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        AbstractAbstractAbstractAbstract    27 

Sensitivity to repetitions in sound amplitude and frequency is crucial for sound perception. As with other 28 

aspects of sound processing, sensitivity to such patterns may change with age, and may help explain 29 

some age-related changes in hearing such as segregating speech from background sound. We recorded 30 

magnetoencephalography to characterize differences in the processing of sound patterns between 31 

younger and older adults. We presented tone sequences that either contained a pattern (made of a 32 

repeated set of tones) or did not contain a pattern. We show that auditory cortex in older, compared to 33 

younger, adults is hyperresponsive to sound onsets, but that sustained neural activity in auditory cortex, 34 

indexing the processing of a sound pattern, is reduced. Hence, the sensitivity of neural populations in 35 

auditory cortex fundamentally differs between younger and older individuals, overresponding to sound 36 

onsets, while underresponding to patterns in sounds. This may help to explain some age-related changes 37 

in hearing such as increased sensitivity to distracting sounds and difficulties tracking speech in the 38 

presence of other sound. 39 

 40 

 41 

 42 

 43 
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        IntroductionIntroductionIntroductionIntroduction    50 

Many adults aged 50 or older experience challenges understanding speech in the presence of 51 

background sound (Pichora-Fuller, 2003; Pichora-Fuller et al., 2016), but the underlying neural sources 52 

contributing to such deficits are not fully understood. Speech contains rich, regular patterns, such as 53 

quasi-regular amplitude fluctuations at 4–5 Hz (Rosen, 1992; Varnet et al., 2017), and perceptual 54 

sensitivity to sound pattern and speech-in-noise perception correlate with each other (Holmes and 55 

Griffiths, 2019), suggesting shared mechanisms (Holmes et al., 2021). The perceptual processes through 56 

which sensitivity to such patterns may contribute to speech perception likely include the segregation of 57 

unique, concurrent sound streams (Schröger, 2005, 2007; Snyder and Alain, 2007; Winkler et al., 2009; 58 

Bendixen, 2014) and the recognition and prediction of relevant sound features (Jones and Boltz, 1989; 59 

Nobre et al., 2007; Henry and Herrmann, 2014; Nobre and van Ede, 2018). The current study is 60 

concerned with the degree to which patterns are represented in the brains of older individuals and 61 

whether neural sensitivity to patterns differs between younger and older adults. 62 

Sustained neural activity is a DC response evident in cortical electroencephalography (EEG) in 63 

response to regular auditory patterns (Barascud et al., 2016; Southwell et al., 2017; Herrmann and 64 

Johnsrude, 2018a). This response manifests as soon as a pattern, such as repetition of a set of tones, is 65 

present (Southwell et al., 2017; Herrmann and Johnsrude, 2018a; Southwell and Chait, 2018). It also 66 

manifests for spectrally coherent chord fluctuations (Teki et al., 2016), complex sounds made of 67 

isochronous tone sequences (Sohoglu and Chait, 2016), and repeated amplitude or frequency 68 

modulations (Gutschalk et al., 2002; Ross et al., 2002; Herrmann and Johnsrude, 2018a; Herrmann et 69 

al., 2019). Sustained activity increases with the degree of regularity of a pattern, for example, with 70 

increasingly coherent frequency modulation in sounds (Teki et al., 2016; Herrmann and Johnsrude, 71 

2018a). 72 

Accumulating evidence suggests that aging and age-related hearing loss are associated with a 73 

loss of inhibition throughout the auditory pathway following peripheral decline (Caspary et al., 2008; 74 

Rabang et al., 2012; Ouellet and de Villers-Sidani, 2014). This may render neurons in the aged auditory 75 

system hyperresponsive to sound (Hughes et al., 2010; Alain et al., 2012; Bidelman et al., 2014; Overton 76 

and Recanzone, 2016; Presacco et al., 2016a, b; Herrmann et al., 2018) and shorten the time it takes for 77 

neurons to regain responsiveness following adaptation to sound (de Villers-Sidani et al., 2010; Mishra et 78 
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al., 2014; Herrmann et al., 2016; Herrmann et al., 2019). Changes in inhibition, responsivity, and 79 

adaptation associated with aging and hearing loss likely affect all aspects of hearing (Herrmann and 80 

Butler, 2020), including sensitivity to sound patterns. 81 

Some initial evidence suggests that sustained neural activity may be reduced in older compared 82 

to younger people. Many years ago, Pfefferbaum and colleagues (1979) demonstrated that sustained 83 

activity elicited by a short sine tone is reduced for older compared to younger adults. More recent work 84 

indicates that younger individuals exhibit pattern-related sustained activity in response to amplitude-85 

modulated sounds, whereas older adults do not appear to, although the difference between these 86 

groups was not significant (Herrmann et al., 2019). Another study yielded data suggestive of reduced 87 

sustained activity in older compared to younger people in response to repeated tone sequences (Al Jaja 88 

et al., 2020), but stimulus parameters differed between age groups in this paper. A controlled 89 

