected value against which an RPE is generated might

consist either in the expected value of the preceding stimulus, or in

the expected value of the action performed in response to that

stimulus (Balleine, Daw, & O’Doherty, 2008). That is to say the

RPE might contribute to either Pavlovian or instrumental condi-

tioning. This matter may be addressed by examining the degree to

which control over outcome affects FRN amplitude. An RPE used

in Pavlovian conditioning, perhaps reflecting a general role in

valuation, will occur even when participants passively observe

outcomes. In contrast if the FRN is greatest following a meaning-

ful action on the part of the participant this suggests a role in

instrumental conditioning.
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Magnitude Cueing

Although reward likelihood is fundamentally limited to values

between zero and one, there is no such delimitation to reward

magnitude. In order to be able to show satisfactory discrimination

across a wide range of outcome magnitudes it would appear

necessary that the FRN scale its response relative to the range of

magnitudes considered available in the immediate context. Such

scaling has been shown by Tobler, Fiorillo, and Schultz (2005) in

macaque midbrain neurons, which produced equivalent responses

to rewards of different magnitudes when the range of magnitude

available on that trial was signaled to the subject beforehand.

Bunzeck, Dayan, Dolan, and Duzel (2010) found a similar scaling

effect in a study of humans using fMRI. Schultz (2009) has

suggested that scaling is performed not on the absolute range of

outcomes possible in a given context but on their estimated dis-

tribution, and that RPEs accordingly represent z scores. Although

the question of scaling is of theoretical interest, it is also method-

ologically important because scaling effects may have been re-

sponsible for the absence of FRN sensitivity to magnitude in the

literature. This moderator analysis investigated whether effects of

magnitude on the FRN were reduced in cued experiments as would

be expected if scaling occurred.

Domain

Although the FRN has a well-established sensitivity to valence,

i.e. the sign of an RPE, this is formally orthogonal to the domain

of the outcome, that is, whether the outcome constitutes an actual

monetary loss or gain. For example, losses can still be positive

RPEs if they are smaller than expected losses. A number of recent

studies have suggested that the FRN is accentuated when measured

in the gain rather than loss domain (Kreussel et al., 2012; Kujawa,

Smith, Luhmann, & Hajcak, 2013; Mushtaq, Stoet, Bland, &

Schaefer, 2013; Sambrook, Roser, & Goslin, 2012; Yu & Zhang,

2014). This suggests the possibility of a neural dissociation of how

outcomes are processed in gain and loss domains that is of broad

theoretical interest, not least because this reduced sensitivity for

outcomes in the loss domain, or “loss indifference,” is in direct

opposition to the prediction of loss aversion made by prospect

theory.

Method

Inclusion and Exclusion Criteria

The independent variables used in this meta-analysis were out-

come valence (positive RPE, negative RPE), outcome magnitude

(high, low) and outcome likelihood (likely, unlikely), where this

final variable refers to prior likelihood of an obtained outcome. For

inclusion, an experiment had to contain within it a 2 � 2 factorial

manipulation of valence with respect to either likelihood or mag-

nitude. Where more than two levels of the likelihood or magnitude

variable were presented in an article, intermediate ones were

ignored in order to maximize contrasts.

The dependent variable differed depending on the particular

contrast examined, as detailed in the coding procedures section

below. In all cases it was a voltage derived from the differencing

of four simple waveforms related to the factorial design described

above. Consequently, a key inclusion criterion was that a study

must present such a set of simple waveforms. Waveforms had to be

plotted for at least 500 ms postfeedback and 100 ms prior, and had

to be locked to feedback, not response. Because waveforms were

in many cases plotted at only a single electrode, and because

variability of the electrode used suggested a broad distribution for

the FRN, an experiment was included as long as it presented

waveforms at Fz, FCz, Cz or “a frontocentral pool.” Variability

was minimized by using FCz waveforms where available (even if

individual articles reported the FRN to be maximal at a different

site), and where they were not, using Fz, Cz, or frontocentral pool

in that order of preference.

Studies using populations other than healthy nonolder adults

were used only if control data for this population were available

and participants had not been selected on the basis of any pre-

screening (e.g., personality scales). The experiment had to offer

monetary rewards conveyed by feedback, although tasks could

vary widely, including guessing games, time estimation tasks, and

simply passive observation. Experiments could either employ

mixed gambles comprised of wins and losses, gain domain gam-

bles where participants either won or failed to win a stake, or loss

domain gambles where subjects lost a stake or successfully

avoided this. Losses and omitted rewards were classed as negative

RPEs, wins and avoided losses were classed as positive RPEs.

Where separate waveforms were presented for the portion of an

experiment before and after participants learned a rule that allowed

them to assess reward likelihood, waveforms for the portion after

learning were used, because these could be expected to produce the

strongest effect of likelihood on prediction errors. Experiments

which manipulated factors other than the three of interest were

included, although in some cases waveforms were used at one

level of that additional factor, often a control level, if available and

appropriate (see Appendix 1).

Experiments were excluded if the factor of magnitude, likeli-

hood, or valence was confounded with another variable. Although

experiments manipulating both magnitude and likelihood were

acceptable (and in these cases were used twice in the analysis, once

for each modulator) they were excluded if these variables con-

founded each other. This was common in Iowa Gambling Tasks

and where participants could genuinely optimize their choice.

Experiments where the FRN was a response to observation of

another’s performance were excluded. Magnitude experiments

were considered ineligible if levels of the magnitude variable were

blocked, because we expected this would strongly exacerbate

scaling effects, with the FRN responding simply to the valence of

the outcome at the given level of the stakes in that block (although

in fact no otherwise eligible experiments were excluded on this

basis). In the case of likelihood experiments, the following criteria

were employed. There had to be two levels of the likelihood

modulator either side of, and equal distance from 50% probability

to avoid confounding likelihood with uncertainty, a property the

feedback-locked ERP may be responsive to (Yu, Zhou, & Zhou,

2011). If participants received explicit instruction on probabilities

this had to be consistent with real probabilities so that there could

be no ambiguity regarding the value of expected value that RPEs

were generated with respect to. Experiments were excluded if

participants could learn to actively avoid disadvantageous trials

(e.g., by knowing which button to press to always ensure �50%

reward probability) because this made unlikely positive RPEs and
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likely negative RPEs infrequent, introducing a possible confound,

and also leaving participants’ motives for their suboptimal choice

unclear.

Moderator Analyses

Modulator. Coding of this moderator was straightforward. In

those cases (k � 2) where both magnitude and likelihood were

manipulated, the two conditions were entered as independent stud-

ies for this analysis.

Control over outcome. Operationalizing this moderator was

inherently problematic because perception of control is highly

variable across people (Langer, 1975). We used three levels of this

moderator variable, which we believed would maximize contrasts.

Level 1, termed “passive,” covered tasks in which participants

were given no opportunity to act meaningfully prior to feedback.

At the other end of the scale, Level 3, termed “rule implementa-

tion” comprised tasks where actions could be performed and where

feedback was genuinely (and therefore ultimately visibly) depen-

dent on choice of action. Level 2 was termed “guessing.” This

level encompassed all tasks in which participants acted but could

not actually affect the outcome. This included, for example, cases

where participants had to guess the location of a prize, or choose

the stakes for a particular trial. It is true that participants might

have believed that they had a degree of control over the outcome,

but information on these beliefs was generally not available. We

assumed that where control over an outcome was neither evidently

absent (Level 1) nor present (Level 3), participants would experi-

ence, on average, some intermediate perception of control.

Domain. A direct comparison of the amplitude of the FRN in

loss and gain domains could not be made because only two studies

included any pure loss domain trials. However, many studies

offered mixed gambles, in which positive RPEs were always gains

and negative RPEs always losses, and the loss indifference effect

described earlier might be expected to attenuate effects in the loss

portion, producing a net reduction of the FRN overall in mixed

gambles. Domain was therefore coded with two levels. The first,

“gain domain” comprised all cases where the worst possible out-

come was no reward. The other level, “mixed domain,” comprised

cases where monetary losses as well as gains could be incurred.

Magnitude cuing. This analysis applied to magnitude studies

only. Cued studies comprised all cases where participants knew the

magnitude of the forthcoming feedback but not its valence, uncued

studies comprised cases where they knew neither its magnitude nor

valence. A single study in which magnitude cuing was manipu-

lated as an independent variable was entered into this analysis as

two separate studies.

