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and Sebastiano B. Serpico,Member, IEEE

Abstract—A data fusion approach to the classification of multi-
source and multitemporal remote-sensing images is proposed. The
method is based on the application of the Bayes rule for minimum
error to the “compound” classification of pairs of multisource
images acquired at two different dates. In particular, the fusion
of multisource data is obtained by using multilayer perceptron
neural networks for a nonparametric estimation of posterior
class probabilities. The temporal correlation between images is
taken into account by the prior joint probabilities of classes at
the two dates. As a novel contribution of this paper, such joint
probabilities are automatically estimated by applying a specific
formulation of the expectation-maximization (EM) algorithm to
the data to be classified. Experiments carried out on a multisource
and multitemporal data set confirmed the effectiveness of the
proposed approach.

Index Terms— Data fusion, expectation maximization, im-
age classification, multisource multitemporal images, neural
networks, remote sensing.

I. INTRODUCTION

I N the last decades, remote sensing has proved a powerful
technology for monitoring the earth’s surface and atmos-

phere at a global, regional, and even local scale. This is made
possible by the large amount of data acquired by different
types of sensors, which provide repeated coverage of the
planet on a regular basis. As a consequence, an increasing
quantity of multisource and multitemporal remote-sensing
data acquired in many geographical areas is available. For
a proper exploitation of these data, it is mandatory to develop
effective data fusion techniques able to take advantage of such
multisource and multitemporal characteristics. In particular, in
the context of classification problems, data fusion may provide
an improvement in accuracy (as compared with standard
techniques applied to single-sensor/single-date images), which
may be of primary importance in real applications.

Data-fusion techniques for the classification of remote-
sensing images have been extensively investigated in the past
years. Many papers that address the development of method-
ologies for the classification of multisensor (or multisource)
images have been published [1]–[28]. Some studies have also
been carried out on the integration of the information contained
in multitemporal images in order to improve classification
accuracy [29]–[33]. However, only a few papers have dealt
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with the integration of both multisensor and multitemporal
remote-sensing images by the data-fusion process [34]–[36].

In this paper, we face the problem of the fusion of multi-
source and multitemporal information for the classification of
remote-sensing images. The approach we propose is based on
the application of the Bayes rule for minimum error to the
"compound" classification [37] of pairs of multisource images
acquired at different dates. The temporal correlation between
the multisource images acquired at two dates is captured by
using the joint class probabilities related to possible land-cover
changes. A technique based on a specific formulation of the
expectation-maximization (EM) algorithm [38] is applied to
estimate such joint probabilities. As it represents the main
innovative aspect of this paper, special attention will be
given to this technique. Single-date multisource data are then
used to compute nonparametric estimates of posterior class
probabilities; to this end, a technique based on multilayer
perceptron neural networks is applied. Experimental results,
obtained by using a multisource and multitemporal data set
related to an agro-forestry area located in the north of Italy,
confirmed the effectiveness of the proposed approach.

The paper is organized into six sections. The next section
provides an overview of the main approaches to remote-
sensing data fusion reported in the literature. Section III gives
a general description of the proposed approach. In Section IV,
the method (based on the EM algorithm) we have derived
for the estimation of the joint probabilities of classes is
detailed. The data sets used in the experiments and the results
obtained are reported in Section V. Finally, after discussion,
conclusions are drawn in Section VI.

II. PREVIOUS WORK

In this section, we briefly discuss the main methods reported
in the remote-sensing literature related to the classification of
multisource images and of multitemporal images.

Several methodologies have been proposed for the classifi-
cation of multisensor/multisource images; they are mainly
based on statistical, symbolic (evidential reasoning), and
neural-network approaches.

Among statistical methods, the “stacked-vector” approach
is the simplest one [1]. According to this approach, each
pixel is represented by a vector that contains components from
different sources (e.g., measures obtained by different sensors,
texture features, ancillary data). Classification is usually per-
formed by using a parametric statistical technique. However,
this approach is not suitable when a common distribution
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model cannot describe the various sources considered. Other
well known approaches are stratification [2]–[6]; relaxation
labeling [7], [8] which also includes a spatial context in
the classification process; and the extended statistical fusion
model proposed in [9] and [10]. Benediktsson and Swain [11]
modified the last-mentioned approach by including “reliability
factors” to weigh the importance of sensors according to their
reliability. Thanks to this modification, significant improve-
ments in classification accuracy were obtained.