experiment is thus required to elucidate whether sustained neural activity to regular sound patterns 90 

differs between younger and older people. 91 

Previous work investigating sustained neural activity in older adults has utilized low-density 92 

electroencephalography (EEG; <20 electrodes; Pfefferbaum et al., 1979; Herrmann et al., 2019; Al Jaja 93 

et al., 2020). This type of EEG is not very well suited for the localization of neural sources generating 94 

scalp-recorded signals. Magnetoencephalography (MEG) typically allows for better source 95 

reconstruction than EEG, because magnetic fields are less distorted by the skull and scalp than the EEG-96 

recorded electric potentials (Hämäläinen et al., 1993; Hämäläinen and Hari, 2002). Previous MEG source 97 

localizations in younger adults suggest that the auditory cortex underlies sustained neural activity 98 

(Pantev et al., 1994; Pantev et al., 1996; Gutschalk et al., 2002; Ross et al., 2002; Okamoto et al., 2011; 99 

Barascud et al., 2016; Teki et al., 2016) and that additional brain regions in parietal cortex, frontal cortex, 100 

and hippocampus may also contribute (Tiitinen et al., 2012; Barascud et al., 2016; Teki et al., 2016). 101 

Whether the neural sources of pattern-related sustained activity differ between younger and older 102 

adults is unknown. 103 

In the current study we record MEG from younger and older adults while they listen to sound 104 

sequences. Sequences were made by taking pure tones at different frequencies and either repeating 105 

the same small set of these in the same order, so that a regular pattern is heard, or by presenting them 106 

pseudo-randomly so that no pattern is present. We investigate whether sustained neural activity to a 107 
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regular sound pattern differs between younger and older individuals. We also examine whether auditory 108 

cortex is generally more responsive to sound in older, compared to younger adults, as has been 109 

previously reported (Bidelman et al., 2014; Herrmann et al., 2018). 110 

Methods and MaterialsMethods and MaterialsMethods and MaterialsMethods and Materials    111 

ParticipantsParticipantsParticipantsParticipants    112 

Twenty-six younger (mean: 26.7 years; range: 21–33 years; 13 male) and twenty-five older adults (mean: 113 

63.9 years; range: 53–73 years; 11 male) participated in the current study. Participants reported no 114 

neurological disease or hearing impairment, gave written informed consent, and were paid for their 115 

participation. None of the participants wore a hearing aid or reported having been prescribed a hearing 116 

aid. We focused on a typical sample of older individuals, allowing for the possibility of some degree of 117 

hearing impairment. The study was conducted in two sessions on separate days (range: 1-43 days apart; 118 

median: 7 days apart; no age-group difference: t49 = 0.99, p = 0.327). The study was conducted in 119 

accordance with the Declaration of Helsinki, the Canadian Tri-Council Policy Statement on Ethical 120 

Conduct for Research Involving Humans (TCPS2-2014), and was approved by the local Nonmedical 121 

Research Ethics Board of the University of Western Ontario (protocol ID: 106570). 122 

Hearing assessmentHearing assessmentHearing assessmentHearing assessment    and hearing thresholdsand hearing thresholdsand hearing thresholdsand hearing thresholds    123 

Pure-tone audiometric data were acquired for each participant (Figure 1). The pure-tone average 124 

hearing threshold (i.e., the mean across the 0.25, 0.5, 1, 2, and 4 kHz frequencies) was larger for older 125 

compared to younger adults (t49 = 7.79, p = 4×10-10, re = 0.744; Figure 1, right). This indicates a mild-to-126 

moderate hearing impairment in many of the older adults and is consistent with the high-frequency 127 

sloping loss characteristic of age-related hearing impairment (Moore, 2007; Plack, 2014) as well as with 128 

previous electrophysiological studies that investigated differences in sound processing between younger 129 

and older adults (Presacco et al., 2016a; Herrmann et al., 2018). 130 
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Figure 1: Figure 1: Figure 1: Figure 1: Audiograms and pureAudiograms and pureAudiograms and pureAudiograms and pure----tone averagetone averagetone averagetone average    hearing hearing hearing hearing 
thresholdthresholdthresholdthreshold.... Left: Audiograms for each participant. Thin 
lines reflect individual participant data. Thick lines 
reflect the mean across participants. Right: Pure-tone 
average hearing threshold (mean across 0.25, 0.5, 1, 
2, and 4 kHz). Gray dots reflect the threshold for 
individuals.  