Search Strategies

Published data. The first author performed the literature

search and assessed studies for suitability. A search for English

language journal articles and books was performed using the

following databases: PsychInfo, PsychBooks, PsychArticles,

ERIC, PubMed, and Web of Science. Results were compiled in

EndNote. Abstracts, titles, and keywords were searched using the

term “feedback negativity” OR “feedback related negativity” OR

“feedback error-related negativity” OR “reward positivity” OR

“feedback correct related positivity.” Duplicates, clearly inappro-

priate journals and conference abstracts were removed without

inspection, as were articles published prior to 1997 (the year of

publication of the first FRN article; Miltner, Braun, & Coles,

1997). Two-hundred and 15 papers remained, of which 42 were

deemed eligible after checking inclusion and exclusion criteria.

The FRN is sometimes referred to generically as an “error

related negativity,” even though this term is more commonly used

to refer to a waveform locked to subjects’ own responses, and

indicating internal registration of a known error, rather than a

response to external feedback. It is also sometimes referred to

generically as a mediofrontal negativity. We conducted a second-

ary search using the term “error related negativity” OR “medio-

frontal negativity” OR “medial frontal negativity.” After removing

duplicates, duplicates with the earlier search, clearly inappropriate

journals and conference proceedings, and articles predating 1997,

1,012 articles remained. The abstracts were scanned for evidence

that feedback locked waveforms were studied, producing 125

possible articles, of which four met the criteria for eligibility.

The reference lists of all eligible articles were checked, along

with those of two recent reviews of the FRN (San Martin, 2012;

Walsh & Anderson, 2012), producing one further eligible article.

In total, these search criteria resulted in the inclusion of 47 datasets

from published papers in our meta-analysis.

Unpublished data. In an effort to include unpublished data,

all first or corresponding authors of the selected articles were

contacted with a request for unpublished data. A number of other

researchers were also contacted, identified as follows. Articles

returned by the searches described above which had been rejected

were reexamined, and 154 authors added to a contact list. A search

of theses using the ProQuest Dissertations and Theses database

and the Ethos database returned 73 hits for the primary search

string and 370 for the secondary one. The contents pages of these

theses were read online and 17 authors added to the contact list.

Abstracts of 56 conference articles, extracted from the searches

described earlier, were read, and on this basis eight more authors

were added. In the course of contacting authors, a further four

suggestions were garnered. One hundred seventy-one of 183

e-mail addresses were successfully obtained by Internet search and

these researchers contacted. Responses were obtained from 51

researchers. Four entirely unpublished datasets were retrieved by

this process, and one dataset associated with a published article in

which the requisite waveforms had not been presented. Three

unpublished studies of the authors’ own were also added. There-

fore, we finally included 55 datasets into our meta-analysis, 47

from published data, eight from unpublished data.

Validation data. As this is the first implementation of the

GGA technique, we sought to validate it by comparing its findings

with those resulting from conventional meta-analysis based on

standardized effect sizes. For a meaningful comparison, it was

important that these standardized effect sizes were generated in the

same fixed interval of the waveform as that used for the GGA

analysis. Effect sizes (or their derivatives) reported in the original

articles did not correspond to this, or any fixed interval. It was their

variability that prompted development of the GGA technique. To

carry out the validation we therefore contacted authors of all the 55

articles used in our GGA analysis with a request for their original

data so that we might calculate standardized effect sizes in the

designated interval ourselves. This request returned original data

for 14 of the 29 magnitude studies and 13 of the 26 likelihood
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studies. These studies are hereafter referred to as the validation

dataset.

Coding Procedures: Generating Great Grand

Averages Waveforms

Digitizing of published waveforms was performed with Plot-

Digitizer (http://sourceforge.net/projects/plotdigitizer/). Electronic

copies of experiments were accessed, and the figures containing

the requisite waveforms were enlarged and then opened in the

PlotDigitizer software. Digitizing began by using a mouse to

calibrate the minimum and maximum values of the x- and y-axis to

the distance they occupied on the screen, thus defining the coor-

dinate space of the area of the figure. The coordinates described by

the actual ERPs were extracted by using a mouse to manually lay

points along the waveforms at approximately 5 ms intervals. These

were then run through a purpose-written program (supplied as a

supplementary file) that linearly interpolated coordinates at 1 ms

intervals between the existing manually assigned ones. For every

waveform undergoing the process, this generated a series of volt-

age values at discrete 1 ms intervals that made the subsequent

process of averaging across studies tractable. The coordinates were

immediately replotted to visually check that they corresponded to

the original waveform they were taken from to prevent gross

errors. All waveforms were digitized twice in this fashion, partly to

improve accuracy and partly to allow reliability checks discussed

below.

The consequence of this digitizing process was that for each

study in the meta-analysis, we were able to recover the data that

underlay the four relevant grand average waveforms, plus some

measurement error. For the 27 experiments that were also repre-

sented in the validation dataset, original data replaced the digitized

versions for the bulk of subsequent analysis. In these 27 cases the

digitized versions were merely used to assess the degree of digi-

tizing measurement error, as described later.

Coding Procedures: Quantifying the FRN

The grand average waveforms that were recovered by the dig-

itizing process were submitted to the differencing process shown

in Figure 1 in order to establish whether an RPE-FRN was present.

As noted earlier, the RPE-FRN refers to a component responding

to the interaction of RPE size and valence. Such an interaction is

present when the difference waves shown in Panes c and d of

Figure 1 differ in amplitude. The effect size of the RPE-FRN

component was thus the amplitude of the waveform corresponding

to the difference of difference waves shown in Pane e of Figure 1,

and its significance was based on a comparison of the amplitudes

of its constituent difference waves, that is, those corresponding to

Panes c and d, with this comparison made across the sample of

either likelihood (k � 26) or magnitude (k � 29) studies.

Difference wave amplitude is typically measured either by

using the waveform’s peak within a set interval, or its mean

amplitude within a usually smaller interval. To provide a robust

test of whether an RPE-FRN was present, we used both mea-

sures. The interval in which the measures were taken was

determined by the average of those intervals used in the original

papers. Those studies that used a mean amplitude measure

produced an average measurement interval of 228 ms–344 ms,

and those using a peak amplitude measure produced an average

measurement interval of 128 ms– 460 ms.

In addition to exploring the effect of magnitude and likelihood

modulators on the FRN, we were interested in the effects of these

variables in their own right, that is, their main effects. To study

these, rather than differencing the valence variable, it was col-

lapsed out at each level of magnitude and likelihood, allowing the

comparison of high and low magnitude waveforms and high and

low likelihood waveforms. Thus, in the scheme shown in Figure 1,

an average waveform was created in each of Panes a and b and

these were then differenced (small RPE–large RPE) to produce an

RPE size main effect difference wave.

Statistical Methods

Simple and standardized effect sizes. The differencing pro-

cess described above was performed on each individual study,

generating an effect size for the RPE-FRN, thus allowing a test

for the significance of this effect size across the studies that

made up the dataset. This process made no use of the standard

deviation of the effect size within a given study, however, that

is, calculated across the subjects of that study, nor could it do

so, because the digitizing process only had access to grand

average waveforms. As noted, this does not prevent us testing for

the significance of the effect across studies, but does prevent the

relative weighting of individual studies based upon the variance of

their data. This is generally used to down-weight the contribution

from studies showing high variability on the basis that their esti-

mate of the effect under question can be assumed to be less

reliable. Conventional meta-analysis achieves this weighting up

front by using standardized effect sizes (often referred to simply as

“effect sizes”) as the unit of analysis, which down-weight effects

when they are underlain by high variability. The standardized

effect size metric in which this is most obviously expressed is

Cohen’s d, which is the difference between two scores of interest

divided by their pooled standard deviation. Standardized effect

sizes can be contrasted with simple effect sizes (Baguley, 2009) or

“raw mean differences” (Bond, Wiitala, & Richard, 2003) which,

as the name suggests, are equivalent to Cohen’s d without any

division by standard deviation. Simple effect sizes are what are

produced by the GGA technique and what are used in the GGA

meta-analysis presented here.

Both Baguley, 2009 and Bond, Wiitala, and Richard (2003)

have argued the virtues of working with simple effect sizes over

standardized ones, noting the ease with which they can then be

used to practically guide future studies (e.g., in the present case, a

simple effect size informs researchers of the size in microvolts that

they can expect to be working with) and observing that the stan-

dard deviations that are used to calculate Cohen’s d are themselves

subject to the sampling error they purport to correct for. Another

reason why standardized effect sizes have become the norm in

meta-analyses is that they allow the comparison of scores derived

from different scales of measurement, which is not an issue here,

where the metric is always voltage. Nevertheless, the use of simple

rather than standardized effect sizes is a notable feature of the

GGA technique and we later examine its consequences using the

validation dataset.