The Dempster–Shafer evidence theory [12]–[14] was ap-
plied to classify multisource data by taking into account the
uncertainties related to the different data sources involved
[8], [10], [15]–[17]. Lee et al. [10] compared an approach
of this kind with a statistical approach and showed that the
latter method performs better. Another approach to multisource
classification based on the Dempster–Shafer evidence theory
is reported in [17], where an unsupervised method is proposed.

Neural-network classifiers provide an effective integration
of different types of data. The nonparametric approach they
implement allows the aggregation of different data sources
into a stacked vector without need for assuming a specific
probabilistic distribution of the data to be fused. A detailed
introduction to neural networks can be found in [18] and
[19]. In the literature, several studies on the classification
of multisource remote-sensing data by neural networks have
been reported [10], [20]–[28]. Some of them investigated and
compared the performances of neural-network classifiers with
those of both parametric and nonparametric statistical methods.
Results (obtained by using different kinds of multisource data)
point out the effectiveness of neural-network approaches for
the classification of multisource data.

The aforementioned methods do not take into account
the multitemporal aspect, as they consider only single-date
information. In particular, concerning the classification process
in a time-varying environment, only a few papers can be
found in the remote-sensing literature. An early work on this
subject was presented by Swain [29]. The author proposed a
“cascade classifier” based on the generalization of the Bayes
optimal strategy to the case of multiple observations. Kalayeh
and Landgrebe [30] described a classifier that considers types
of ground cover as stochastic systems with nonstationary
Gaussian processes as inputs and with temporal variations in
spectral responses as outputs. Then, multitemporal information
was used assuming that the behavior of these processes can be
modeled by a first-order Markov model. Also, Khazenie and
Crawford [31] proposed a method for contextual classification
that accounts for both spatial and temporal correlations of data.
According to this approach, the feature vectors are modeled as
resulting from a class-dependent process plus a contaminating
noise process; the noise process is considered autocorrelated in
both the space and time domains. Middelkoop [32] described
a knowledge-based classifier that integrates the data acquired
at a given time with those acquired in previous years. Spatio-
temporal contextual classification was also addressed by Jeon
and Landgrebe [33]. Gibbs random fields were used to model
the spatial context, whereas temporal class dependencies were
taken into account by class transition probabilities. Experi-
ments with multitemporal thematic mapper data showed a

significant improvement in classification accuracy as compared
with maximum likelihood classification.

All the papers on classification methods cited so far consider
either the multisensor or the multitemporal aspect of remote-
sensing data. A method that exploits both characteristics was
proposed by Solberget al. [34]. Starting from the multisource
approach described in [11] and in order to make it suitable
for multitemporal data, they incorporateda priori information
about the likelihood of the changes that may occur between
image acquisition dates. This early work was extended in [35]
by using Markov random fields in the fusion model to allow
a tight coupling of data sources (which may also include GIS
ground cover data).

An issue emerging from the papers on classification in time-
varying environments [29], [33]–[35] is the definition of a
methodology for the estimation of the terms that take into
account the probabilities of ground-cover changes between
different image acquisition dates. The new methodology pro-
posed in Section IV to estimate such terms (whose importance
was already pointed out in [29]) represents the main aspect
of our paper. The authors already faced a similar problem
in [36], in the context of detection of land-cover changes.
The solution suggested in that paper for the estimation of the
aforementioned probabilistic terms was based on an iterative
procedure for which a proof of convergence was not available.
The approach presented in Section IV uses the EM algorithm,
for which, on the contrary, convergence was proved (even
though to a local maximum).

III. CLASSIFICATION OF

MULTITEMPORAL MULTISOURCE DATA

A. The Bayes Rule for Compound Classification

Let us consider the problem of classifying a geographical
area by analyzing two multisource image data setsand

acquired at two times and , respectively. Each data
set may contain images derived from different sources (e.g.,
optical and SAR images). We assume that all the images of
the two data sets refer to the same ground area, and that they
are coregistered and appropriately transformed into the same
spatial resolution.