For each participant, we measured the hearing threshold (i.e., sensation level [SL]) using a 131 

method-of-limits procedure (Herrmann and Johnsrude, 2018b; Herrmann et al., 2019) as a reference 132 

threshold in MATLAB software for sound presentation. Participants listened to a 12-s pure tone with a 133 

frequency of 1323 Hz that changed continuously in intensity at a rate of 5 dB/s (either decreased [i.e., 134 

starting at suprathreshold levels] or increased [i.e., starting at subthreshold levels]). Participants pressed 135 

a button when they could no longer hear the tone (intensity decrease) or when they started to hear the 136 

tone (intensity increase); the sound stopped after button press. The sound intensity at the time of the 137 

button press was noted for 6 decreasing sounds and 6 increasing sounds (decreasing and increasing 138 

sounds alternated), and these were averaged to determine the individual hearing threshold. The mean 139 

hearing threshold was elevated for older compared to younger adults (t49 = 5.208, p = 3.7×10-6, re = 140 

0.597; younger mean [±sd]: -94.16±1.39, older mean [±sd]: -93.36±2.65), which was expected given the 141 

audiograms (Figure 1). 142 

All acoustic stimuli described below were presented at 55 dB above each individual’s hearing 143 

threshold – that is, at 55 dB sensation level – in order to match audibility across age groups. However, 144 

higher sound levels can lead to larger brain responses (Picton et al., 1974; Picton et al., 1978; 145 

Pfefferbaum et al., 1979; Polich et al., 1988; Schadow et al., 2007; Herrmann et al., 2018). A higher sound 146 

level for older compared to younger adults could thus bias statistical analyses for which we expect larger 147 

responses in older compared to younger adults. Hence, for these analyses, we also used a subgroup of 148 

14 participants of each age group for which the hearing threshold – and thus the sound level of the 149 

acoustic presentation – did not differ (t26 = 0.956, p = 0.348, re = 0.184) to confirm our results. 150 
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Acoustic stimulation and procedureAcoustic stimulation and procedureAcoustic stimulation and procedureAcoustic stimulation and procedure    151 

Acoustic stimuli were 4-s long sequences that each consisted of 96 pure-tone pips arranged in twelve 152 

sets of eight tones each (see also Barascud et al., 2016; Herrmann and Johnsrude, 2018a; Southwell and 153 

Chait, 2018). Each set had a duration of 0.333 s. Pips were 0.0417 s in duration with attack and decay 154 

times of 0.007 s, and no gap between tones, or sets. The frequency of each tone was one of 150 possible 155 

values between 700 and 2500 Hz (logarithmically spaced).  156 

Acoustic stimuli were presented in two conditions, ‘Pattern-Absent’ and ‘Pattern-Present’, which 157 

occurred with equal probability (50%). In the ‘Pattern-Absent’ condition, tones with different 158 

frequencies were presented in pseudo-random order without a pattern, whereas in the ‘Pattern-159 

Present’ condition, tones transitioned from random to a regular pattern 1 s (3 sets) after sound onset. 160 

For the ‘Pattern-Absent’ condition, 8 new frequency values were randomly selected for each of the 12 161 

sets (Figure 2, top). In the ‘Pattern-Present’ condition, 8 new frequency values were randomly selected 162 

for each of the first 3 sets (0–1 s; similar to ‘Pattern-Absent’), and then 8 new random frequency values 163 

were selected and repeated in the same order for the remaining 9 sets, thereby creating a regular 164 

pattern (Figure 2, bottom). These conditions are similar to the sounds used in previous studies that 165 

investigated sustained neural activity (Barascud et al., 2016; Southwell et al., 2017; Herrmann and 166 

Johnsrude, 2018a). 167 

 

Figure 2: Schematic of acoustic stimulationFigure 2: Schematic of acoustic stimulationFigure 2: Schematic of acoustic stimulationFigure 2: Schematic of acoustic stimulation    for for for for 
‘‘‘‘PatternPatternPatternPattern----Absent’ and ‘Absent’ and ‘Absent’ and ‘Absent’ and ‘PatternPatternPatternPattern----Present’ Present’ Present’ Present’ conditionsconditionsconditionsconditions....    
Sound frequency is displayed on the y-axis and dots 
reflect the sound frequency of individual tones of the 
tone sequence.    

In each of the two recording sessions, participants were presented with one 12-min block of 168 

stimulation (as part of recording sessions for an additional project not presented here). Participants 169 

listened passively to 60 trials of each condition per session, while watching a movie of their choice, with 170 
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subtitles, that was projected into the electromagnetically shielded room via a mirror system. Trials of 171 

the Pattern-Absent and the Pattern-Present conditions were presented pseudo-randomly throughout 172 

the block, such that each condition could occur maximally three times in direct succession. Across both 173 

sessions, participants listened to 120 trials per condition. Trials were separated by a 2-s inter-stimulus 174 

interval. 175 

Magnetoencephalographic recordingsMagnetoencephalographic recordingsMagnetoencephalographic recordingsMagnetoencephalographic recordings    and and and and initial preprocessinginitial preprocessinginitial preprocessinginitial preprocessing    176 

Magnetoencephalographic data were recorded using a 306-channel Neuromag Vectorview MEG 177 

(MEGIN Oy, Helsinki, Finland; sampling rate: 1000 Hz, online filter: DC–330 Hz) at the Max Planck 178 

