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Abstract—A data fusion approach to the classification of multi- - with the integration of both multisensor and multitemporal
source and multitemporal remote-sensing images is proposed. The remote-sensing images by the data-fusion process [34]-[36].
method is based on the application of the Bayes rule for minimum In this paper, we face the problem of the fusion of multi-

error to the “compound” classification of pairs of multisource d it Linf tion for the classificati f
images acquired at two different dates. In particular, the fusion source and muflitemporal Information for the classilication o

of multisource data is obtained by using multilayer perceptron remote-sensing images. The approach we propose is based on
neural networks for a nonparametric estimation of posterior the application of the Bayes rule for minimum error to the
class probabilities. The temporal correlation between images is "compound" classification [37] of pairs of multisource images
taken into account by the prior joint probabilities of classes at - 5cquired at different dates. The temporal correlation between

the two dates. As a novel contribution of this paper, such joint th I . ired at two dates i tured b
probabilities are automatically estimated by applying a specific '€ MUISOUrce Images acquired at two dates 1S captured by

formulation of the expectation-maximization (EM) algorithm to ~ Using the joint class probabilities related to possible land-cover
the data to be classified. Experiments carried out on a multisource changes. A technique based on a specific formulation of the
and multitemporal data set confirmed the effectiveness of the expectation-maximization (EM) algorithm [38] is applied to
proposed approach. estimate such joint probabilities. As it represents the main
Index Terms— Data fusion, expectation maximization, im- innovative aspect of this paper, special attention will be
age classification, multisource multitemporal images, neural given to this technique. Single-date multisource data are then

networks, remote sensing. used to compute nonparametric estimates of posterior class
probabilities; to this end, a technique based on multilayer

I. INTRODUCTION perceptron neural networks is applied. Experimental results,

N the last decades, remote sensing has proved a powe(r)ftl)ﬂamed by using a multisource and multitemporal data set

L . related to an agro-forestry area located in the north of Italy,
technology for monitoring the earth’s surface and atmos- . ;
confirmed the effectiveness of the proposed approach.

phere at a global, regional, and even local scale. This is ma eI’he paper is organized into six sections. The next section

possible by the large amount of data acquired by diﬁeren}ovides an overview of the main approaches to remote-
types of sensors, which provide repeated coverage of the bp

lanet on a reqular basis. As a consequence. an increassiﬁnsmg data fusion reported in the literature. Section Il gives
P 9 ' q ’ a é;eneral description of the proposed approach. In Section 1V,

quantity of multisource and multitemporal na'mote-sensu|1%e method (based on the EM algorithm) we have derived

data acquired in many geographical areas is available. forr the estimation of the joint probabilities of classes is

a proper explona’luon of thgse data, it is mandatory to deveI% tailed. The data sets used in the experiments and the results
effective data fusion techniques able to take advantage of su

X . L X obtained are reported in Section V. Finally, after discussion,

multisource and multitemporal characteristics. In particular, in . . :

the context of classification problems, data fusion may proviggnCIUSIOnS are drawn in Section V1.

an improvement in accuracy (as compared with standard

techniques applied to single-sensor/single-date images), which

may be of primary importance in real applications. In this section, we briefly discuss the main methods reported
Data-fusion techniques for the classification of remotéd the remote-sensing literature related to the classification of

sensing images have been extensively investigated in the pasitisource images and of multitemporal images.

years. Many papers that address the development of methodSeveral methodologies have been proposed for the classifi-

ologies for the classification of multisensor (or multisourcedation of multisensor/multisource images; they are mainly

images have been published [1]-[28]. Some studies have digsed on statistical, symbolic (evidential reasoning), and

been carried out on the integration of the information containégural-network approaches.

in multitemporal images in order to improve classification Among statistical methods, the “stacked-vector” approach

accuracy [29]-[33]. However, only a few papers have deag the simplest one [1]. According to this approach, each
pixel is represented by a vector that contains components from
Manuscript received June 22, 1998; revised November 1, 1998. This waifferent sources (e.g., measures obtained by different sensors,
was supported by the Italian Space Agency (ASI). _ texture features, ancillary data). Classification is usually per-
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model cannot describe the various sources considered. Otsignificantimprovement in classification accuracy as compared
well known approaches are stratification [2]-[6]; relaxatiowith maximum likelihood classification.

labeling [7], [8] which also includes a spatial context in All the papers on classification methods cited so far consider
the classification process; and the extended statistical fusiither the multisensor or the multitemporal aspect of remote-
model proposed in [9] and [10]. Benediktsson and Swain [1&gnsing data. A method that exploits both characteristics was
modified the last-mentioned approach by including “reliabilitproposed by Solbergt al. [34]. Starting from the multisource
factors” to weigh the importance of sensors according to theipproach described in [11] and in order to make it suitable
reliability. Thanks to this modification, significant improvefor multitemporal data, they incorporatedpriori information
ments in classification accuracy were obtained. about the likelihood of the changes that may occur between