Testing the hypothesis I: t tests on GGAs. Our hypothesis

was that the FRN would be greater when RPEs were large rather
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than small, as described in Panes c and d of Figure 1. Because the

criterion for a generalized RPE encoder is that it should be mod-

ulated by both reward magnitude and likelihood, these two mod-

ulators were tested separately. In each case, a paired samples t test

was conducted of the amplitude of FRNs constructed from small

RPEs versus large RPEs. Four tests were done in total, on peak

measures and mean amplitude measures of the magnitude and

likelihood modulated FRNs. T tests were entirely analogous to

those which might be performed on individual FRN experiments

but at “one level higher” using grand average data as data points,

rather than subject average data.

Because sample size differed over studies, and conventional

meta-analysis typically incorporates this information (Field & Gil-

lett, 2010; Hunter & Schmidt, 2004), weighted t tests were used.

The t statistic was calculated with the standard formula for paired

samples

t �

X�D

SD

�N

Where X�D is the mean difference of the paired samples, and SD

its standard deviation. However, X�D was a weighted mean differ-

ence, calculated from k individual study mean differences (x)

whose sample size was used as a weight (w), as follows

X�D �

�
i�1

k

wixi

�
i�1

k

wi

The standard deviation of this difference was also weighted, as

follows

SD �

�
i�1

k

wi(Xi � X�D)

�
i�1

k

wi

Unless otherwise stated, all statistics performed on GGAs used

weighted means and standard deviations.

Sensitivity to publication bias was assessed by inspection of

funnel plots followed by trim and fill (Duval & Tweedie, 2000)

implemented in R using the metafor package (Viechtbauer, 2010).

Testing the hypothesis II: Data driven cluster randomization

of GGAs. The analysis described above provides a fair but

straightforward test of the hypothesis because the FRN was quan-

tified in an interval determined a priori by the existing literature.

However, it remains possible that this interval is a poor choice,

certainly for capturing the RPE-FRN, that is, the response to the

interaction of RPE size and valence. We therefore used a second,

data driven technique, that examined the full length of waveforms

for evidence of an RPE-FRN component. As well as addressing the

danger of using the wrong interval, this had the secondary advan-

tage that it could extract the observed interval of the RPE-FRN

post hoc. The multiple comparisons resulting from the analysis of

the whole waveform were avoided by using the cluster random-

ization procedure of Maris and Oostenveld (2007). This procedure

allows an entire ERP waveform to be analyzed without incurring

the excess conservatism of a strict Bonferroni correction for each

time point analyzed. It achieves this by recognizing that because

voltages are strongly correlated at adjacent time points, the effec-

tive number of comparisons being made when an entire waveform

is analyzed is much lower than the number of sample points in the

waveform. First, t tests were performed on the two difference wave

amplitudes at each time point, and clusters of time points at which

the difference in the difference wave amplitudes was statistically

significant (p � .05) were marked as being of potential signifi-

cance. The values of t for each time point in these clusters were

summed to produce a cluster-level t statistic. This was then com-

pared to a probability distribution for such cluster-level t statistics

generated by 10,000 runs of a Monte Carlo simulation on null

distribution data in the interval occupied by the cluster. This was

used to assign a Monte Carlo p value to the cluster of significant

t values identified at the start of the process.

Heterogeneity of GGAs. Meta-analyses typically report het-

erogeneity, a measure of the likelihood that the sample effect sizes

in the meta-analysis are drawn from more than one population.

This is shown by a variance across sample effect sizes which

exceeds that expected from the within-study variances. Because

within-study variances are unknown under the GGA technique,

heterogeneity cannot be measured. It can, however, be implied by

demonstration of the significant effect of moderators.

Moderator analysis. This is conventionally performed in

conjunction with a standardized effect size based meta-analysis,

something we could not do with the GGAs, as we could not

compute standardized effect sizes. To test for the effects of mod-

erators, we performed univariate analyses with the moderator as a

single categorical independent variable. The dependent variable

was the simple effect size of the RPE-FRN. Unweighted effect

sizes were used in an ANCOVA analysis with weighting applied

using the weighted least squares function. To maximize the power

of the moderator analysis, likelihood and magnitude modulated

studies were analyzed together. Because validation of the GGA

technique (reported later) suggested that mean amplitude measures

produced closer estimates to an ideal conventional meta-analysis

than peak measures, only mean amplitude measures were used for

moderator analysis. Confounding of moderators was checked us-

ing contingency coefficients of all possible pairs of the four

moderators, and where significant �
2 values where found, entering

the confounding moderators as covariates.

Meta-analysis of validation data. Conventional meta-

analysis was performed using standardized effect sizes of the

RPE-FRN generated from original data obtained from authors.

Differencing of waveforms and calculation of t values was per-

formed in the same way as was done for GGAs, with t values then

converted to Cohen’s d. A calculation from t values was used

rather than direct calculation using the mean difference divided by

its standard deviation because of problems arising from the stan-

dard deviation term of paired samples designs. As Dunlap, Cortina,

Vaslow, and Burke (1996) have observed, paired samples designs

increase power by reducing the standard deviation term. This

makes it easier to detect an effect (e.g., t is increased). However,

the paired samples design does not change the effect’s size, which

is what d purports to represent. Using the paired samples standard

deviation in calculating d therefore conflates effect size with effect

significance and inflates the estimate of d. Because the degree of

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

221FRN GREAT GRAND AVERAGES



this inflated estimate is proportional to the additional power the

paired design provides, and this in turn is proportional to the extent

to which the paired scores move together, d can be corrected by

using the correlation coefficient of the two conditions underlying

the t test. Dunlap et al.’s formula for this unbiased calculation is

shown below and was used for calculation of d. Note that the r

term should not be confused with an effect size metric.

d � t .�2(1 � r)

n

Meta-analysis was conducted using the method of Hunter and

Schmidt (2004), with studies weighted by their sample size rather

than inverse variance, because this allowed the closest comparison

with the GGA technique. A random effects model was used, due to

concerns over the generalizability of fixed effects models (Field &

Gillett, 2010). The meta-analysis produced an estimated effect

size, confidence intervals for this estimate, and, most importantly

for our validation purposes, a significance test that could be

compared with that produced by the GGA technique. Heterogene-

ity was measured using the Q statistic. Analyses were implemented

in the macros provided by Field and Gillett (2010) apart from trim

and fill which was implemented in R using the metafor package.

Meta-analysis of published data. Although the GGA tech-

nique is premised on the unsuitability of published FRN effect

sizes for meta-analysis, we ran a further meta-analysis using pub-

lished effects for illustrative purposes. The effect size measure

used was once again Cohen’s d. Effect sizes were frequently not

reported in the published articles, and where they were it was

typically in the form of partial eta squared. Values of d were

therefore calculated directly from reported test statistics using

conventional approximations. Where the reported statistic was t,

the Dunlap formula above was used with r estimated at 0.5: The

average correlation found in our validation dataset was in fact

0.49. Where the statistic given was an F value, that is, rather than

a difference of difference waves, the RPE-FRN effect size was

expressed as a Valence x RPE Size interaction, Rosenthal’s (1991)

conversion was used:

d � 2�� F

dfd
�

In cases where effects were reported as “nonsignificant” or an

inequality based on a canonical value such as F � 1 was given, d

was set to zero. If a noncanonical value of a statistic or p value was

given (e.g., p � .06) this was taken as the actual value. Meta-

analysis was then performed as described for the validation data.

Results

Modulation of the FRN by Magnitude and Likelihood

Figure 2 shows simple great grand average waveforms for

magnitude and likelihood designs. The underlying data for the

digitized grand average waveforms are provided as supplementary

information, as are the derived difference waves that follow. These

can be interpreted and replotted using the accompanying docu-

mentation. Figure 3 depicts the central test of the hypothesis. It can

be seen from Figure 3a that the FRN for high magnitude outcomes

is of greater amplitude than the FRN for low magnitude outcomes,

suggesting that the FRN is sensitive to outcome magnitude in the

manner predicted. This sensitivity is plotted as an RPE-FRN, that

is, the difference of the high magnitude difference wave and the

low magnitude difference wave. A paired samples t test on mean

FRN amplitudes in the interval 228 ms–334 ms revealed a signif-

icant difference (Mlow � �1.52 �v, Mhigh � �2.20 �v, RPE-FRN

simple effect size � �.68 �v, t(28) � �4.41, p � .001). A t test

on peak FRN amplitudes in the interval 129 ms–447 ms also

showed a significant difference (Mlow � �2.30 �v,

Mhigh � �3.11 �v, RPE-FRN simple effect size � �0.81 �v,

t(28) � �3.11).