Institute for Human Cognitive and Brain Sciences in Leipzig, Germany. Data were recorded in an 179 

electromagnetically shielded room (AK3b, Vacuumschmelze, Hanau, Germany). The signal space 180 

separation (SSS) method (maxfilter© version 2.2.15; default parameter setting Lin = 8; Lout = 3) was used 181 

to suppress external interference, interpolate bad channels, and transform each person’s individual data 182 

to the sensor space of the first block of the first session to ensure the data are in a common space (Taulu 183 

et al., 2004; Taulu et al., 2005). 184 

Combination of magnetometer and gradiometer channelsCombination of magnetometer and gradiometer channelsCombination of magnetometer and gradiometer channelsCombination of magnetometer and gradiometer channels    185 

The Vectorview MEG device records magnetic fields using 102 magnetometers and 204 gradiometers in 186 

102 locations distributed around the head. In order to account for all data that were recorded, we 187 

combined signals from magnetometer and gradiometer channels (Herrmann et al., 2018). 188 

Magnetometers and gradiometer differ in their configuration, such that magnetometers measure 189 

magnetic fields in Tesla (T), while gradiometers (a coupled pair of magnetometers) measure differences 190 

in the same magnetic fields over a distance of 0.0168 m in Tesla per meter (T/m). The combination of 191 

channel types requires accounting for their different units. We transformed all channels into 192 

magnetometer channels, because such a model only requires a linear interpolation that results in the 193 

same unit for all channels. To this end, we applied the following transformation matrix to each of the 194 

102 sensor triplets (i.e., one triplet comprises two gradiometer channels and one magnetometer 195 

channel): 196 

������� = 	 × � 197 
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where XXXX consists of a 3 × n matrix (with n being the number of data samples over time). The three 198 

rows of XXXX refer to the two gradiometers and one magnetometer (i.e., one triplet). SSSS refers to a 5 × 3 199 

scaling matrix with the following elements: 200 

	 =

−0.0084 0 1

0.0084 0 1

0 −0.0084 1

0 0.0084 1

0 0 1

 201 

The value 0.0084 reflects half of the distance between the two gradiometer loops measured in 202 

meters, and the transformation constitutes a linear approximation of the magnetic field at each of the 203 

triplets. The transformation replaces the sensor triplet by a sensor quintet of magnetometers. The 204 

columns of SSSS refer to the triplet of two gradiometers and one magnetometer and the rows of SSSS refer to 205 

the resulting five magnetometers. This procedure resulted in signals from 510 magnetometer channels 206 

centered on and around 102 locations around a participant’s head (Herrmann et al., 2018). 207 

Preprocessing of magnetoencephalographic dataPreprocessing of magnetoencephalographic dataPreprocessing of magnetoencephalographic dataPreprocessing of magnetoencephalographic data    208 

Data were high-pass filtered (0.7 Hz; 2391 points, Hann window), low-pass filtered (20.3 Hz, 119 points, 209 

Kaiser window), down-sampled to 250 Hz, and divided into 6-s long epochs time-locked to sound onset 210 

(from 1 s before to 5 s after sound onset). Independent components analysis (runica method, Makeig et 211 

al., 1996; logistic infomax algorithm, Bell and Sejnowski, 1995; Fieldtrip implementation, v20130727, 212 

Oostenveld et al., 2011) was used to identify and remove activity related to blinks, horizontal eye 213 

movements, muscle activity, and noisy channels. Epochs in which a signal change larger than 8 Picotesla 214 

(pT) occured in any channel were excluded. These data were used to investigate age differences in 215 

evoked responses to the onset of the sounds. 216 

In order to investigate the sustained neural activity, the same pipeline was computed a second 217 

time, with the exception that high-pass filtering was omitted. Omission of the high-pass filter is necessary 218 

to investigate the sustained response, because the response is a very low-frequency signal reflecting a 219 

DC shift (Barascud et al., 2016; Southwell et al., 2017; Herrmann and Johnsrude, 2018a). Activity related 220 

to blinks, horizontal eye movements, muscle activity, and noisy channels was removed using the 221 

identified components from the high-pass filtered data. Epochs in which a signal change larger than 8 222 

pT occurred in any channel were excluded. 223 
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Analysis of responses to sound onsetAnalysis of responses to sound onsetAnalysis of responses to sound onsetAnalysis of responses to sound onset    224 

High-pass filtered data were used to investigate whether neural responses to the onset of the sounds 225 

differed between age groups. This analysis aimed to test whether the auditory cortex of older adults is 226 

hyperresponsive to sound; consistent with reduced inhibition (Caspary et al., 2008; Hughes et al., 2010; 227 

Juarez-Salinas et al., 2010). Data from the Pattern-Absent and Pattern-Present conditions were averaged 228 

because both conditions were identical for the first second of the sound. Epochs ranging from -0.15 s to 229 

0.5 s time-locked to sound onset were extracted. Absolute values were calculated for signals of each 230 

channel (because magnetic fields have opposite polarities in directions perpendicular to the tangential 231 

orientation aspect of the underlying neural source). The mean signal from the pre-stimulus period (-0.15 232 

to 0 s) was subtracted from the signal at each time point, separately for each channel (baseline 233 

correction). Responses were averaged across channels, resulting in one response time course per 234 

participant. 235 

For the statistical analysis, differences in response amplitude between age groups were assessed 236 

for each time point using independent samples t-tests. False discovery rate was used to account for 237 

multiple comparisons (Benjamini and Hochberg, 1995; Genovese et al., 2002). We confirmed the results 238 

with two independent samples t-tests that contrasted the amplitudes of the M50 (0.03–0.06 s) and 239 