In general, the spatial and temporal contextual information
plays an important role in the classification process. One of
the main purposes of this paper is to assess the potentialities
of the technique we propose to estimate prior joint class
probabilities, which are related to the temporal context of the
two multisource data sets. Therefore, for simplicity, we focus
on the temporal context only, and we do not explicitly consider
the spatial context. Furthermore, we assume that, for each
pixel of one data set, all the temporal contextual information
is conveyed by the spatially corresponding pixel of the other
data set. This seems a reasonable assumption for the current
procedure by which we consider only two acquisition dates
and disregard the spatial context.

We characterize the above pair of temporally correlated
pixels being a pixel of the image data set and

the spatially corresponding pixel of the image data set,
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by a pair of feature vectors . Each feature vector
is obtained by stacking together the measures provided by the
available sensors, as is done for the stacked vector approach.
Let be the set of possible land-cover
classes at time , and let be the set
of possible land-cover classes at time.

We can consider two different types of classification: 1)
the “compound classification” of each pair of pixels ,
which involves finding the “best” pair of classes to
be assigned to each pair of pixels; or 2) the classification of
the pixels of one of the two image data sets by utilizing the
information contained in both image data setsand .

As a classification strategy, we adopt the Bayes rule for
minimum error and apply it to the first type of classification,
i.e., the “compound classification” of [37]

and so that

(1)

For the second type of classification, i.e., if the image data
set is to be classified, the Bayes rule becomes

so that (2)

The two classification problems, as well as their solutions,
are tightly linked. In this paper, we shall focus only on the
former, i.e., the compound classification of the two image data
sets (Swain in [29] addressed the latter problem).

Under the conventional assumption of class-conditional
independence in the time domain, we can write [29], [33]

(3)

Consequently, we can replace the search for the maximum in
(1) with

(4)

In general, the above assumption may lead to suboptimal
solutions. For example, when the ground cover associated with
a given pixel does not change betweenand [i.e.,
in (3)], it is likely that some properties of the ground, which
contribute to determining the values of sensorial measures,
may be saved between the two acquisition dates. This implies
a correlation between and that is not taken into account
on the right-hand side of (3). However, we adopt the above
assumption as it allows a significant simplification of the
problem.

The a priori class probabilities and in (4) are
estimated from the two “training sets” (described in the next
subsection) by computing the relative frequency of each class.
The estimations of the remaining terms (i.e., the posterior class
probabilities and the prior joint class probabilities) are worth
being considered more deeply.

B. Multisource Data Fusion

To estimate the single-date, multivariate, conditional proba-
bilities in (4), we need to fuse multisource data (for example,
to estimate we have to fuse the multisource data in

). In general, the definition of a common statistical model of
multisource data (e.g., optical and SAR images) may be quite
complex. Therefore, we adopted a nonparametric technique. In
particular, we utilized multilayer perceptron neural networks,
which, if properly trained by the error backpropagation algo-
rithm [18], provide estimates of posterior class probabilities;
such estimates can be optimized according to a predefined
criterion [39], [40]. In our case, we adopted the minimum
mean square error (MSE) criterion.

To this end, two neural networks (one for the date, the
other for the date ) need to be trained separately on two
“training sets,” for which the ground truth must be available.
The two training sets may be defined independently of each
other (i.e., they may refer to different ground points).

As a result of the training phase, the values of the internal
parameters of the neural networks (i.e., the so-called weights
and biases) are obtained. At this point, each neural network
can be used to compute the estimate of the posterior class
probability at the corresponding date (output of the network),
given the feature vector (input of the network) (Fig. 1).

C. Multitemporal Data Fusion

The only term in (4) that takes into account the correlation
between the images acquired at the two times is the joint
probability . The value of such a probability may
remarkably affect the classification result [29]. In particular, if
one assumes , then (4) is equivalent
to a separate application of the Bayes rule to the two data
sets and . This involves the loss of all the advantages
of the multitemporal analysis (such a situation will be used
as a reference to evaluate the performances of the proposed
method).

For the above reasons, an accurate estimation of prior joint
class probabilities is very important. By contrast, a direct
estimation from training data would require impractical con-
straints: training data should contain pairs of pixels (at spatially
corresponding positions in the two images) representative of
all possible combinations of classes at the two times.