The Dempster—Shafer evidence theory [12]-[14] was ajmrage acquisition dates. This early work was extended in [35]
plied to classify multisource data by taking into account tHey using Markov random fields in the fusion model to allow
uncertainties related to the different data sources involvedight coupling of data sources (which may also include GIS
[8], [10], [15]-[17]. Lee et al. [10] compared an approachground cover data).
of this kind with a statistical approach and showed that the An issue emerging from the papers on classification in time-
latter method performs better. Another approach to multisourearying environments [29], [33]-[35] is the definition of a
classification based on the Dempster—Shafer evidence themgthodology for the estimation of the terms that take into
is reported in [17], where an unsupervised method is proposadcount the probabilities of ground-cover changes between

Neural-network classifiers provide an effective integratiodifferent image acquisition dates. The new methodology pro-
of different types of data. The nonparametric approach thgpsed in Section IV to estimate such terms (whose importance
implement allows the aggregation of different data sourc#ss already pointed out in [29]) represents the main aspect
into a stacked vector without need for assuming a specifi¢ our paper. The authors already faced a similar problem
probabilistic distribution of the data to be fused. A detaileth [36], in the context of detection of land-cover changes.
introduction to neural networks can be found in [18] andihe solution suggested in that paper for the estimation of the
[19]. In the literature, several studies on the classificati@forementioned probabilistic terms was based on an iterative
of multisource remote-sensing data by neural networks hageocedure for which a proof of convergence was not available.
been reported [10], [20]-[28]. Some of them investigated arfdhe approach presented in Section IV uses the EM algorithm,
compared the performances of neural-network classifiers witit which, on the contrary, convergence was proved (even
those of both parametric and nonparametric statistical method®ugh to a local maximum).

Results (obtained by using different kinds of multisource data)
point out the effectiveness of neural-network approaches for
the classification of multisource data.

The aforementioned methods do not take into account
the multitemporal aspect, as they consider only single-date o
information. In particular, concerning the classification proceds The Bayes Rule for Compound Classification
in a time-varying environment, only a few papers can be Let us consider the problem of classifying a geographical
found in the remote-sensing literature. An early work on thisrea by analyzing two multisource image data sktsand
subject was presented by Swain [29]. The author proposed,aacquired at two timeg; and ¢,, respectively. Each data
“cascade classifier” based on the generalization of the Bayss may contain images derived from different sources (e.g.,
optimal strategy to the case of multiple observations. Kalayelptical and SAR images). We assume that all the images of
and Landgrebe [30] described a classifier that considers typles two data sets refer to the same ground area, and that they
of ground cover as stochastic systems with nonstationaaye coregistered and appropriately transformed into the same
Gaussian processes as inputs and with temporal variationsratial resolution.
spectral responses as outputs. Then, multitemporal informationn general, the spatial and temporal contextual information
was used assuming that the behavior of these processes caplégs an important role in the classification process. One of
modeled by a first-order Markov model. Also, Khazenie anhe main purposes of this paper is to assess the potentialities
Crawford [31] proposed a method for contextual classificatiasf the technique we propose to estimate prior joint class
that accounts for both spatial and temporal correlations of dapaobabilities, which are related to the temporal context of the
According to this approach, the feature vectors are modeledta® multisource data sets. Therefore, for simplicity, we focus
resulting from a class-dependent process plus a contaminatimgthe temporal context only, and we do not explicitly consider
noise process; the noise process is considered autocorrelatatiénspatial context. Furthermore, we assume that, for each
both the space and time domains. Middelkoop [32] describpikel of one data set, all the temporal contextual information
a knowledge-based classifier that integrates the data acquisedonveyed by the spatially corresponding pixel of the other
at a given time with those acquired in previous years. Spatidata set. This seems a reasonable assumption for the current
temporal contextual classification was also addressed by Jgpoocedure by which we consider only two acquisition dates
and Landgrebe [33]. Gibbs random fields were used to modaeld disregard the spatial context.
the spatial context, whereas temporal class dependencies weiMe characterize the above pair of temporally correlated
taken into account by class transition probabilities. Expemixels (x1,x2), z1 being a pixel of the image data shtand
ments with multitemporal thematic mapper data showedza the spatially corresponding pixel of the image datalset

I1l. CLASSIFICATION OF
MULTITEMPORAL MULTISOURCE DATA
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by a pair of feature vector&X, X-). Each feature vectak; 1;). In general, the definition of a common statistical model of
is obtained by stacking together the measures provided by thaltisource data (e.g., optical and SAR images) may be quite
available sensors, as is done for the stacked vector approadmplex. Therefore, we adopted a nonparametric technique. In

Let Q = {wy,we,---,wp} be the set of possible land-covemparticular, we utilized multilayer perceptron neural networks,
classes at time;, and letN = {vy,vs,---,up2} be the set which, if properly trained by the error backpropagation algo-
of possible land-cover classes at tie rithm [18], provide estimates of posterior class probabilities;

We can consider two different types of classification: 19uch estimates can be optimized according to a predefined
the “compound classification” of each pair of pixéls,, z5), criterion [39], [40]. In our case, we adopted the minimum
which involves finding the “best” pair of classés;,v;) to mean square error (MSE) criterion.
be assigned to each pair of pixels; or 2) the classification of To this end, two neural networks (one for the datethe
the pixels of one of the two image data sets by utilizing thether for the datet;) need to be trained separately on two
information contained in both image data sétsand I5. “training sets,” for which the ground truth must be available.