Similar comparisons for the likelihood modulator can be seen in

Figure 3b, where it can be seen that, as predicted, the FRN for

unlikely outcomes is of greater amplitude than the FRN for likely

outcomes, again generating an RPE-FRN. The effect was signifi-

cant under a mean amplitude measure in the interval 228 ms–334

ms (Mlikely � �1.56 �v, Munlikely � �3.10 �v, RPE-FRN simple

effect size � �1.54 �v, t(25) � �5.44 �v, p � .001) and a peak

measure in the interval 129 ms–447 ms (Mlikely � �2.84 �v,

Munlikely � �4.65 �v, RPE-FRN simple effect size � 1.84 �v,

t(25) � �5.62 �v, p � .001). The RPE-FRN simple effect sizes

for both modulators under the mean amplitude measure are shown

as a forest plot in Figure 4. As a further check, the t tests described

above were conducted on unweighted scores to ensure that the

effects were not unduly affected by a few studies with large sample

sizes. All effects remained strongly significant.

The hypothesis was thus supported using a quantification of the

FRN based on a priori intervals derived from the literature. The

Maris and Oostenveld procedure was then used to more accurately

determine the latency of the RPE-FRN specifically. For the mag-

nitude modulator, a single significant cluster of RPE-FRN activity

was found (Monte Carlo p � .0001), running from 240 ms–341

ms, with the effect greatest at 298 ms (�.91 �v). For the likelihood

modulator a single cluster of RPE-FRN activity was found (Monte

Carlo p � .0001), running from 209 ms to the edge of the

measurement interval at 500 ms. The effect was equally great at

274 ms and 352 ms (�1.80 �v) but much more significantly so at

the earlier peak: t(25) � �6.46.

Figure 2. Simple waveforms for (a) magnitude experiments, and (b)

likelihood experiments. Only 100 ms of baseline is shown, explaining how

the baseline has become negative overall.
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Publication Bias

Publication bias was assessed by inspection of the funnel plots

shown in Figure 5. Because these suggested a small degree of

asymmetry, albeit largely among studies with large rather than

small sample sizes, we applied a trim and fill procedure. This was

implemented by entering the simple effect sizes derived from

GGA analyses into a conventional meta-analysis, rebalancing po-

tential asymmetry in the funnel plots by adding additional imputed

studies, and then recalculating effect sizes. In fact, this procedure

resulted in no additional studies being imputed, leaving effect sizes

unchanged, and demonstrating absence of publication bias.

Moderator Analyses of the FRN

�
2 tests revealed strong associations (p � .001) between three of

the four moderators: modulator, domain, and control over out-

come. To test the effect of each moderator individually, while

controlling for the effects of the others, analysis of covariance was

used with the confounding moderators entered as covariates. Once

again, a mean amplitude measure in the interval 228 ms–334 ms

was used.

Modulator. No significant effect of modulator on RPE-FRN

simple effect size was found (magnitude: �.72 �v, k � 27;

likelihood: �1.60 �v, k � 24; F(1, 47) � 2.92, p � .09). The

apparent strong effect of modulator shown by a comparison of the

subplots in Figure 3, and the means above, was due to the medi-

ating effect of control over outcome (see below). Because Figure

3 also suggested the possibility that the RPE-FRN of likelihood

experiments occupied a longer interval than that for magnitude

experiments, this was investigated using a mean amplitude mea-

sure in the interval 335 ms–500 ms. The effect of modulator on

RPE-FRN in this interval proved to be narrowly nonsignificant

(magnitude: �.23 �v, k � 27; likelihood: �1.38 �v, k � 24; F(1,

47) � 3.80, p � .057).

Control over outcome. A significant effect of control over

outcome was found, with RPE-FRN amplitude increasing as con-

trol grew (passive: �.07 �v, k � 5; guessing: �.88 �v, k � 34;

rule implementation: �2.47 �v, k � 12; F(2, 46) � 9.71, p �

.001). Post hoc comparisons revealed all pairwise comparisons to

be significant (p � .05). A significant effect was also found in the

later interval of 335 ms–500 ms (passive: �.41 �v, k � 5;

guessing: �.25 �v, k � 34; rule implementation: �2.56 �v, k �

12; F(2, 46) � 7.40, p � .002). Post hoc comparisons in this

interval revealed that rule implementation produced a significantly

stronger RPE-FRN than passive or guess designs (p � .05), but

these two levels did not significantly differ. Waveforms of the

RPE-FRN for the three levels (with modulator collapsed out) are

shown in Figure 6.

Domain. No effect of domain on the RPE–FRN was found

(gain: �1.37 �v, k � 25; mixed: �.82 �v, k � 26; F(1, 51) �

.01).

Magnitude cuing. No effect of magnitude cuing on the RPE-

FRN was found (cued: �.70 �v, k � 20; uncued: �.59 �v, k � 8;

F(1, 26) � .1).

Validation of the GGA Technique

Where an electrophysiological component is quantified in di-

verse ways in a literature, we have argued that the GGA technique

is superior to conventional meta-analysis because it allows quan-

tification to be made in a standardized interval. Nevertheless, the

GGA technique suffers two potential drawbacks relative to con-

ventional meta-analysis. The first is that the process of recovering

original data from published figures introduces measurement error.

The second is that the GGA technique has no access to information

on within-study variability and treats each study as equivalent in

this regard. In comparison, conventional meta-analysis uses

standardized effect sizes which incorporate a measure of this

variability, serving to down-weight effects found in studies with

high variability. The output of the GGA analyses was therefore

compared with the output from analyses performed on the

original data obtained directly from authors, allowing us to

assess the impact of these potential drawbacks.

Digitizing error. Digitizing error could be easily measured

by comparing the digitized data with the original data in the 27

studies of the validation dataset. The difference between the

two data sources could either be as a result of the process used

to digitize the figures, or discrepancies between the original

data and the figures used in publication. To quantify the digi-

tizing error, a second coder (naive to the hypothesis under test)

repeated the digitizing process of the original coder for the

whole of the validation dataset. This allowed us to assess the

degree of error within a single coder (intracoder error), between

the two coders (intercoder error), and between the main coder

and the original data (coder-original error). Average errors for

the RPE-FRN in the critical interval 228 ms–334 ms were as

follows. The main coder showed an intracoder error of �.011

�v (SD � .099), and the secondary coder �.004 �v (SD �

.028). Comparison of the two coders’ average scores revealed

an intercoder error of �.005 �v (SD � .075). Comparison of

the main coder with original data revealed a coder-original error

of .096 �v (SD � .327). Intra- and intercoder error was very

low suggesting that an accurate digitizing of a published figure

is unproblematic. Error rates between the main coder and the

original data were higher than between the two coders, implying

Figure 3. Modulation of the FRN by (a) magnitude, and (b) likelihood.

Difference waves (FRNs) are created from negative RPE minus positive

RPE waveforms. The RPE-FRN simple effect size is the difference of the

two difference waves. See the online article for the color version of this

figure.
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that the main source of discrepancy lies with the preparation of

graphs for publication. Examination on a case by case basis

revealed that this was isolated to a few studies that would

appear to have used a low-pass filter on the figure, but not the

data, or a degree of erroneous vertical or horizontal translation

of the waveform of one of the experiment’s conditions. How-

ever, the amount of coder-original error is nevertheless very

modest compared with the average simple effect sizes found in

the GGA meta-analysis. Furthermore, it should be stressed that

these digitizing errors did not affect the statistical testing ap-

plied to GGAs earlier, because original data was used in their

stead. They merely give an estimate of the extent of the error in

the remaining 27 studies for which no original data was avail-

able, and for the use of the technique generally.

Figure 4. Forest plot showing RPE-FRN simple effect size in (a) magnitude and, (b) likelihood designs. Simple

effect size was measured by mean amplitude in the interval 228 ms–334 ms. The size of squares indicates the

sample size, which also constituted the weighting in the GGA meta-analysis. The diamond shows average

weighted simple effect size and 95% confidence intervals. No confidence intervals could be computed for

individual studies because of the GGA technique used.
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Meta-analysis of original data. To assess the overall perfor-

mance of the GGA technique, an “ideal” conventional meta-

analysis was conducted using the same interval as used for the

GGA meta-analysis, but with standardized effect sizes calculated

from the original data in the validation dataset. The results of this

meta-analysis were then compared with a GGA meta-analysis run

on the same subsample of 27 studies. Results of both meta-

analyses are given in Table 1. Quite aside from its role in validat-

ing the GGA technique it can be seen that the conventional

Figure 5. Funnel plots for the unweighted simple effect size of the

RPE-FRN under (a) magnitude, and (b) likelihood. Dotted lines represent

three standard deviations. See the online article for the color version of this

figure.