In this paper, we propose the application of the EM al-
gorithm [41] to estimate the joint probabilities ,
as described in the next section. Such a technique is fully
automatic and adaptive to the data sets to be classified (even
though it makes use of the prior class probabilities and

and of the posterior class probabilities and
computed from training data, as described above).

IV. ESTIMATION OF PRIOR JOINT

PROBABILITIES BY THE EM ALGORITHM

A. The EM Algorithm

In several image-processing and pattern-recognition prob-
lems, it is necessary to estimate the parameters that charac-
terize a probability distribution function. In many cases, this
task may become rather complex because a direct access to the
data necessary to estimate such parameters is impossible (or
some of these data are lacking), and only some observations
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Fig. 1. Block diagram of the compound classification process. The pair(!m; �n) corresponds to the maximum in (4).

related to them are available. In some of these cases, it is,
however, possible to perform parameter estimations by using
the EM algorithm [41].

The EM algorithm constitutes a general approach to an
iterative computation of maximum-likelihood estimates of
parameters when there is a many-to-one mapping from an
underlying distribution to the distribution governing an obser-
vation. Such an algorithm is particularly useful in estimating
the components of mixture distributions. At present, the EM
algorithm is becoming increasingly popular for the analysis of
remote-sensing images. In this context, an interesting example
of the use of the EM algorithm for the estimation of class
distributions has been given by Shahshahani and Landgrebe
[42].

The general formulation of the EM algorithm consists of two
major steps: an expectation step and a maximization step. The
expectation is computed with respect to the unknown under-
lying variables, using the current estimates of the parameters
and conditioned upon the observations. The maximization step
provides new estimates of the parameters. These two steps are
iterated until convergence.

An important aspect of the EM algorithm concerns its
convergence properties. It is possible to prove that, at each
iteration, the estimated parameters provide an increase in the
likelihood function until a local maximum is reached. Despite
the fact that convergence can be ensured, it is impossible to
ensure that the algorithm will converge to the global maximum
of the likelihood (only in specific cases is it possible to
guarantee the convergence to the global maximum).

A detailed description of the EM algorithm and of the
related theoretical aspects is beyond the scope of this paper.
Refer to the literature for an in-depth analysis of such an
algorithm [41], [43].

B. Estimation of Prior Joint Probabilities

To estimate the prior joint probabilities , we pro-
pose to use an iterative fixed-point EM-like algorithm [38],
which is a specific version of the EM algorithm and is suited
to evaluating only the proportions of a set of parameters. In
our case, we estimate only the joint probabilities of classes,
assuming no need to update the estimates of the posterior
probabilities and of thea priori probabilities of classes (such
estimations are performed as described in Section III) during
the successive iterations. Thus, a more stable algorithm than
the standard EM is obtained. However, it is worth noting that
the standard EM would also allow both the posterior proba-
bilities anda priori probabilities of classes to be estimated.

The probabilities are regarded as the elements of
the matrix (of size ), which is computed by
maximizing the following pseudolikelihood:

(5)

where is the total number of pixels to be classified and
is the th pixel of the image . It is possible to prove that
the recursive equation to be used to estimate by
maximizing (5) is

(6)

where is the iterative joint probability estimate at
the th iteration. Such estimates are initialized by assigning
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Fig. 2. Block diagram of the process used to estimate the prior joint probabilitiesP (!i; �j).

equal probabilities to each pair of classes

(7)

Under the hypothesis made in our approach (see Section III),
it is possible to prove that (6) can be rewritten as

(8)

where

(9)

The algorithm is iterated until convergence. Convergence is
reached when the maximum difference between the estimates
at two successive iterations is below a threshold. More pre-
cisely, the stop criterion is defined by the following inequality:

(10)

where .
The estimates of obtained at convergence (Fig. 2)

are then applied to the compound classification rule (Fig. 1).

V. EXPERIMENTAL RESULTS

A. Data Sets

The considered data sets are related to an agricultural area in
the basin of the Po river (northern Italy). They consist of two

multisensor image data sets acquired by the Landsat Thematic
Mapper (TM) sensor and by the ERS-1 synthetic aperture
radar (SAR) sensor in April and May 1994. As an example
of the images used, Fig. 3 shows band 2 of the TM and ERS-
1 images acquired in April 1994. Both the TM images and
the ERS-1 May image were registered to the ERS-1 April
image. The available ground truth was used to prepare the
training sets (utilized to train neural networks and to estimate
prior single-class single-date probabilities) and the “test sets”
(utilized for performance evaluation and comparison). Table I
provides the classes and the related numbers of pixels included
in the training and test sets.