As a classification strategy, we adopt the Bayes rule f@ihe two training sets may be defined independently of each
minimum error and apply it to the first type of classificationpther (i.e., they may refer to different ground points).

i.e., the “compound classification” dfc;,z2) [37] As a result of the training phase, the values of the internal
parameters of the neural networks (i.e., the so-called weights
and biases) are obtained. At this point, each neural network
= max{P(w;, v;/ X1, X2)}. (1) can be used to compute the estimate of the posterior class
v probability at the corresponding date (output of the network),

For the second type of classification, i.e., if the image dagiven the feature vectak; (input of the network) (Fig. 1).
set 5 is to be classified, the Bayes rule becomes

21 € wpandes € v, SO thatP(w,,, v,/ X1, Xo)

g € vy SO thatP (v, /X1, Xo) = max{P(r;/ X1, X2)}. (2) C. Multitemporal Data Fusion

e . . The only term in (4) that takes into account the correlation
The two classification problems, as well as their SOquonBétween the images acquired at the two times is the joint

are tlghFIy linked. In this paper, we .Sha” focus only on tr;:E[)robability P(w;,v;). The value of such a probability may
former, i.e., the compound classification of the two image d rgmarkabl affect the classification result [29]. In particular, if
sets (Swain in [29] addressed the latter problem). y -np '

Under the conventional assumption of class-conditiongf1e assumes (w;, v;) = P(wi)P(v;), then (4) is equivalent

. : : . . 0 a separate application of the Bayes rule to the two data
independence in the time domain, we can write [29], [33] setsI; and I,. This involves the loss of all the advantages

p( X1, Xofwi,vy) = p(X1 Jwi)p(X2/vy). (3) of the multitemporal analysis (such a situation will be used

_ as a reference to evaluate the performances of the proposed
Consequently, we can replace the search for the maximumpiathog).

(1) with For the above reasons, an accurate estimation of prior joint
P(w;/X1)P(v; ) X2) P(wi, vj) class probabilities is very important. By contrast, a direct
1“1)5{ Plw;) P(v;) } estimation from training data would require impractical con-

straints: training data should contain pairs of pixels (at spatially

In general, the above assumption may lead to suboptim@responding positions in the two images) representative of
solutions. For example, when the ground cover associated Wil possible combinations of classes at the two times.
a given pixel does not change betwegrandt; [i.e., w; = v, In this paper, we propose the application of the EM al-
in (3)], itis likely that some properties of the ground, whictyorithm [41] to estimate the joint probabilitie®(w;, v;),
contribute to determining the values of sensorial measurgs, described in the next section. Such a technique is fully
may be saved between the two acquisition dates. This impliggtomatic and adaptive to the data sets to be classified (even
a correlation betweei; and X, that is not taken into accountthoygh it makes use of the prior class probabilitigss; ) and
on the right-hand side of (3). However, we adopt the aboyey,,;) and of the posterior class probabilitig¥w; /X;) and

assumption as it allows a significant simplification of thgn(vj/XQ) computed from training data, as described above).
problem.

The a priori class probabilities?(w;) and P(v;) in (4) are
estimated from the two “training sets” (described in the next IV. ESTIMATION OF PRIOR JOINT
subsection) by computing the relative frequency of each class. PROBABILITIES BY THE EM ALGORITHM
The estimations of the remaining terms (i.e., the posterior class
probabilities and the prior joint class probabilities) are worth. The EM Algorithm

being considered more deeply. In several image-processing and pattern-recognition prob-

lems, it is necessary to estimate the parameters that charac-
terize a probability distribution function. In many cases, this
To estimate the single-date, multivariate, conditional probtask may become rather complex because a direct access to the
bilities in (4), we need to fuse multisource data (for exampléata necessary to estimate such parameters is impossible (or
to estimateP(w, /X1) we have to fuse the multisource data irsome of these data are lacking), and only some observations

B. Multisource Data Fusion
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Sensors | POR)  P(v))
(Date 1) i P(VJ /Xz)
From training data

T

WEIGTHS
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Fig. 1. Block diagram of the compound classification process. The(pgi, v,,) corresponds to the maximum in (4).

related to them are available. In some of these cases, itBs, Estimation of Prior Joint Probabilities

however, pos_sible to perform parameter estimations by usingry estimate the prior joint probabilitieB(w;, v;), we pro-

the EM algorithm [41]. pose to use an iterative fixed-point EM-like algorithm [38],

