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This psychophysical theory involves the following fundamental assumptions.
At a hypothetical neural decision center, signal intensity is represented by
several independent, parallel Poisson processes, whose rates are the same power
function of physical intensity. All decisions about signal intensity are based on
the observed times between successive neural pulses. The total number of these
times observed per channel is at the option of the subject, up to the size of a
memory store which is emptied when a decision is made. Overall response time
is the sum of the decision latency, which depends both on the signal intensity and
the decision rule, and a residual latency which is only assumed to be bounded.
Decision rules are suggested for discrimination, recognition, magnitude esti-
mation, detection, and simple reaction time designs, and predictions are derived
from the theory in these cases and compared with existing data. Various
familiar generalizations, such as Weber's and Bloch's laws and the inverse
relation between reaction time and intensity, derive naturally from the theory.
Crude estimates of all parameters—the exponent of the power function, the
number of parallel channels, the size of the buffer store, and the bound on the
residual times—are provided for sound intensity; estimates from different
experimental designs appear to be reasonably consistent.

Elsewhere we have begun to evolve and
test a detection and response time theory
which, at least for pure tones of different in-
tensities, seems to have merit (Green &
Luce, 1967, 1971, 1972; Luce, 1966; Luce &
Green, 1970). In this paper we formulate
the theory more generally and show how it
applies to a variety of psychophysical and
reaction time (RT) designs.

The theory is based on three fundamental
postulates which we now state; they are
discussed more fully below.

1. The output of a sensory system, such
as the ear, is treated as a set of sequences of
discrete, brief events—"neural" pulses—on
parallel channels with the following prop-
erties: (a) The duration of each pulse is
negligible; (b) the times between successive
pulses—the intemrrival times (lATs)—on
each channel and between channels are in-
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dependent random variables (RVs); (c)
when the intensity of a signal is constant,
the lATs have a common distribution with
an expected value that is a strictly mono-
tonic decreasing function of the signal
intensity.

We make two subsidiary assumptions
which are conceptually quite secondary but
are mathematically convenient and, ap-
parently, are approximately correct. First,
when the signal intensity is constant, these
stochastic processes are assumed all to be
Poisson processes with the same intensity
parameter /*.3 This means that on any one
channel, the common distribution of the
independent lATs is exponential and so,
by Ic, its intensity parameter /j. is a strictly
increasing function of the signal intensity.
Second, we shall assume that the latter
function is, in fact, a power function. As
we shall see, at least three different em-
pirical results support this assumption.

2. Decisions as to when and/or what to
respond are determined by decision rules
that can be stated in terms of certain lATs.

3 Undoubtedly, the values of the parameters differ
in different channels. Our idealization is obtained
by replacing the actual parameter values by average
ones.
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The principle underlying these rules (de-
rived from Ic) is that any IAT is an esti-
mate of (a monotonic function of) the
signal intensity. We deal in this paper
with only the simplest rules in which either
a fixed number of lATs are observed or
observations are continued until the first
IAT occurs that is less than a criterion.
Such models we call timing models. The
time until a decision is reached is called the
decision latency*

One feature of the decision center is that
it can store only a limited number of lATs
at any one time. Sometimes, the observed
behavior is limited by this storage capacity;
other times it is limited by signal duration,
which in effect limits the (expected) number
of lATs.

3. The residual latency, which is defined
as the overall RT less the decision latency,
is an RV that is bounded and is independent
of the decision latency.

Relation to Counting Models

The analysis of human sensory systems in
terms of Poisson processes has become in-
creasingly popular (Barlow, 1956, 1957;
Bouman, 1961 [see references given there];
Creelman, 1961; Grice, 1968; Kohfeld,
1969; McGill, 1963, 1967; McGill & Gold-
berg, 1968; Siebert, 1965, 1968, 1970).
The appeal is twofold: First, the observed
all-or-none character of neural pulses in-
vites description in terms of a continuous
stochastic process. Second, of the possible
processes, the Poisson is mathematically
the most tractable and, as we argue below,
is a tolerable approximation to some periph-
eral neural data. All of these other theories
share the assumption that decisions are
based not on lATs, but on a count of the
Poisson events occurring within a pre-
scribed time. The difference in our ap-
proach is exemplified by the problem of
estimating an instantaneous heart rate.
Either one can count the number of beats
during a period of time and then calculate
the average rate, or one can use the recip-