The two feature vectors and (related to time and
, respectively) consisted of 11 elements each, i.e., six TM

bands (all bands but the infrared thermal one), the intensity
of the ERS-1 image (C band, VV polarization), and four
texture features computed from the ERS-1 image by means
of the gray-level co-occurrence matrix (correlation, entropy,
sum variance, difference entropy).

Several experiments were carried out by utilizing one sensor
or both sensors at each of the two times in order to test the
validity of the proposed approach. For the sake of brevity,
in the following, we shall report on the two most significant
experiments only.

B. First Experiment

The first experiment involved the fusion of the data provided
by both sensors at both times.

Two feed-forward multilayer perceptron neural networks
were trained on the training sets and used to estimate the
posterior class probabilities and . Fully
connected architectures with one hidden layer were defined;
in both neural networks, the number of hidden neurons was
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(a) (b)

Fig. 3. Images acquired in April 1994 and utilized for the experiments: (a) band 2 of the Landsat TM; (b) ERS-1 SAR image.

fixed at eight. The number of input neurons was set equal to
the size of the feature vectors (i.e., 11) and the number of
output neurons to the number of classes (i.e., four at time
and five at time ).

The EM algorithm was applied and the convergence pa-
rameter was selected equal to 0.001. Six iterations of this
algorithm were necessary to reach convergence in the estima-
tions of the joint probabilities . We point out that
such estimations can be performed directly on the unknown
data to be classified (in our case, to assess performances,
they were performed on the test sets). Tables II and III show,
respectively, the true values of the joint probabilities for the
test set and the estimates of these probabilities obtained at the
last iteration of the EM algorithm. As one can see, the final
estimates were quite satisfactory, as the maximum error on a
single joint probability was equal to about 0.02. Such an error
was incurred on the joint probability related to the pair of
classes bare soil/dry rice fields. In order to better illustrate the
behavior of the EM algorithm in this experiment, Fig. 4 shows
the trend of the estimate of the joint probability(wood, wood)
versus the number of iterations. As one can see, the estimate
evolves from a value of 0.363 to 0.394 in only two iterations
and reaches its final value (i.e., 0.395) at the sixth iteration.

Classification results obtained on the test sets with the
proposed technique at the two times are shown in Table IV
in the columns “% Error EM.” For a comparison, the per-
formances of the neural networks applied separately to the
images and are also included (columns “% Error NN”).

TABLE I
TRAINING AND TEST SETS UTILIZED FOR THE

EXPERIMENTS: (a) APRIL 1994; (b) MAY 1994

(a)

(b)

The total percent error made with our technique is quite small
and significantly smaller than that of the neural networks
applied separately to and . In particular, the overall
classification error was reduced from 2.68% to 0.98% on the
April data set and from 3.73% to 3.25% on the May data set.
However, the improvement appears more remarkable if one
considers single-class accuracies, in particular, for the two
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TABLE II
TRUE VALUES OF THE PRIOR JOINT PROBABILITIES CONCERNING THE TEST SET

TABLE III
ESTIMATES OF THE PRIOR JOINT PROBABILITIES PROVIDED BY THE EM ALGORITHM IN

THE FIRST EXPERIMENT, USING BOTH THE SAR AND TM IMAGES AT THE TWO DATES

Fig. 4. Behavior of the estimate of the prior joint probabilityP (wood; wood)
versus the number of iterations of the EM algorithm in the first experiment,
carried out using both the SAR and TM images at the two dates.

most difficult classes: cereals in April (error reduction from
50.0% to 18.52%) and corn in May (error reduction from
21.8% to 15.12%).