M100 (0.09–0.13 s) between age groups, which have previously been shown to differ between younger 240 

and older adults (Sörös et al., 2009; Alain et al., 2012; Herrmann et al., 2018). 241 

Analysis of Analysis of Analysis of Analysis of patternpatternpatternpattern----related sustained activityrelated sustained activityrelated sustained activityrelated sustained activity    242 

Non-high-pass filtered data were used to investigate whether sustained neural activity associated with 243 

a pattern in sounds differs between age groups. The 6-s epochs (-1 to 5 s, time-locked to sound onset) 244 

were used. Absolute values were calculated for signals of each channel and the mean signal from the 245 

pre-stimulus period (-1 to 0 s) was subtracted from the signal at each time point, separately for each 246 

channel (baseline correction). Responses were averaged across channels, resulting in one response time 247 

course per condition and per participant. 248 

Statistical analysis focused on responses during the last half of each stimulus: the 2–4 s time 249 

window. By 2 s, the repeating set of tones would have been presented 3 times (2 full repetitions) in the 250 

Pattern-Present condition (Barascud et al., 2016; Teki et al., 2016; Herrmann and Johnsrude, 2018a). An 251 
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ANOVA with the within-subjects factor Condition (Pattern-Absent, Pattern-Present) and the between-252 

subjects factor Age Group (younger, older) was calculated. 253 

Source localization of Source localization of Source localization of Source localization of magnetoencephalographicmagnetoencephalographicmagnetoencephalographicmagnetoencephalographic    datadatadatadata    254 

Anatomically constrained source localization was used to localize the sources underlying the neural 255 

activity in sensor space. Individual T1-weighted MR images (3T Magnetom Trio, Siemens AG, Germany) 256 

were available for each participant. The MR images were used to construct inner skull surfaces (volume 257 

conductor) and mid-gray matter cortical surfaces (source model; using Freesurfer and MNE software; 258 

https://surfer.nmr.mgh.harvard.edu/; http://www.martinos.org/mne/). The MR and the MEG 259 

coordinate systems were co-registered using MNE software which included an automated and iterative 260 

procedure that fitted the >300 digitized head surface points (Polhemus FASTRAK 3D digitizer) to the MR 261 

reconstructed head surface (Besl and McKay, 1992). The inner skull was extracted from the MR images 262 

using MNE software and used to calculated lead fields using the boundary element model as 263 

implemented in Fieldtrip software (Nolte, 2003). Invserse solutions were calculated using the sLORETA 264 

method (Pascual-Marqui, 2002). Neural activity was spatially smoothed across the surface using an 265 

approximation to a 6-mm FWHM Gaussian kernel (Han et al., 2006). Individual cortical representations 266 

were transformed to a common coordinate system (fsaverage standard brain; Fischl et al., 1999b). 267 

Workbench software (v1.4.2; https://www.humanconnectome.org/) was used for visualization of source 268 

localizations morphed to the pial cortical surface of the fsaverage standard brain (Fischl et al., 1999a). 269 

Source localizations were calculated for onset responses and for sustained neural activity. In order to 270 

visualize and analyze pattern-related auditory cortex activity, we averaged source-localization 271 

amplitudes across regions of the superior temporal plane (A1, A4, PBelt, MBelt, and LBelt) using the 272 

brain parcelations of the Human Connectome Project (Glasser et al., 2016). 273 

Effect sizesEffect sizesEffect sizesEffect sizes    274 

Effect sizes are provided as partial η2 for ANOVAs and as re (requivalent) for t-tests (Rosenthal and Rubin, 275 

2003). re is equivalent to the square root of partial η2 for ANOVAs. 276 

Data availabilityData availabilityData availabilityData availability    277 

This study was not pre-registered. MEG data in BIDS format (Pernet et al., 2019) are available at <link 278 

will be provided upon acceptance of publication>. 279 
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ResultsResultsResultsResults    280 

Responses to sound onset are enhanceResponses to sound onset are enhanceResponses to sound onset are enhanceResponses to sound onset are enhancedddd    in older compared to younger adultsin older compared to younger adultsin older compared to younger adultsin older compared to younger adults    281 

Figure 3A displays the neural response time courses elicited by the onset of the sounds. Responses were 282 

larger in older compared to younger adults in the M50 and M100 time windows (black line in Figure 3A, 283 

FDR-thresholded). Figure 3B/C shows the mean amplitudes and topographical distributions for the M50 284 

and M100 time windows. Larger neural responses for older compared to younger adults were also 285 

observed for the subgroups of 14 participants per age group for which hearing thresholds – and thus 286 

sound-presentation levels – did not differ (M50: t26 = 4.861, p = 4.8×10-5; re = 0.69; M100: t26 = 4.381, p 287 