_ The EM algorithm constitutes a general approach 10 §hhich is a specific version of the EM algorithm and is suited
iterative computation of.maX|mum-I|keI|hood es.tlmates ab evaluating only the proportions of a set of parameters. In
parameters when there is a many-to-one mapping from g case we estimate only the joint probabilities of classes,
underlymg dlstrlbutlon_ to th_e dlstr_lbutlon governing an Obs_eﬁssuming no need to update the estimates of the posterior
vation. Such an algorithm is particularly useful in estimating,oapjjities and of the priori probabilities of classes (such
the components of mixture distributions. At present, the EMstimations are performed as described in Section I1l) during
algorithm is becoming increasingly popular for the analysis @he syccessive iterations. Thus, a more stable algorithm than
remote-sensing images. In this context, an interesting examplg standard EM is obtained. However, it is worth noting that
of the use of the EM algorithm for the estimation of clasg,g standard EM would also allow both the posterior proba-
distributions has been given by Shahshahani and Landgrefigies anda priori probabilities of classes to be estimated.

[42]. ) i _ The probabilitiesP(w;, v;) are regarded as the elements of
The general formulation of the EM algorithm consists of tW@h o matrix 7P (of size M, x Ms,), which is computed by

major steps: an expectation step and a maximization step. Tﬂ&ximizing the following pseudolikelihood:
expectation is computed with respect to the unknown under-

lying variables, using the current estimates of the paramet >

gndgconditioned upo?w the observations. The maximigation sggjp) - H < Z Z Plwn, vm) P(XT, X3 fwn, Vm))

provides new estimates of the parameters. These two steps are =t 5

iterated until convergence. )
An important aspect of the EM algorithm concerns itahere S is the total number of pixels to be classified aki{

convergence properties. It is possible to prove that, at eashthe qth pixel of the imagel;. It is possible to prove that

iteration, the estimated parameters provide an increase in the recursive equation to be used to estim&ev;,v;) by

likelihood function until a local maximum is reached. Despitenaximizing (5) is

the fact that convergence can be ensured, it is impossible,to

@i €EQ vy EN

ensure that the algorithm will converge to the global maximumk“(wi’:j)
of the likelihood (only in specific cases is it possible to _ 1 Py (wi, 1) P(XT, X5 [wi,vj)
guarantee the convergence to the global maximum). - s po > ca 2w en Prlwn, vm) P(XT, X4 [wn, vm)

A detailed description of the EM algorithm and of the ©6)
related theoretical aspects is beyond the scope of this paper.
Refer to the literature for an in-depth analysis of such amhere P (w;, v;) is the iterative joint probability estimate at
algorithm [41], [43]. the kth iteration. Such estimates are initialized by assigning
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Fig. 2. Block diagram of the process used to estimate the prior joint probabifties, v;).

equal probabilities to each pair of classes multisensor image data sets acquired by the Landsat Thematic
1 Mapper (TM) sensor and by the ERS-1 synthetic aperture
Po(w;,vy) = VAR Yw; €, v; €N. (7) radar (SAR) sensor in April and May 1994. As an example
1° 2

of the images used, Fig. 3 shows band 2 of the TM and ERS-
Under the hypothesis made in our approach (see Section Ilil)images acquired in April 1994. Both the TM images and
it is possible to prove that (6) can be rewritten as the ERS-1 May image were registered to the ERS-1 April
image. The available ground truth was used to prepare the
B training sets (utilized to train neural networks and to estimate
4073 Py(wi,vj)Plwi | X1)P(v; | X3) prior single-class single-date probabilities) and the “test sets”
E%EQ Eymew p&l%’?,f&;)P(“n/Xf)P(Vm/Xg) (uuh;ed for performance evaluation and companspn). _Table I
provides the classes and the related numbers of pixels included
(8) in the training and test sets.
where The two feature vector&’; and X, (related to timet; and
1 t2, respectively) consisted of 11 elements each, i.e., six TM
= (9) bands (all bands but the infrared thermal one), the intensity
SP(wi)P(vy) of the ERS-1 image (C band, VV polarization), and four
The algorithm is iterated until convergence. Convergence tgxture features computed from the ERS-1 image by means
reached when the maximum difference between the estimadéghe gray-level co-occurrence matrix (correlation, entropy,
at two successive iterations is below a threshold. More predm variance, difference entropy).
cisely, the stop criterion is defined by the following inequality: Several experiments were carried out by utilizing one sensor
or both sensors at each of the two times in order to test the
i{?f},f{|Pk+1(wi’l’i) — Pi(wi,vy)l} <e, validity of the proposed approach. For the sake of brevity,
wi€Q, v, N (10) in the following, we shall report on the two most significant
experiments only.