Figure 6. RPE-FRN at different levels of the “control over outcome”

moderator: (a) simple effect size, and (b) significance of simple effect size. T
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meta-analysis also strongly supports this study’s hypotheses,

showing a significant RPE-FRN effect size under both the mag-

nitude and likelihood modulators. With regard to validating the

GGA technique here and more generally, it can be seen that the

two meta-analytic methods give very close results in regard to

significance testing of the mean amplitude measure. The z statistic

from conventional meta-analysis and the t statistic from the GGA

technique are very similar under both magnitude (5.36 vs. 5.27)

and likelihood (6.55 vs. 6.19) modulators. For the peak measure,

the ideal conventional meta-analysis reveals the GGA technique to

have been conservative. This is to be expected, as the GGA

technique measures the peak amplitude of grand averages rather

than participant averages, and thus is subject to greater temporal

smearing due to individual differences in latency across partici-

pants. Note that while Table 1 reports both average standardized

effect size under ideal conventional meta-analysis and average

simple effect size under the GGA technique, these should not be

directly compared as they are denominated in different units. For

GGAs they are measured in microvolts, for the conventional

meta-analysis, in standard deviations of microvolts. Effect sizes

for individual studies see Table S1 in the online supplemental

materials. Note also that the validation dataset can be considered

representative insofar as there was no significant difference in the

RPE-FRN simple effect size of studies in or out of the validation

dataset, t(53) � 1.54, p � .13.

Meta-analysis of published effect sizes. We also performed a

conventional meta-analysis of published effects. As previously

stated, we believe this is an unsound meta-analysis because it

draws on effect sizes measured in different intervals and from

quite different quantifications of the FRN (e.g., mean amplitude,

peak of difference wave, peak to peak of simple waves). Never-

theless it is interesting for comparative purposes and furthermore

permits a quantifying of the simpler “face value” of accumulated

reporting findings regarding likelihood and magnitude modulators.

The meta-analysis was performed on a reduced dataset because a

number of articles did not report statistics for the RPE-FRN effect

(see Appendix 1) The average standardized effect size for the

magnitude modulator (k � 15) was nonsignificantly different from

zero (d � �.26 [�.80, .29], z � .914, p � .361). The average

standardized effect size for the likelihood modulator (k � 18) was

however significant (d � �.95 [�1.34, �.56], z � 4.82, p �

.001). Standardized effect sizes for individual studies see Table S2

in the online supplemental materials.

Main Effects of Magnitude and Likelihood

Although the principal objective of the study was to test for the

existence of an RPE-FRN by examining the FRN’s sensitivity to

modulation by magnitude and likelihood, a consideration of these

modulators’ main effects is also valuable in interpreting the post-

feedback waveform that FRN studies are likely to generate. Com-

ponent overlap is an ever-present concern in ERP experiments and

we felt it was very possible that an RPE-FRN would be superim-

posed on other components responding to magnitude, likelihood,

or indeed valence, alone. Figure 7 represents all main effects in the

form of difference waves. The RPE-FRN, calculated from magni-

tude and likelihood studies combined, is added for the purposes of

comparison. Significance of main effects was determined using the

Maris and Oostenveld technique. This revealed a magnitude main

effect (Monte Carlo p � .0001), such that low magnitude out-

comes were associated with a relative negativity in an interval

running from 124 ms to the measurement boundary of 500 ms,

with the effect greatest at 322 ms (�2.10 �v). Also revealed was

a significant main effect of likelihood (Monte Carlo p � .0001),

such that high likelihood outcomes were associated with a relative

negativity in an interval running from 299 ms to the measurement

boundary of 500 ms (Monte Carlo p � .0001), with the effect

strongest at 426 ms (�3.51 �v). Finally there was a main effect of

valence (Monte Carlo p � .0001), that is, an FRN, in the interval

150 ms–401 ms, with the effect greatest at 276 ms (�2.27 �v).

Discussion

The RPE-FRN and Main Effects of Valence,

Magnitude, and Likelihood

Holroyd and Coles (2002) proposed that the FRN encoded an

RPE. The results are consistent with this claim. FRNs created from

large RPEs were of greater amplitude than those from small RPEs,

both when RPE size was modulated by magnitude, and by likeli-

hood. The demonstration that the FRN is responsive to variations

in magnitude is important because it is a key requirement of a

general RPE encoder, and evidence in previous experiments has

largely been against this. The present meta-analysis shows that

once quantification of the FRN is standardized, a clear magnitude

effect on the FRN can be seen.

A number of recent articles have reported evidence consistent

with the FRN constituting an unsigned prediction error or “sa-

lience” encoding (Hauser et al., 2014; Oliveira, McDonald, &

Goodman, 2007; Talmi, Atkinson, & El-Deredy, 2013; Talmi,

Fuentemilla, Litvak, Duzel, & Dolan, 2012). Such a component

should show a strong main effect of RPE size (i.e., of likelihood

and magnitude) but no main effect of valence, and no interaction

of RPE size and valence (i.e., no RPE-FRN), because unsigned

prediction errors should be insensitive to valence. The present

study refutes this claim. Nevertheless, salience is clearly coded in

the postfeedback waveforms, as shown by the strong main effects

of likelihood and magnitude in Figure 7, with these main effects

Figure 7. Main effects of magnitude, likelihood and valence (RPE-FRN

shown for comparison). See the online article for the color version of this

figure.
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approximately twice the size of the RPE-FRN to which each

modulator contributes. The later time course of these effects sug-

gests that they may well be P3 effects.

Regardless of their source, the fact that multiple components

contribute to activity at frontocentral electrodes touches on an

important conceptual point. This meta-analysis shows that fronto-

central activity in the interval in which the FRN is typically

measured is responsive to the main effects of magnitude, likeli-

hood, and valence, and also to the interaction of valence with both

magnitude and likelihood. It appears that multiple components

operate in this interval. However, the debate following the publi-

cation of Holroyd and Coles’ theory has crystallized around the

idea of a single component in this interval, whose character will

ultimately be resolved through careful experimentation. In prac-

tice, we suspect that the character of the component described by

a given experiment as the “FRN” will depend strongly on the

interval in which this component is measured. For example, in

Talmi, Fuentemilla, Litvak, Duzel, and Dolan (2012) and Hauser

et al.’s (2014) articles, evidence was presented favoring a salience

account, however measurement was made at the latency of max-

imal FRN amplitude, that is the maximal main effect of valence.

Although this was a pragmatic choice and based on precedent, this

latency was nevertheless not necessarily one best suited to dem-

onstrating an RPE-FRN if there was one to be found, since that is

shown by a Valence � RPE Size interaction, not a valence main

effect. In practice, this resulted in these papers measuring effects at

	220 ms. However, this was prior to the period where the RPE-

FRN was observed in this meta-analysis but where salience effects

were marked in magnitude and close to significance for likelihood.

In the FRN debate generally, we suspect that the sensitivity of the

FRN to the key factors that are used to infer its function has

depended on the latency of its measurement to a degree which has

not been fully appreciated.

It is possible that in the future, separation of these components

may be assisted by improved knowledge about their scalp distri-

butions. Because of the limited and variable electrode arrays

available, the present meta-analysis cannot offer guidance here.

Furthermore, the FRN itself is partly defined by being maximal

over frontocentral sites. Given that is a now well-established

definition, it is likely any published example of the FRN would

also have to demonstrate a frontocentral maximum, in order to be

accepted as such. Therefore, any meta-analysis of the FRN would

be very likely to reflect this established scalp distribution. In

contrast, it seems likely that the later strong likelihood effect, and

possibly magnitude effect shown in Figure 7 are P3 effects and

would be maximal at more parietal locations.

The RPE-FRN was stronger when participants were engaged in

a task over which they had reason to believe they enjoyed some

control. In the strongest case of control, where participants imple-

mented a known rule, the RPE-FRN also lasted much longer, as

can be seen in Figure 6. These results suggest the possibility that

the RPE-FRN might be selectively recruited by the apparatus of

instrumental conditioning, rather than acting as a general purpose

representation of value. Some caution must be exercised in regard

to this finding, first, because subjective involvement was probably

lower with reduced control (Yeung, Holroyd, & Cohen, 2005) and,

second, because 10 of the 12 studies used for the “rule implemen-

tation” level of this moderator came from experiments conducted

by just two authors.