= 1.7×10-4, re = 0.652). These results demonstrate that even when sound level does not differ between 288 

younger and older adults, older adults exhibit hyperresponsiveness. Source localizations show activity in 289 

superior temporal cortex, including auditory cortex, underlying M50 and M100 responses in both age 290 

groups (Figure 3D/E). 291 

 

Figure Figure Figure Figure 3333::::    Neural responses to the onset of sounds.Neural responses to the onset of sounds.Neural responses to the onset of sounds.Neural responses to the onset of sounds. A:A:A:A: Time courses of neural activity (root-mean square 
amplitude, averaged across all channels). The black line indicates a significant difference between age groups 
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B:B:B:B: Mean activity and topographies for the M50 time window (30–60 ms). C:C:C:C: Mean activity and topographies for 
the M50 time window (90–130 ms). D:D:D:D: Source localization for the M50 time window. E:E:E:E: Source localization for 
the M100 time window. *p ≤ 0.05 

 

PatternPatternPatternPattern----related sustained activity is reduced in older compared to younger adultsrelated sustained activity is reduced in older compared to younger adultsrelated sustained activity is reduced in older compared to younger adultsrelated sustained activity is reduced in older compared to younger adults    292 

Figure 4A and B shows responses time courses and topographical distributions for the Pattern-Absent 293 

and the Pattern-Present condition for both age groups. The ANOVA for the 2-4 s time window revealed 294 

a Condition × Age Group interaction (F1,49 = 9.839, p = 0.003, np
2 = 0.167; also significant for the subset 295 

of participants for which sound level did not differ: F1,26 = 6.792, p = 0.015, np
2 = 0.207): While both age 296 

groups show larger sustained activity for the Pattern-Present compared to the Pattern-Absent condition 297 

(younger: F1,25 = 49.692, p ≤ 1×10-6, np
2 = 0.665; older: F1,24 = 6.287, p = 0.019, np

2 = 0.208), this 298 

differences was larger in younger compared to older adults (Figure 4C). There was no difference 299 

between age groups for the Pattern-Absent condition (F1,49 = 0.528, p = 0.471, np
2 = 0.011). The main 300 

effect of Condition (F1,49 = 45.185, p ≤ 1×10-6, np
2 = 0.48) and the main effect of Age Group (F1,49 = 6.994, 301 

p = 0.011, np
2 = 0.125) were also significant. 302 

 

Figure Figure Figure Figure 4444::::    PatternPatternPatternPattern----related sustained related sustained related sustained related sustained activity. A:activity. A:activity. A:activity. A: Response time courses (root-mean square amplitude, averaged 
across all channels). B:B:B:B: Topographical distributions for each condition and age group for the 2-4 s time window. 
C:C:C:C: Mean responses in the 2-4 s time window. Bar graphs reflect the mean across participants. Error bars are 
the standard error of the mean. Data points for each participant are shown on the right. Data points above the 
diagonal (dashed line) reflect a larger response for the Pattern-Present compared to the Pattern-Absent 
condition. 

 

Source localization show strongest activity related to pattern-related sustained activity in 303 

superior temporal cortex and auditory cortex (Figure 5A). Indeed, we observed the same interaction for 304 
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auditory cortex activity (F1,49 = 10.68, p = 0.002, np
2 = 0.179; Figure 5B/C; for the subset of participants: 305 

F1,26 = 7.299, p = 0.012, np
2 = 0.219) that we observed in sensor space (Figure 4C), such that the increase 306 

in sustained activity for the Pattern-Present compared to the Pattern-Absent condition was significant 307 

for both age groups (younger: F1,25 = 50.652, p ≤ 1×10-6, np
2 = 0.670; older: F1,24 = 23.833, p = 5.6×10-5, 308 

np
2 = 0.498), with a larger difference in younger compared to older adults. In contrast to the sensor 309 

space data of sustained activity, sustained activity in auditory cortex elicited by the Pattern-Absent 310 

condition was also larger for younger compared to older adults (F1,49 = 4.704, p = 0.035, np
2 = 0.088; 311 

Figure 5B/C), consistent with observations of reduced sustained activity to a sine tone in older compared 312 

to younger adults (Pfefferbaum et al., 1979). Main effects of Condition (F1,49 = 73.205, p ≤ 1×10-6, np
2 = 313 

0.599) and Age Group (F1,49 = 10.176, p = 0.002, np
2 = 0.172) were also significant. 314 

 

Figure 5:Figure 5:Figure 5:Figure 5:    Source localization of Source localization of Source localization of Source localization of patternpatternpatternpattern----evoked evoked evoked evoked sustained sustained sustained sustained activity.activity.activity.activity. A:A:A:A: Source localization of pattern-related 
sustained activity (difference between Pattern-Present and Pattern-Absent conditions). B:B:B:B: Response time 
courses from auditory cortex. C:C:C:C: Mean auditory cortex responses in the 2-4 s time window. Bar graphs reflect 
the mean across participants. Error bars are the standard error of the mean. Data points for each participant 
are shown on the right. Data points above the diagonal (dashed line) reflect a larger response for the Pattern-
Present compared to the Pattern-Absent condition. 