Fig. 5 allows one to gain a deeper insight into the effects
of the accuracies of the joint-probability estimates on the
classification results. The figure shows the behaviors of the
overall classification errors versus the number of iterations of
the EM algorithm at both dates. As one can see, when the
number of iterations increases, the overall classification errors
exhibit a decreasing trend, which results from the increasing
accuracies of the estimates. In particular, at the first iteration,
at which the estimates obtained are not very accurate, the
overall classification errors in April and May are equal to
2.68% and 4.86%, respectively. As the algorithm evolves, the
increasing accuracies of the estimates progressively reduce the
classification errors to their final values (i.e., 0.98% in April
and 3.25% in May).

C. Second Experiment

For different reasons, in real applications, the available
sensors at two dates may be different. For example, at one
date, both optical and SAR images may be available, whereas,
at the other date, the optical image may convey no information
because of cloud covering. As another example, one of the
sensors might not yet (or any more) be operating at the
time of the first (or second) acquisition. Finally, the costs of
images provided by different sensors may be very different;

TABLE IV
CLASSIFICATION RESULTS IN THE FIRST EXPERIMENT, USING BOTH THE

SAR AND TM IMAGES AT THE TWO DATES. (a) APRIL 1994; (b) MAY

1994. THE CLASSIFICATION ERRORSINCURRED WHEN USING NEURAL

NETWORKS SEPARATELY ON EACH SINGLE DATE (% ERROR NN) AND

WHEN USING THE PROPOSEDTECHNIQUE (% ERROR EM) ARE GIVEN

(a)

(b)

as a consequence, one might prefer to buy only one image
acquired by the most expensive sensor. Therefore, we deem
it interesting to report on an experiment carried out by using
different sensors at the two acquisition dates considered.

To this end, for the second experiment, we included only
the ERS-1 image in the April 1994, data set and both the TM
and the ERS-1 images in the May 1994 data set. The feature
vector was reduced to five components corresponding to
the above-defined features derived from the ERS-1 image. The
neural network applied to the April 1994, data was modified
accordingly: the number of input neurons was reduced to five,
the number of hidden neurons was maintained at eight, and,
obviously, the number of output neurons at four. Nothing was
changed for the neural network applied to the May 1994 data
set (neither did we need to retrain the network).

In this experiment, the value of the convergence parameter
was the same as in the previous experiment (i.e., 0.001), but the
EM algorithm required eight iterations to reach convergence.
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TABLE V
ESTIMATES OF THE PRIOR JOINT PROBABILITIES PROVIDED BY THE EM ALGORITHM IN THE SECOND EXPERIMENT,

USING THE SAR IMAGE AT THE FIRST DATE AND BOTH THE SAR AND TM IMAGES AT THE SECOND DATE

Fig. 5. Behavior of the classification error versus the number of iterations
of the EM algorithm in the first experiment, carried out using both the SAR
and TM images at the two dates.

Fig. 6. Behavior of the estimate of the prior joint probabilityP (wood, wood)
versus the number of iterations of the EM algorithm in the second experiment,
carried out using the SAR image at the first date and both the SAR and TM
images at the second date.

Table V gives the final estimates of the joint probabilities
obtained at the last iteration of the EM algorithm. As in the first
experiment, the obtained estimates were quite accurate (the
maximum error on a single probability estimate was equal to
0.014). Fig. 6 shows the value of the joint probability(wood,
wood) versus the number of iterations of the EM algorithm.
As one can see, a value equal to 0.280 was obtained for

(wood, wood) at the first iteration, which implies an error
equal to 0.116, as compared with the true value equal to 0.396.
This error was steadily reduced to 0.012 at the last iteration,
obtaining a final value equal to 0.384 for(wood, wood).

The classification accuracies obtained in this experiment
are shown in Table VI. As expected, in comparison with the
results of the first experiment, the classification error at the first
date (April), based only on the ERS-1 April image, sharply
increased; obviously, the column “% Error NN” for May
1994 is identical. The exploitation of the temporal correlation
among the images by means of the EM estimations of the
joint class probabilities allowed a significant reduction in
the classification errors on the April data set (from 6.87%

TABLE VI
CLASSIFICATION RESULTS IN THE SECOND EXPERIMENT USING THE SAR IMAGE

AT THE FIRST DATE AND BOTH THE SAR AND TM IMAGES AT THE SECOND DATE.
(a) APRIL 1994; (b) MAY 1994. THE CLASSIFICATION ERRORSINCURRED WHEN

USING NEURAL NETWORKS SEPARATELY ON EACH SINGLE DATE (% ERROR

NN) AND WHEN USING THE PROPOSEDTECHNIQUE (% ERROR EM) ARE GIVEN

(a)

(b)

to 2.54%). The analysis of single class errors confirms the
improvement in the classification provided by our method:
most single-class percent errors were reduced; in particular,
the unacceptable error on the cereals class at the first date
was sharply reduced (from 83.33% to 25.0%). As the error
on the single-date independent classification of the May data
set was already quite small and much smaller than that on
the April data set, only a slight improvement was provided by
our technique in the classification of the May data set (from
3.73% to 3.37%).