The RPE-FRN in magnitude studies was unaffected by whether

the magnitude of the forthcoming outcome was cued in advance.

As such, it appears that the RPE-FRN does not scale RPEs to the

range of outcomes on a given trial. We do not believe this should

be regarded as evidence that RPEs are genuinely coded on an

absolute scale however, because this would be functionally ex-

tremely limited and is biologically implausible. Scaling, or “adap-

tation,” is a ubiquitous feature of sensory processes, allowing, for

example, the eye to discriminate luminance over nine orders of

magnitude despite only three orders of contrast being available at

a given moment. We would expect such a solution to be used for

evaluating RPEs, which likewise have a very broad range As such,

this moderator analysis suggests that outcomes are not scaled to

the range of magnitudes available on a trial, but the wider context

of the experiment. Nevertheless, this is an interesting result, be-

cause it suggests that the expected value term against which RPEs

are calculated may not simply be inherited from the midbrain

dopamine system, or at least those midbrain dopaminergic neurons

that have shown strong scaling effects (Tobler et al., 2005), and is

thus relevant to the ongoing question of the afferents of the FRN.

Applications of the Present Findings

The FRN is a robustly elicited component, easy to study in

human participants, and appears to encode an RPE. It may thus

contribute to the daunting task of uncovering the network of neural

events that give rise to subjective valuation by humans. Holroyd

and Coles’ theory of the FRN was focused on its role in reinforce-

ment learning, rather than its role as a general index of subjective

value. However, the relationship between reinforcement learning

and valuation is close. The information concerning action-reward

contingencies that is held in a reinforcement learning system

presumably strongly informs the valuation of the actions available

to people in a given situation. Thus, if it can be measured (e.g., by

the FRN) it is has predictive power for human choice of the kind

that neuroeconomics strives to attain.

The nature of the reinforcement learning system underlying the

FRN is therefore pertinent. Reinforcement learning falls into two

broad classes, model-free and model-based. Model-free reinforce-

ment learning assigns values to actions based on the net reward

they can expect to incur, without consideration of the actual

outcomes that are produced. The values are updated in light of

RPEs, but are termed “habit values” because they encode only the

historical value of an action. Such learning is computationally

efficient and information poor because the structure of rewards and

the probabilities that follow an action is cached into a single value.

Model-based reinforcement learning uses a model of the environ-

ment which represents actions, rewards, and intermediate states,

and calculates values of actions by a tree search of this model.

Although more computationally expensive, this can be more

quickly updated. A recent review of model-free and model-based

reinforcement learning is provided by Walsh and Anderson (2014).

The relevance of this distinction to human choice is that model-

based reinforcement learning is likely to be continuous with gen-

eral cognition (Chater, 2009). Thus the degree to which choice on

any one occasion is influenced by wider knowledge, by delibera-

tive reasoning, or by verbal instruction will depend on the degree

to which a model-free habitual system or a model-based belief

system is dominant at that time. If the FRN can be established as
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belonging to one system or the other, it can be used as a much

more direct means to investigate the relative contributions of

habitual and belief based valuation to behavior, and assist in

accounting for variations in both inter- and intraindividual choice

that elude the revealed preferences method.

Although the present demonstration that the FRN encodes an

RPE places the debate on a much firmer footing, there has never-

theless been limited work on this important question. Hajcak,

Moser, Holroyd, and Simons (2007) and Moser and Simons (2009)

both showed a relationship of FRN amplitude to RPEs generated

against subjective predictions but not to reinforcement history,

implying the component might arise from model-based reinforce-

ment learning, whereas Ichikawa, Siegle, Dombrovski, and Ohira

(2010) found comparable contributions of subjective prediction

and reinforcement history to FRN amplitude. However, Walsh and

Anderson (2011b) found persuasive evidence against model-based

reinforcement learning. They compared the FRN in cases where

participants received verbal instruction on choice-outcome contin-

gencies to cases where they did not. In the instruction condition,

participants used this instruction, as shown by their behavior, thus

adopting the given “model.” However, when unexpected out-

comes, that is model-based RPEs, occurred, the FRN was initially

insensitive to these. Its sensitivity developed only at the rate shown

in the no-instruction condition suggesting it was dependent on a

model-free history of reinforcement. A number of other authors

have been able to show that FRN amplitude corresponds to the size

of RPEs derived from a model-free reinforcement learning algo-

rithm (Chase, Swainson, Durham, Benham, & Cools, 2011; Cohen

& Ranganath, 2007; Philiastides, Biele, Vavatzanidis, Kazzer, &

Heekeren, 2010). Other evidence for a model-free basis for the

FRN comes from the demonstration that dopamine, the neurotrans-

mitter implicated in generating the FRN, promotes model-free

rather than model-based reinforcement learning (Wunderlich,

Smittenaar, & Dolan, 2012). On current balance the evidence

favors the FRN’s role in model-free reinforcement learning.

Insofar as model-free reinforcement learning is computationally

cheap, it might be expected to occur by default, and indeed, to

continue to compute valuations and associated RPEs even when a

superior model-based reinforcement learning system was guiding

behavior. Bayer and Glimcher (2005), for example, showed that

midbrain dopaminergic neurons, which are believed to underlie the

FRN, showed firing patterns consistent with a model-free RPE and

continued to behave in this fashion even when their effect on

behavior was weak. In the case of the FRN itself, the component

has in some cases been shown to predict choice in a way that is

consistent with reinforcement learning (Cohen & Ranganath,

2007; Van der Helden, Boksem, & Blom, 2010; Yasuda, Sato,

Miyawaki, Kumano, & Kuboki, 2004), but in other cases it has not

(Mars, De Bruijn, Hulstijn, Miltner, & Coles, 2004; Mas-Herrero

& Marco-Pallarés, 2014; San Martín, Appelbaum, Pearson, Huet-

tel, & Woldorff, 2013; Yeung & Sanfey, 2004). In particular,

Chase, Swainson, Durham, Benham, and Cools (2011) showed

that in a reversal learning task, the nature of which would be

expected to engage model-based reinforcement learning, an FRN

was observed that was well described by model-free reinforcement

learning but which nevertheless did not predict behavior, suggest-

ing it was overridden by a model-based system. Findings such as

these suggest that the FRN might be used to predict behavior in

situations promoting relatively automatic, fast judgments, what has

been described by dual process theories as System 1 (Kahneman,

2003). Such valuation has been underrepresented by the traditional

methods of behavioral economics, which rely on stated (rather than

observed) preferences in one-shot (rather than repeated) choices,

which place prominence on deliberative processing. However,

perhaps the most serious challenge that the studies cited above

pose for behavioral and neoclassical economics lies in the possi-

bility that rather than value being constructed from multiple terms,

as is suggested for example by prospect theory, quite separate

independent valuations might be constructed which have differen-

tial access to behavior depending on circumstances.

Even while the precise nature of the valuation associated with

the FRN remains unresolved, it may nevertheless serve as a bio-

marker for subjective value. It has been proposed in this regard for

a range of psychopathologies such as hypomania and depression

(Bress, Smith, Foti, Klein, & Hajcak, 2012; Mason, O’Sullivan,

Bentall, & El-Deredy, 2012) 2012) and pathological gambling

(Hewig et al., 2010). Furthermore, a number of recent studies have

shown that variation in dopaminergic genes affects the component

(e.g., Foti & Hajcak, 2012; Marco-Pallarés et al., 2009) raising the

possibility that it might be used to investigate the proximate basis

of genetic effects on behavior. With the advent of mobile electro-

encephalography (EEG) setups that can be ready to use within

minutes, the FRN may also provide a useful general measure of the

subjective value of an outcome even in studies in which the brain

is not the principal focus, much as other psychophysiological

techniques such as skin conductance and pupillometry are used

more broadly. As a dependent variable of subjective value it has a

number of advantages over self-report. Asking subjects to report

on their valuations brings in extra processes which generally

undermines the ecological validity of the study of “online” eval-

uation. Reported valuations may be subject to demand character-

istics because participants are likely to be aware of at least some

norms in economic preference, such as avoiding obvious incon-

sistencies and intransitivities. Self-report may also be affected by

what reference point the stated valuation is taken with respect to,

which depends in turn on the framing of the question used to

prompt self-report.