DiscussionDiscussionDiscussionDiscussion    315 

The current magnetoencephalography study investigated age related differences in auditory cortical 316 

responsivity to sound onsets and to the presence of a pattern in sounds. We showed that older adults 317 

elicit larger responses in auditory cortex to sound onsets compared to younger adults. This response 318 

enhancement indicates that auditory cortex of older adults is hyperresponsive to sound. Despite this 319 

age-related hyperresponsiveness, sustained neural activity in auditory cortex to sound patterns was 320 
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diminished in older compared to younger people. Our results suggest that neural responses in auditory 321 

cortex are fundamentally altered in older adults such that sound onsets are overrepresented, whereas 322 

temporally coherent structure in sounds is underrepresented. 323 

HyperresponsivHyperresponsivHyperresponsivHyperresponsiveness eness eness eness of auditory cortexof auditory cortexof auditory cortexof auditory cortex    in older adultsin older adultsin older adultsin older adults    324 

We demonstrated that neural responses in the M50 and M100 time window following sound onset are 325 

enhanced in older compared to younger adults (Figure 3A-C). We localized the M50 and M100 responses 326 

to auditory cortex (Figure 3D/E; consistent with previous work Pantev et al., 1988; Maess et al., 2007; 327 

Okamoto and Kakigi, 2014; Herrmann et al., 2018), suggesting that auditory cortex in older adults is 328 

hyperresponsive. This is in line with a growing literature showing that neural responses to sound onsets 329 

are enhanced in older compared to younger adults (Ross and Tremblay, 2009; Sörös et al., 2009; Lister 330 

et al., 2011; Alain et al., 2012; Bidelman et al., 2014; Herrmann et al., 2016; Herrmann and Johnsrude, 331 

2018b). Similar observations have been made for aged monkeys (Juarez-Salinas et al., 2010; Recanzone, 332 

2018) and aged rodents (Hughes et al., 2010), as well as for non-human mammals whose auditory 333 

periphery was damaged through high-intensity sound exposure (Popelár et al., 1987; Syka et al., 1994; 334 

Schormans et al., 2019) or ototoxic drugs (Qiu et al., 2000; for detailed reviews see Auerbach et al., 2014; 335 

Zhao et al., 2016; Salvi et al., 2017; Herrmann and Butler, 2020). 336 

Hyperresponsiveness to sound is thought to result from hyperexcitable neural circuits due to a 337 

loss of inhibition in the auditory system following peripheral decline (Caspary et al., 2008; Takesian et 338 

al., 2012). The functional role of the loss of inhibition and hyperexcitability is still debated (Zhao et al., 339 

2016; Asokan et al., 2018; Herrmann and Butler, 2020), but likely includes homeostatic processes to 340 

regulate excitation (Caspary et al., 2008; Zhao et al., 2016) and a state of increased plasticity that enables 341 

cortical reorganization (Cisneros-Franco et al., 2018; Cisneros-Franco and de Villers-Sidani, 2019). A 342 

balanced level of excitation and inhibition is crucial for neural function (Wehr and Zador, 2003; Silver, 343 

2010; Isaacson and Scanziani, 2011), and the fact that we observed hyperresponsiveness to sound in 344 

older compared to younger adults suggests that neural function of auditory cortex was altered in our 345 

sample of older individuals. Hyperresponsivity to sharp attacks in sound may underlie increased 346 

distractibility by irrelevant sounds in older compared to younger adults (Parmentier and Andrés, 2010) 347 

and difficulties comprehending speech in the presence of an interfering, modulated background masker 348 

(Millman et al., 2017; Goossens et al., 2018). 349 
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PatternPatternPatternPattern----related activity is reduced in older compared to younger adultsrelated activity is reduced in older compared to younger adultsrelated activity is reduced in older compared to younger adultsrelated activity is reduced in older compared to younger adults    350 

In order to investigate whether neural sensitivity to a pattern in sounds differs between younger and 351 

older adults, we presented sounds that either contained a pattern (made of a sequence of a repeated 352 

set of pure tones at different frequencies) or did not contain a pattern (made of a sequence of tones at 353 

pseudo-randomly selected frequencies; Figure 2). For both younger and older adults, we observed that 354 

sustained neural activity increased after the onset of a sound pattern relative to sounds without a 355 

pattern. Previous work in younger adults has revealed similar increases in sustained activity for different 356 

types of patterns, including tone sequences we have utilized here (Gutschalk et al., 2002; Ross et al., 357 

2002; Keceli et al., 2012; Barascud et al., 2016; Sohoglu and Chait, 2016; Teki et al., 2016; Southwell et 358 

al., 2017; Herrmann and Johnsrude, 2018a; Southwell and Chait, 2018; Herrmann et al., 2019).  359 