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have presented a data-fusion approach to
the classification of multitemporal and multisource remote-
sensing images. The proposed approach is based on the
application of the Bayes rule for minimum error to the
compound classification of two image data sets acquired at
two different dates. Concerning the multitemporal aspect, we
assumed that, for simplicity, the temporal correlation between
the two data sets can be taken into account by the prior joint
probabilities of classes at the two dates. Multisource data
fusion was then performed by means of multilayer percep-
tron neural networks, which provide nonparametric estimates
of posterior class probabilities on the basis of single-date
multisource data.
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In addition to the flexibility provided by nonparametric
techniques, the use of neural networks for data fusion offers
the general advantages of every neural-network approach:
intrinsic parallelism, adaptability to data, and robustness to
noise and errors on training data. Unfortunately, the neural-
network approach also exhibits some well-known drawbacks.
In particular, for the neural model we adopted, no general
rules exist to define the network topology and to establish the
procedure of the training process; moreover, it is difficult to
interpret the network behavior [27], [28].

From a methodological viewpoint, the main innovation of
this paper lies in the use of the EM algorithm for the estimation
of the prior joint probabilities of classes. The importance of
these probabilities for the classification of multitemporal data
was already pointed out by Swain [29]. In the literature, prior
joint probabilities are usually chosen manually by a human
expert on the basis ofa priori knowledge derived from the
characteristics of the geographical area considered and from
the time intervals between acquisitions. The advantage of the
proposed technique based on the EM algorithm consists in the
possibility of computing the estimates of joint probabilities
directly from the data set to be classified and in a fully
automatic way. This overcomes the drawbacks resulting from
the need for a human intervention and from the dependence
on the accuracy ofa priori knowledge. In addition, it has
been proven that the EM algorithm converges to a local
maximum of the likelihood function [41], [43]. Even though
the convergence to a global maximum cannot, in general, be
demonstrated, it has been shown that, in many applications,
the EM algorithm provides accurate estimates [41], [43].

In the present formulation, the estimation of the prior joint
probabilities depends on the training data, as it exploits the
estimates of the single-date prior class probabilities and of the
single-date posterior class probabilities previously computed
from training data. It is possible to generalize the use of the
EM algorithm to estimate also the latter probabilities directly
from the data to be classified; this would make the algorithm
less sensitive to differences in the statistical distributions of
training and test data. On the other hand, it might reduce the
reliability of the estimates obtained.

Experimental results on multisource and multitemporal data
have been reported that attest the effectiveness of our tech-
nique. In particular, the proposed technique may provide a
significant improvement on an independent classification of
multitemporal data sets, even when the sensors available at
two times are different (e.g., both optical and SAR sensors at
one time and only one SAR sensor at the other time). It is
worth noting that, in any case, our technique is not able to
improve very poor classification results obtained at one date,
not even if a better classification is performed at the other date.

In consideration of the above-discussed characteristics and
of the interesting experimental results obtained, in our opin-
ion, the EM-based technique proposed can be considered
a sufficiently reliable tool for the estimation of prior joint
probabilities.

Concerning the fusion of multitemporal information, we
have considered only the case of two data sets (corresponding
to two acquisition dates). A generalization to more than two

multitemporal data sets could be obtained by extensions to the
proposed algorithms, such that may allow different tradeoffs
between simplicity and accuracy. Additional research on this
issue is necessary to reach the most effective solution.

Finally, in this paper, we have focused on the temporal
context, whereas we have disregarded the spatial context. As
an interesting development, the proposed method might be
extended to include the information conveyed by the spatial
context (e.g., by using Markov random fields [30], [35]).
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