Alternative Accounts of the FRN

A number of tasks elicit a frontocentral negativity, or N2, at the

latency of the FRN (see Folstein & Van Petten, 2008, for a review),

and as such, alternative accounts of the FRN exist. One of these is that

it is merely an oddball, detecting the unexpectedness of events. This

is rather close to the claim that it simply codes salience which has

been disconfirmed in this meta-analysis. Attempts to experimentally

dissociate the FRN and N2 oddball have met with some success

(Holroyd, Pakzad-Vaezi, & Krigolson, 2008; Warren & Holroyd,

2012).

The N2 is believed to indicate activity in the anterior cingulate

cortex (Nieuwenhuis, Yeung, Van Den Wildenberg, & Ridderinkhof,

2003; Yeung, Botvinick, & Cohen, 2004). Botvinick, Braver, Barch,

Carter, and Cohen (2001) have claimed that the ACC is responsible

for cognitive control, becoming active when response conflict occurs,

and Brown and Braver (2005) have made the related claim that the

anterior cingulate cortex detects the likelihood of errors. Indeed,

circumstances in which cognitive control and error likelihood are high

do increase N2 amplitude, for example on no-go trials in a go/no-go
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task (Folstein & Van Petten, 2008). The theories can account for the

FRN’s response to reward if nonreward is regarded as an error, thus

signaling the need for increased cognitive control. Furthermore, a

different component, the error related negativity shares a common

scalp distribution with the FRN, and is strongly implicated in these

functions, inasmuch as it indicates internal registration of an error. In

fact, Holroyd and Coles’ theory also specifies a functional relationship

between these two components, arguing that they both reflect RPEs

arising from a sudden revision of reward expectation, either by ex-

ternal feedback in the case of the FRN or internal monitoring in the

case of the error related negativity.

A further alternative account of the FRN is that it is an affective

rather than economic response to outcomes (Gehring & Wil-

loughby, 2002; Luu, Tucker, Derryberry, Reed, & Poulsen,

2003).This is rather difficult to disentangle from the RPE account

because of the affective nature of reward. However, those studies

that have compared affective ratings of outcomes with the FRN

amplitudes associated with them have tended to find a poor rela-

tionship (Li, Han, Lei, Holroyd, & Li, 2011; Sambrook et al.,

2012; Yang, Gu, Tang, & Luo, 2013).

Implications for the Measurement of the RPE-FRN

and FRN

We have distinguished between a response simply to valence,

the FRN, well established in the literature, and a neural response to

the valence and size of an RPE, the RPE-FRN, for which we have

presented evidence here. The distinction is important for the test-

ing of Holroyd and Coles’ theory. However, it is not widely made

in the literature and the comments below apply equally to both

FRN and RPE-FRN.

The present meta-analysis revealed a wide variation in methods

used to quantify the FRN, and we have noted the role this may play

both in failures of replication and inflation of false positives. We

have also noted the variability of the waveforms themselves. These

two aspects are linked insofar as inconsistencies in FRN quantifica-

tion possibly reflect the genuine attempt to best tailor analysis to a

component of seemingly inconsistent character on an experiment-

by-experiment basis. However, if, as we have argued, variability in

the waveforms largely reflects the vagaries of component overlap

rather than real variability in the FRN, then this latitude in quan-

tification is harmful. For example, in the present meta-analysis, P2

and N2 peaks varied so much in their latency across experiments

that while we initially intended to apply the GGA technique to a

peak to peak measure, implemented in standardized intervals, we

were unable to do so. This illustrates the point that while peaks

might provide compelling landmarks by which to detect the FRN

in any individual study, the lack of consistency across studies

suggests the benefits of locking FRN quantification to simple

waveform peaks may be illusory. The loose relationship between

single waveform peaks and the underlying components has been

cogently described by Luck (2005).

As such, measures based on difference waves are to be preferred.

For the specific case of the RPE-FRN, a measurement interval of 270

ms–300 ms is suggested by the present study since this captures the

strongest effects of both magnitude and likelihood and is thus the best

estimate of the RPE-FRN’s latency. However, the RPE-FRN in

individual experiments may be subject to genuine latency differences

and so, based on the course of the effect under both modulators, the

interval 240 ms–340 ms may be more appropriate. It should be noted

that studies which more effectively decompose waveforms into con-

stituent components, for example using principal components analy-

sis, may reveal a rather different latency for the underlying RPE

encoder, or encoders. Indeed Figure 7 suggests that such decomposi-

tion may well be necessary to fully isolate the individual components.

Evaluation of the GGA Technique

The GGA technique was developed because the great variety in

how the FRN was quantified rendered conventional meta-analysis

highly problematic. It is worthwhile assessing how this technique

performed, partly in judging the present findings, but also for its future

use in ERP meta-analysis. First, our concerns regarding the conven-

tional meta-analysis of the FRN using effect sizes derived from

diverse quantifications proved justified. When such a meta-analysis

was performed it failed to find a significant effect of magnitude on the

FRN, despite this effect being strongly present in an ideal conven-

tional meta-analysis on original data. In contrast, the GGA technique

was in close agreement. The conclusion we draw from the superior

performance of the GGAs is that it is more important to employ an

appropriate and consistent quantification of a component than to have

access to the measures of within-study variance that use of published

statistics provides. Of course the ideal meta-analysis achieved both of

these objectives. However, the GGA technique only requires access to

published data. This has a great number of advantages. Most impor-

tantly, it avoids the large reduction in sample size that reliance on

original authors inevitably entails. It substantially reduces the effort

required to acquire data and convert it to a common format, and

makes no demands at all on the original authors. It removes the

uncertainty surrounding the number of studies that the meta-analysis

will contain, allowing the viability of the exercise to be assessed in

advance. It avoids the danger of bias arising from authors selectively

complying with the request for original data depending on what they

perceive the meta-analyzer’s hypothesis to be. Finally, the technique

can be used to guide the development of future work. If an effect,

component, or other subset of the ERP in a published study was not

selected for analysis within that study, there will not be any effect

sizes on which to base a traditional meta-analysis. The GGA tech-

nique allows for post hoc exploration of published ERPs, allowing the

researcher to approximate the effect sizes of previously disregarded

data to guide the design of new empirical study, theory, or analysis

technique. It is for this reason that we have made available the grand

averages used in this meta-analysis as supplementary files.

The GGA technique has some disadvantages. Simple, rather than

standardized effect sizes were used, meaning that the GGA meta-

analysis could not down-weight studies with large variance, thus

introducing some noise into hypothesis testing. The extent of this can

be simply estimated from the validation dataset by calculating the

correlation coefficient of the simple effect sizes of the GGA technique

and the standardized effect sizes of the ideal conventional meta-

analysis: the lower the correlation, the greater the noise introduced by

failure to use standardized effect size. The value was r � .8, suggest-

ing a moderate degree of noise introduced. This is, however, an

overestimate of the problem insofar as standardized effect sizes them-

selves are not perfect because the standard deviations they are built

from are themselves subject to sampling error. The remaining source

of noise in the GGA technique consists in deviations between the

digitized waveforms used for the meta-analysis and the original data;
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however, comparisons with the validation dataset set suggest this is

relatively small.

It should be noted that differences between experiments regarding

the reference electrode, filters, and baseline do not impact on the GGA

technique because all contrasts and simple effect sizes are generated

within-experiment, and so these extraneous factors can never become

confounds for the simple generic reason that they are held constant at

the point of generating simple effect sizes. It is true that FRN ampli-

tude itself may be affected by these parameters, and that a poorly

chosen reference electrode, for example, might reduce FRN ampli-

tudes overall, concomitantly reduce effect sizes, and assist in render-

ing a meta-analysis nonsignificant. However, in this regard GGAs do

not differ from conventional meta-analysis. We simply note that

because reference electrode is held constant within each study it does

not confound the simple effect size generated for that individual study,

and because this meta-analysis is simply a collation of such simple

effect sizes it likewise cannot be confounded by reference electrode.

We propose the GGA technique as a general method for meta-

analysis of ERP components, not just the FRN. While inconsistency

of measurement has been shown to be a particular problem for the

FRN, this is also likely to be true to some degree of other components.

Furthermore, even when conventional meta-analysis is applied, we

still propose that this be performed in concert with a GGA analysis, to

check there is no gross difference in results. As an accompanying

method it also has the advantage that it allows the plotting of a

waveform to accompany the reported effects. Individual ERP exper-

iments ubiquitously plot an entire waveform despite their reported

effects occurring in a small portion of the waveform because it

provides a “sanity check” that the ERP shows a representative char-

acter and that the interval chosen for analysis is reasonable. A GGA

waveform serves the same function in the case of a meta-analysis.