Pro(wi,vy) =

q=1

Aij

wheree € [0,1].
The estimates oP(w;, v,) obtained at convergence (Fig. 2)g  First Experiment

are then applied to the compound classification rule (Fig. 1).
PP P (Fig. 1) The first experiment involved the fusion of the data provided

by both sensors at both times.

Two feed-forward multilayer perceptron neural networks
were trained on the training sets and used to estimate the
A. Data Sets posterior class probabilitie®(w; /X)) and P(v;/X5). Fully

The considered data sets are related to an agricultural areadnnected architectures with one hidden layer were defined;
the basin of the Po river (northern Italy). They consist of twim both neural networks, the number of hidden neurons was

V. EXPERIMENTAL RESULTS
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@) (b)
Fig. 3. Images acquired in April 1994 and utilized for the experiments: (a) band 2 of the Landsat TM; (b) ERS-1 SAR image.

fixed at eight. The number of input neurons was set equal to TABLE |
the size of the feature vectors (i.e., 11) and the number of EEE:Q:L:‘SN’;‘ED(;E;; SlesggZ';“(zbE)DmR 1664
output neurons to the number of classes (i.e., four at time
and five at timetQ). Land-cover classes Number of pixels

The EM algorithm was applied and the convergence pa- (April 1994) Training set Test set
rametere was selected equal to 0.001. Six iterations of thiS~ Wet rice-fields 1798 1846
algorithm were necessary to reach convergence in the estima-22sl 1 1205
tions of the joint probabilitiesP(w;,v;). We point out that Wood 2136 2069
such estimations can be performed directly on the unknown___ Total 5315 5228
data to be classified (in our case, to assess performances, @)
they were performed on the test sets). Tables Il and Il show,
respectively, the true values of the joint probabilities for th@.and-cover classes Number of pixels
test set and the estimates of these probabilities obtained at thepyay 1994) Training set Test sot
last iteration of the EM algorithm. As one can see, the fina——; ERE) a7
estimates were quite satisfactory, as the maximum error on @Dry rice-fields 2139 2181
single joint probability was equal to about 0.02. Such an error We! riceields s gkl
was incurred on the joint probability related to the pair of Wood 3136 2069
classes bare soil/dry rice fields. In order to better illustrate the  Total 5315 5228
behavior of the EM algorithm in this experiment, Fig. 4 shows ()

the trend of the estimate of the joint probabilfd¢wood wood
versus the number of iterations. As one can see, the estimate

evolves from a value of 0.363 to 0.394 in only two iterationghe total percent error made with our technique is quite small
and reaches its final value (i.e., 0.395) at the sixth iterationand significantly smaller than that of the neural networks
Classification results obtained on the test sets with th@plied separately td; and I,. In particular, the overall
proposed technique at the two times are shown in Table tYassification error was reduced from 2.68% to 0.98% on the
in the columns “% Error EM.” For a comparison, the perApril data set and from 3.73% to 3.25% on the May data set.
formances of the neural networks applied separately to tHewever, the improvement appears more remarkable if one
images/; and/; are also included (columns “% Error NN”). considers single-class accuracies, in particular, for the two
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TABLE I
TRUE VALUES OF THE PRIOR JOINT PROBABILITIES CONCERNING THE TEST SET
May 1994
Corn Dry rice-fields | Wet rice-fields Cereals Wood
April 1994
Wet rice-fields 0.000 0.285 0.068 0.000 0.000
Bare soil 0.066 0.132 0.033 0.000 0.000
Cereals 0.000 0.000 0.000 0.021 0.000
Wood 0.000 0.000 0.000 0.000 0.396
TABLE Il

ESTIMATES OF THE PRIOR JOINT PROBABILITIES PROVIDED BY THE EM ALGORITHM IN
THE FIRST EXPERIMENT, USING BoTH THE SAR AND TM IMAGES AT THE Two DATES

May 1994
Corn Dry rice-fields | Wet rice-fields Cereals Wood
April 1994
Wet rice-fields 0.000 0.284 0.069 0.000 0.000
Bare soil 0.063 0.110 0.042 0.000 0.000
Cereals 0.000 0.015 0.001 0.020 0.002
Wood 0.000 0.000 0.000 0.000 0.395
TABLE IV
5 CLASSIFICATION RESULTS IN THE FIRST EXPERIMENT, USING BOTH THE
8 SAR AND TM IMAGES AT THE Two DATES. (a) APRIL 1994; (b) May
_5. 1994. THE CLASSIFICATION ERRORS INCURRED WHEN USING NEURAL
S NETWORKS SEPARATELY ON EACH SINGLE DATE (% ERROR NN) AND
ri’ WHEN USING THE PROPOSED TECHNIQUE (% ERROR EM) ARE GIVEN
; Land-cover classes %Error NN %Error EM
©
_% 1 2 3 4 5 6 (Apr.11 19‘94) (test set) (test set)
i} Wet rice-fields 0.49 0.38
Number of iterations of the EM algorithm Bare soil 4.23 1.58
Cereals 50.0 18.52
Fig. 4. Behavior of the estimate of the prior joint probabilf(wood wood) Wood 1.26 0.24
versus the number of iterations of the EM algorithm in the first experiment, Overall 2.68 0.98

carried out using both the SAR and TM images at the two dates.