We showed that sustained neural activity to a pattern in sounds is reduced in older compared to 360 

younger adults. Hence, although neural responses to the onset of sound was enhanced in older adults, 361 

neural sensitivity to a pattern in sounds was reduced. Diminished sustained activity for older compared 362 

to younger adults is consistent with previous indications of an age-related reduction in sustained activity 363 

for short (<1 s) pure tones (Pfefferbaum et al., 1979), amplitude modulations (Herrmann et al., 2019), 364 

and repeated patterns in tone sequences (Al Jaja et al., 2020). However, low statistical reliability and 365 

differences in stimulus parameters between age groups did not allow drawing firm conclusions from the 366 

latter two studies. Our results demonstrate clearly that pattern-related sustained activity indeed is 367 

reduced in older adults. 368 

Sensitivity to sound patterns is crucial for a variety of auditory functions, enabling a listener to 369 

segregate concurrent sound streams (Schröger, 2005, 2007; Snyder and Alain, 2007; Winkler et al., 2009; 370 

Bendixen, 2014) and recognize and predict relevant sounds (Jones and Boltz, 1989; Nobre et al., 2007; 371 

Henry and Herrmann, 2014; Nobre and van Ede, 2018). By demonstrating a correlation between 372 

perceptual sensitivity to sound patterns and speech comprehension abilities (Holmes and Griffiths, 373 

2019) and common substrates in auditory cortex (Holmes et al., 2021), previous work further indicates 374 

a functional relation or common underlying mechanism between the processing of regularities in sounds 375 

and speech comprehension. A reduction in sustained activity may thus indicate that sound patterns are 376 

processed less well in neural circuits in older compared to younger adults, which may, in part, explain 377 

the challenges older adults experience comprehending speech in the presence of background sound. 378 
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The current source localizations suggest that auditory cortex is the main source underlying 379 

pattern-related sustained activity in both younger and older adults (Figure 5A). Previous work in younger 380 

individuals also indicated that auditory cortex underlies sustained neural activity (Pantev et al., 1994; 381 

Pantev et al., 1996; Gutschalk et al., 2002; Ross et al., 2002; Gutschalk et al., 2004; Gutschalk et al., 2007; 382 

Okamoto et al., 2011; Keceli et al., 2012; Barascud et al., 2016; Teki et al., 2016), but that brain regions 383 

in frontal cortex, parietal cortex, and hippocampus may additionally contribute (Tiitinen et al., 2012; 384 

Barascud et al., 2016; Teki et al., 2016). However, in the latter work, statistical difference maps were 385 

calculated and used to identify neural sources. Statistical difference maps may also capture effects 386 

related to activity spread due to volume conduction and may thus not reflect activity originating from 387 

these higher-level brain regions (e.g., auditory responses to sound onset were spread to parietal cortex 388 

in Teki et al., 2016, suggesting that spread may also affect their sustained activity in parietal cortex 389 

related to sound patterns). 390 

We further showed that sustained activity in auditory cortex to sounds that did not contain a 391 

pattern was also reduced in older compared to younger adults (Figure 5B/C). Sounds without a pattern 392 

were made of a sequence of pure tones whose frequency changed randomly for each tone. Such tone 393 

sequences are perceptually more structured than noise and the auditory system may treat them as a 394 

pattern of low saliency. This is consistent with the observation of reduced sustained activity to short 395 

pure tones in older compared to younger adults (Pfefferbaum et al., 1979). Our data thus indicate that 396 

the sensitivity of the aged auditory cortex is reduced for sounds containing a pattern (here repetition of 397 

a set of tones at different frequencies) as well as for sequences with random tone frequencies.  398 

It is clear from previous work that temporally regular – and thus predictable – structure in sounds 399 

that forms a pattern elicits sustained neural activity (Gutschalk et al., 2002; Barascud et al., 2016; 400 

Herrmann and Johnsrude, 2018a). However, additional work suggests that the magnitude of pattern-401 

related sustained activity is related to the degree of novelty or predictability of a pattern, such that 402 

sustained activity decreases when a pattern is frequently, compared to infrequently, heard (Gutschalk 403 

et al., 2007). A reduction in sustained activity in older adults may thus result from reduced processing of 404 

the pattern as well as from a sense of reduced novelty of the pattern. 405 
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ConclusionsConclusionsConclusionsConclusions    406 

In the current study, we recorded magnetoencephalography to characterize differences between 407 

younger and older adults in the processing of a pattern in sounds. We presented continuous tone 408 

sequences that either contained a pattern (made of a repeated set of tones at different frequencies) or 409 

did not contain a pattern (random tone frequencies). We showed that auditory cortex in older adults is 410 

hyperresponsive to sound onsets, but that sustained neural activity in auditory cortex, indexing the 411 

processing of sound patterns, is reduced. Hence, neural populations in auditory cortex fundamentally 412 

differ between younger and older individuals in their sensitivity to sound features, hyperresponding to 413 

sound onsets, while underresponding to patterns in sounds. This may help to explain some age-related 414 

changes in hearing such as increased sensitivity to distracting sounds and difficulties tracking speech in 415 

the presence of other sound. 416 
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