Conclusion

Neuroeconomics attempts to explain valuation by the brain. The

present study addressed this question at the relatively large scale of

EEG. It found that an easily elicited electrophysiological component,

the FRN, behaved in manner consistent with it representing valuation

of an outcome. Because of the temporal precision of EEG and the

inherent benefits of convergent evidence from different methodolo-

gies, it is to be hoped that further study of the FRN will assist in

uncovering the full picture of how the brain represents subjective

value.
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Appendix

Experiments Used in the Meta-Analysis, Including Whether an Effect Consistent With an RPE-FRN Was Found,

FRN Quantification, the Waveform Used if Additional Ones Were Present in the Listed Figure (WAV), the

Domain of the Gamble (DOM), and Whether Magnitude of an Outcome Was Cued (CUE)

Experiment N RPE-FRNa Site FRNb WAV FIG DOM CUEc

Likelihood modulator
Bellebaum & Daum (2008) 17 Yes Pool Mean amp 220–280 Postlearning 4 Gain
Bellebaum et al. (2010a) 15 No Pool Peak to peak: P2 (150–N2) to N2

(200–340)
Postlearning 4b Gain

Bellebaum et al. (2011) 18 Yes Cz Peak of diff wave 100–300 Younger participants 3a Gain
Franken et al. (2010) 47 — Fz Mean amp 200–300 2 Gain
Hajcak et al. (2005)

Experiment 1 17 No Fz Peak of diff wave 200–500 1 Gain
Hajcak et al. (2005)

Experiment 2 12 No Fz Peak of diff wave 200–500 3 Gain
Hajihosseini et al. (2012) 20 Fz Mean amp 100 either side of N2 peak 2a Mixed
Holroyd et al. (2003) 10 Yes FCz Peak to peak: P2 (160–240) to N2

(P2–325)
2c Gain

Holroyd et al. (2008) 12 — FCz Peak to peak: P2 (160–240) to N2
(P2–325)

Time-estimation 1b Gain

Holroyd et al. (2009)
Experiment 1 20 Yes FCz Peak of diff wave 0–600 2 Gain

Holroyd et al. (2009)
Experiment 2 15 Yes FCz Peak of diff wave 0–600 2 Gain

Holroyd et al. (2009)
Experiment 3 15 Yes FCz Peak of diff wave 0–600 2 Gain

Holroyd et al. (2011) 18 Yes FCz Peak of diff wave 200–300 Outcome locked 1a Gain
Larson et al. (2007) 11 — FCz Peak to peak: P2 (125–325) to N2

(P2–325)
Control 2 Gain

Liao et al. (2011) 19 Yes Fz Peak of diff wave 150–500 Outcome locked 4 Gain
Morris et al. (2011) 23 No Cz Peak of diff wave 	180–300 Passive gambling

task
1 Gain

Pfabigan et al. (2012) 20 No FCz Peak to peak: P2 (preceding positive
peak) to N2 (200–350)

Second half 1 Mixed

Sambrook & Goslin
(unpublished)
Experiment 3 42 FCz Unpublished Gain/Loss

Talmi et al. (2013) 20 No (p � .06) Pool Amplitudes at sample points 205–250 Reward condition 4d Gain
Walsh & Anderson (2011a) 13 Yes FCz Mean amp of diff wave 200–300 4 Gain
Walsh & Anderson (2011b) 20 Yes FCz Mean amp of diff wave 200–350 No instruction

condition
3 Gain

Walsh & Anderson (2013)
Experiment 1 14 Yes FCz Mean amp of diff wave 240–400 Standard and novel 6 Gain

Walsh & Anderson (2013)
Experiment 2 14 Yes FCz Mean amp of diff wave 240–400 Standard and novel 6 Gain

Walsh & Anderson,
(unpublished)
Experiment 1 13 FCz Unpublished Gain

Walsh & Anderson
(unpublished)
Experiment 2 13 FCz Unpublished Gain

Yu et al. (2011) 16 — Fz Mean amp 275–325 and peak to peak
(details not given)

Outcome locked
25%/75%

2b,c Mixed

Magnitude modulator

Banis & Lorist (2012) 32 Wrong way FCz Mean amp 230–300/Mean amp 230–
300 relative to average of mean
amps of P2 (180–225) and P3
(320–390)/Peak to peak P2 (150–
230) to N2 (P2–330)

Average of noise 2 Mixed N

Bellebaum et al. (2010b) 20 Yes Fz Peak to peak: P2 (preceding positivity
from 150) to N2 (200–350)

Blocks 3–6, 5c vs.
50c

3b Gain Y

(Appendix continues)
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Appendix (continued)

Experiment N RPE-FRNa Site FRNb WAV FIG DOM CUEc

Gu et al. (2011) 24 Yes Fz Peak to average peak: P2 (preceding
positive peak) to N2 (200–400) to
P3 (succeeding positive peak)

Outcome valence
subsequently

4b Mixed Y

Hajcak et al. (2006)
Experiment 1

16 No Fz Peak to peak: P2 (150–350) to N2
(P2–350)

1 Mixed N

Hajcak et al. (2006)
Experiment 2

17 No Fz Peak to peak: P2 (150–350) to
(P2–350)

3 Mixed N

Hajihosseini et al. (2012) 20 No Fz Mean amp 100 either side of N2 peak 2c Mixed Y
Kamarajan et al. (2009) 48 Wrong way FCz N2 peak 200–275 Sexes averaged 4 Mixed Y
Luo & Qu (2013) 18 Yes FCz Mean amp 200–250 Win/loss at ¥1

vs. ¥40
3a,b Mixed Y

Mushtaq et al.
(unpublished) 29 FCz Unpublished Mixed Y

Nittono et al. (2008) 16 — Fz Peak to peak: P2 (preceding positive
peak) to N2 (150–300)

Even cond., �10/
�1/
1/
10

1a Mixed N

Onoda et al. (2010) 17 — FCz Peak of diff wave 250–400 1 Mixed Y
Pedroni et al. (2011) 16 — Cz TANCOVA over entire waveform From author Gain Y
Roberts et al. (unpublished) 26 Fz Unpublished Mixed N
Sambrook & Goslin (2014) 55 Yes Pool Correlation of voltage and utility over

entire waveform
Gain/Loss N

Sambrook & Goslin
(unpublished)
Experiment 1 48 FCz Unpublished Gain Both

Sambrook & Goslin
(unpublished)
Experiment 2 45 FCz Unpublished Gain/Loss N

San Martin et al. (2010) 22 — FCz Mean amp 240–310 4 Mixed Y
Santesso et al. (2011) 30 Wrong Way FCz N2 Peak (200–400) Adult participants 2 Mixed Y
Sato et al. (2005) 18 No Fz Peak to peak: P2 (150–220) to N2

(P2–325)
1 Mixed Y

Schuermann et al. (2012) 20 Yes FCz Peak to peak: P2 (100–300) to N2
(200–400)

2 Mixed Y

Talmi et al. (2013) 20 — Pool Amps at sample points 205–250 Reward 4d Gain Y
Toyomaki & Murohashi

(2005)
13 — Fz Peak to peak: P2 (unspecified) to N2

(unspecified)
�500/�10/
10/


500
2 Mixed Y

Van den Berg et al. (2011) 42 — Fz Peak to peak: P2 (150–350) to N2
(following negative peak)

2 Mixed N

Wu & Zhou (2009) 16 No FCz Mean amp 250–350 Expected magnitudes 1 Mixed Y
Yeung & Sanfey (2004) 16 — FCz Peak to average Peak: P2 (preceding

positive peak) to N2 (200–400) to
P3 (succeeding positive peak)

2 Mixed Y

Yi et al. (2012) 28 No Fz Peak of N2 (200–400) 4b Mixed Y
Yu & Zhou (2006) 20 No Fz Mean amp 25 before and after peak

of diff wave
Execution 1 Mixed Y

Yu & Zhou (2009) 14 No Fz Mean amplitude 200–300 “To bet” trials 3 Mixed Y
Zottoli & Grose-Fifer

(2012)
18 Yes FCz Peak to peak: P2 (150–300) to N2

(200–425)
Adult participants 2a Mixed Y

a A dash indicates that the RPE-FRN was not reported. b Values in parentheses indicate the interval in which peak assignment was made in
milliseconds. c In cued studies participants know the magnitude of the forthcoming feedback but not its valence, in uncued studies participants knew
neither its magnitude nor its valence. d Eight waveforms corresponding to the Valence � Magnitude � Likelihood design were given; these were all
digitized and the unwanted factor collapsed out by averaging pairs of waveforms.
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