@
most difficult classes: cereals in April (error reduction from

50.0% to 18.52%) and corn in May (error reduction fromland-cover classes %Error NN “Error EM
21.8% to 15.12%). (May 1994) (test set) (test set)
Fig. 5 allows one to gain a deeper insight into the effects 5 Con} - 211-3830 15.12

. .. e .  Dry rice-ficlds . 1.56
of th(.e. accuracies of the Jplnt-probabll|ty estimates on the e rice frolds 553 )
classification results. The figure shows the behaviors of the ™ Cereals 15.74 18.52
overall classification errors versus the number of iterations of —_Wood 0.29 0.24

Overall 3.73 3.25

the EM algorithm at both dates. As one can see, when the
number of iterations increases, the overall classification errors (b)

exhibit a decreasing trend, which results from the increasing

accuracies of the estimates. In particular, at the first iteratid}$ & consequence, one might prefer to buy only one image
at which the estimates obtained are not very accurate, fifeduired by the most expensive sensor. Therefore, we deem
overall classification errors in April and May are equal té interesting to report on an experiment carried out by using
2.68% and 4.86%, respectively. As the algorithm evolves, théferent sensors at the two acquisition dates considered.

increasing accuracies of the estimates progressively reduce th& this end, for the second experiment, we included only
classification errors to their final values (i.e., 0.98% in Aprfine ERS-1 image in the April 1994, data set and both the TM

and 3.25% in May). and the ERS-1 images in the May 1994 data set. The feature
vector X; was reduced to five components corresponding to

) the above-defined features derived from the ERS-1 image. The
C. Second Experiment neural network applied to the April 1994, data was modified
For different reasons, in real applications, the availablecordingly: the number of input neurons was reduced to five,
sensors at two dates may be different. For example, at ahe number of hidden neurons was maintained at eight, and,
date, both optical and SAR images may be available, whereabyiously, the number of output neurons at four. Nothing was
at the other date, the optical image may convey no informatichanged for the neural network applied to the May 1994 data

because of cloud covering. As another example, one of thet (neither did we need to retrain the network).

sensors might not yet (or any more) be operating at theln this experiment, the value of the convergence parameter

time of the first (or second) acquisition. Finally, the costs afas the same as in the previous experiment (i.e., 0.001), but the
images provided by different sensors may be very differeEM algorithm required eight iterations to reach convergence.
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TABLE V
ESTIMATES OF THE PRIOR JOINT PROBABILITIES PROVIDED BY THE EM ALGORITHM IN THE SECOND EXPERIMENT,
USING THE SAR IMAGE AT THE FIRST DATE AND BOTH THE SAR AND TM IMAGES AT THE SECOND DATE

May 1994
Corn Dry rice-fields | Wet rice-fields Cereals Wood
April 1994
‘Wet rice-fields 0.000 0.285 0.070 0.000 0.011
Bare soil 0.063 0.118 0.043 0.000 0.000
Cereals 0.000 0.003 0.000 0.019 0.001
Wood 0.000 0.004 0.000 0.000 0.384
s 6- - e | TABLE VI
< ; | TL'A I CLASSIFICATION RESULTS IN THE SECOND EXPERIMENT USING THE SAR IMAGE
2 45F : ‘ i -Mp ‘ i AT THE FIRST DATE AND BOTH THE SAR AND TM | MAGES AT THE SECOND DATE.
> (—a—Nay ‘ (a) APrIL 1994; (b) May 1994. THE CLASSIFICATION ERRORSINCURRED WHEN
% ; ; UsING NEURAL NETWORKS SEPARATELY ON EACH SINGLE DATE (% ERROR
S 3 A ‘ —1L = f—‘ NN) AND WHEN USING THE PROPOSEDTECHNIQUE (% ERROR EM) ARE GIVEN
a DN ;
? 15 . I 1L I - : Land-cover classes %Error NN %Error EM
g ‘ | T + """" SEREERS A (April 1994) (test set) (test set)
§ o NI N N Wetricefiolds | 146 054
1 2 3 4 5 [ Bare soil 6.89 2.82
Number of iterations of the EM algorithm %31:(?;8 8736383 235'0000
Fig. 5. Behavior of the classification error versus the number of iterations Overall 6.87 2.54
of the EM algorithm in the first experiment, carried out using both the SAR @
and TM images at the two dates.
Land-cover classes %Error NN %Error EM
0,41 o :
) ' .lI (May 1994) (test set) (test set)
g 037 ‘ | * Corn 2180 1483
5 p | I Dry rice fields 1.33 1.56
8 033 i | Wet rice fields 12.93 11.22
2" i ; } T Cereals 15.74 25.00
x ’ ‘ | ‘ | e_EM Wood 029 024
; 0.29 : k ) } - <~>fj ------ True Overall 3.73 3.37
5 ‘ h
g i i | ;
0250 | ] (b)
w 1 2 3 4 5 6 7 8

Number of iterations of the EM algorithm

Fig. 6. Behavior of the estimate of the prior joint probabiltgwood wood to 2.54%). The analysis of single class errors confirms the

1g. ©. enavior o e estimate o € prior joint probabl 000 W00 . . P . . .
versus the number of iterations of the EM algorithm in the second experimelrmpm'v_ement in the classification provided by O_ur met_hOd'
_carried out using the SAR image at the first date and both the SAR and TKIOSt single-class percent errors were reduced; in particular,
images at the second date. the unacceptable error on the cereals class at the first date

was sharply reduced (from 83.33% to 25.0%). As the error
Table V gives the final estimates of the joint probabilitie§n the single-date independent classification of the May data
obtained at the last iteration of the EM algorithm. As in the fir§et Was already quite small and much smaller than that on
experiment, the obtained estimates were quite accurate ({8 APril data set, only a slight improvement was provided by
maximum error on a single probability estimate was equal aur technique in the classification of the May data set (from
. . . 0, 0,

0.014). Fig. 6 shows the value of the joint probabilitywood 3.73% to 3.37%).
wood versus the number of iterations of the EM algorithm.
As one can see, a value equal to 0.280 was obtained for VI. DiscussION AND CONCLUSIONS

P(wood wood at the first iteration, which implies an error | this paper, we have presented a data-fusion approach to
equal to 0.116, as compared with the true value equal to 0.3 classification of multitemporal and multisource remote-
This error was steadily reduced to 0.012 at the last iteratiqgénsing images. The proposed approach is based on the
obtaining a final value equal to 0.384 féf(wood wood. application of the Bayes rule for minimum error to the

The classification accuracies obtained in this experimegémpound classification of two image data sets acquired at
are shown in Table VI. As expected, in comparison with thgvo different dates. Concerning the multitemporal aspect, we
results of the first experiment, the classification error at the firggésumed that, for simplicity, the temporal correlation between
date (April), based only on the ERS-1 April image, sharplthe two data sets can be taken into account by the prior joint
increased; obviously, the column “% Error NN” for Mayprobabilities of classes at the two dates. Multisource data
1994 is identical. The exploitation of the temporal correlatiofusion was then performed by means of multilayer percep-
among the images by means of the EM estimations of th®n neural networks, which provide nonparametric estimates
joint class probabilities allowed a significant reduction iof posterior class probabilities on the basis of single-date
the classification errors on the April data set (from 6.87%hultisource data.
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In addition to the flexibility provided by nonparametricmultitemporal data sets could be obtained by extensions to the
techniques, the use of neural networks for data fusion offggeoposed algorithms, such that may allow different tradeoffs
the general advantages of every neural-network approabktween simplicity and accuracy. Additional research on this
intrinsic parallelism, adaptability to data, and robustness igsue is necessary to reach the most effective solution.
noise and errors on training data. Unfortunately, the neural-Finally, in this paper, we have focused on the temporal
network approach also exhibits some well-known drawbacksntext, whereas we have disregarded the spatial context. As
In particular, for the neural model we adopted, no generah interesting development, the proposed method might be
rules exist to define the network topology and to establish teatended to include the information conveyed by the spatial
procedure of the training process; moreover, it is difficult toontext (e.g., by using Markov random fields [30], [35]).
interpret the network behavior [27], [28].

From a methodological viewpoint, the main innovation of ACKNOWLEDGMENT
this paper lies in the use of the EM algorithm for the estimation i
of the prior joint probabilities of classes. The importance of "€ authors wish to thank Dr. M. A. Gomarasca (C.N.R.—
these probabilities for the classification of multitemporal dal!eﬁ.R.S.—Tglerllevamento, M|I6}n,. Itgly) for providing the ,
was already pointed out by Swain [29]. In the literature, pridrpulusource images and for assisting in the related agronomic

joint probabilities are usually chosen manually by a humdRterpretation.
expert on the basis dd priori knowledge derived from the
characteristics of the geographical area considered and from

the time intervals between acquisitions. The advantage of thg) p. G. Leckei, “Synergism of synthetic aperture radar and visible/infrared
proposed technique based on the EM algorithm consists in the data for forest type discriminationfPhotogramm. Eng. Remote Sens.

ihili ; i A iliti vol. 56, pp. 1237-1246, 1990.
possibility of computing the estimates of joint probabilities 2] S. E. Franklin, “Ancillary data input to satellite remote sensing of

direCtly from the data set to be classified and in a fU”y complex terrain phenomenaComput. Geosgi.vol. 15, pp. 799-808,
automatic way. This overcomes the drawbacks resulting from_ 1989.

. . C. F. Hutchinson, “Techniques for combining Landsat and ancillary data
the need for a human intervention and from the dependen for digital classification improvementPhotogramm. Eng. Remote Sens.

on the accuracy of priori knowledge. In addition, it has vol. 48, pp. 123-130, 1982.
been proven that the EM algorithm converges to a locdf] D- R. Peddle and S. E. Franklin, “Image texture processing and

. o . data integration for surface pattern discriminatioRfiotogramm. Eng.
maximum of the likelihood function [41], [43]. Even though  remote Sensvol. 57, pp. 413-420, 1991.

the convergence to a global maximum cannot, in general, k] A. H. Strahler and N. A. Bryant, “Improving forest cover classification

; i inati accuracy from Landsat by incorporating topographic information,” in
demonStrateq' it has t.)een shown that’.m many applications, Proc. 12th Int. Symp. Remote Sensing Environmant Arbor, MI,
the EM algorithm provides accurate estimates [41], [43]. 1978, pp. 927-942.

In the present formulation, the estimation of the prior joint[6] A. H. Strahler, “The use of prior probabilities in maximum likelihood

i s ; ; classification of remotely sensed dat&&mote Sens. Envirgrvol. 10,
probabilities depends on the training data, as it exploits the bp. 135163, 1980,

estimates of the single-date prior class probabilities and of thg] J. A. Richards, D. A. Landgrebe, and P. H. Swain, “A means for
sing|e_date posterior class probabi“ties previous]y Computed utilizing ancillary information in multispectral classificationRemote

. . . . Sens. Environ.vol. 12, pp. 463-477, 1982.
from training data. It is possible to generalize the use of th ] J. A. RichardsRemote Sensing Digital Image Analysisid Ed. New

EM algorithm to estimate also the latter probabilities directly = York: Springer-Verlag, 1993.

from the data to be classified; this would make the algorithni®] P- H. Swain, J. A. Richards, and T. Lee, "Multisource data analysis in
! remote sensing and geographic information processingPrgt. 11th

Ies.s.sensitive to differences in the statistic;al Qistributions of |nt. Symp. Machine Processing of Remotely Sensed Data, 1985t

training and test data. On the other hand, it might reduce the Lafayette, IN, June 1985, pp. 211-217. o o

reliability of the estimates obtained. [10] T. Lee, J. A. Rlchards, and P. H. Swain, “Probabilistic an_d evidential
. . . apprqaches for multisource data analysEBEE Trans. Geosci. Remote

Experimental results on multisource and multitemporal data  sensingvol. GE-25, pp. 283-293, May 1987.

have been reported that attest the effectiveness of our tetiid J. A. Benedikisson and P. H. Swain, “"A method of statistical multi-

: : : : source classification with a mechanism to weight the influence of the
nique. In particular, the proposed technique may provide a data sources,” ifProc. IEEE Symp. Geoscience and Remote Sensing

significant improvement on an independent classification of (GARSS)Vancouver, B.C., Canada, July 1989, pp. 517-520.
multitemporal data sets, even when the sensors availablel1dt G. Shafer A Mathematical Theory of EvidencePrinceton, NJ: Prince-

. . . ton Univ. Press, 1979.
two times are different (e.g., both optical and SAR sensors @4; 1. b, Garvey, J. D. Lowrance, and M. A. Fischler, “An inference

one time and only one SAR sensor at the other time). It IS technique for integrating knowledge from disparate sourcesprot.
worth noting that. in any case, our technique is not able to 7thInt. Conf. Artificial IntelligenceVancouver, B.C., Canada, 1981, pp.

. P ! 319-325.
improve very poor classification results obtained at one dajg4) m. Goldberg, D. G. Goodenough, M. Alvo, and G. M. Karam, “A

not even if a better classification is performed at the other date. hierarchical expert system for updating forestry maps with Landsat

; ; _di ot data,” Proc. IEEE vol. 73, pp. 1054-1063, 1985.
In consideration of the above-discussed characteristics a['fﬁ H. Kim and P. H. Swain, “A method for classification of multisource

of the interesting experimental results obtained, in our opin- " data using interval-valued probabilities and its application to HIRIS
ion, the EM-based technique proposed can be considered data,” inProc. Workshop Multisource Data Integration in Remote Sens-

- : : : : o ing, NASA Conf. Publ. 3099, Greenbelt, MD, June 1990, pp. 27-38.
a sufficiently reliable tool for the estimation of prior JOIrlt[16] N. Lehrer, G. Reynolds, and J. Griffith, “Initial hypothesis formation in

probabilities. image understanding using an automatically generated knowledge base,”
Concerning the fusion of multitemporal information, we  in Proc. Workshop Image Understandirigps Angeles, CA, Feb. 1987,

. . pp. 521-537.
have considered only the case of two data sets (correspondiffg s™'|'e +egarat-Mascle, I. Bloch, and D. Vidal-Madjar, “Application

to two acquisition dates). A generalization to more than two  of Dempster-Shafer evidence theory to unsupervised classification in
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