4 We follow the convention of using the word
"time" for any time that we can observe directly
and "latency" for any time that is an unobservable
construct of a theory.

rocal of the time between the two successive
beats spanning the instant of interest. The
former estimate, which is usually based on
a larger sample of lATs, is less variable, but
because the average is constructed over
some time period, it is not terribly sensitive
to brief fluctuations in the heart rate. Since
the detection of faint and/or brief signals
that may arrive at any time is similar to
noticing brief changes in the heart rate, we
find the IAT decision rules appealing. In
any event, timing models are worth in-
vestigating. Moreover, by emphasizing
lATs rather than neural counters or
accumulators, we avoid many of the
elaborate and often ad hoc assumptions
which are made concerning the memory
for or integration of sensory information.
It also has the distinct advantage of allow-
ing one to derive the distribution of re-
sponse times from the same assumptions as
are used to arrive at the various stimulus-
response probabilities, thereby permitting
a more unified treatment of psychophysical
and response time processes. Finally, cer-
tain empirical generalizations, such as
Bloch's and Weber's laws, derive naturally.

Discussion of the General Theory

We repeat and discuss more fully our
postulates. First, the sense organ, in our
experimental studies the ear, is assumed to
be a transducer that converts the intensity,
I(s), of the incoming fixed-frequency signal,
s, into several trains of pulses with inde-
pendent I ATs. The intensity is represented
by the temporal pattern of the pulses, not
by their amplitude or spatial location; as a
result, there is an inherent temporal am-
biguity in knowing when changes of the
input signal occur. In the case of constant
intensity signals, we assume that the out-
put on each of several channels is a Poisson
process with intensity parameter n(s) that,
by assumption and confirmed by experi-
ment, increases with I(s). (This can be
generalized to nonconstant intensities by
assuming that the hazard function of the
stochastic process is a strictly increasing
function of /(.?).)

Since the pulses we are talking about are
those on which decisions are based and
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hence are, presumably, located somewhere
central in the brain, and since the properties
most pertinent to our assumptions have
only been carefully measured in neurons
in the periphery, it is not clear whether
the existing physiological data are relevant.
According to Grossman and Viernstein
(1961), Rodieck, Kiang, and Gerstein
(1962), and Kiang (1965, especially pp. 95-
101), successive lATs in the auditory
nerves of cats are usually independent of
each other, but their distributions are at
best not quite exponential, and sometimes
are decidedly not exponential. In the best
cases, the observed distribution of lATs do
not rise vertically at 0, but reach their peak
value only after a few milliseconds, follow-
ing which they are often well approximated
by an exponential decay. The failure to find
extremely short lATs is interpreted as re-
fractoriness in the neurons. However,
Rose, Brugge, Anderson, and Hind (1967;
also see Brugge, Anderson, Hind, & Rose,
1969; Hind, Anderson, Brugge, & Rose,
1967; Rose, Brugge, Anderson, & Hind,
1969), using very refined techniques on the
squirrel monkey, have shown that the dis-
tribution appears to be very nearly geo-
metrically spaced at the period of the input
signal. Thus, with a 1000-hertz (Hz.) tone,
the lATs are approximately multiples of 1
millisecond (msec.) and have a distribution
of the form pnq. Similar frequency locked
IAT data, with pulsed clicks and cats as
subjects, were reported by Kiang (1965,
Ch. 4). Of course, the exponential is the
continuous approximation to the geometric
and, provided that we do not care to
discriminate as finely as 1 msec., it makes
little difference which we use. Thus,
although the Poisson assumption may not
be quite correct, it seems to be a satisfac-
tory first approximation in many cases.
Ultimately, the exponential distribution
can be replaced by, for example, a gamma
distribution, but many fewer closed-form
expressions will result. Two useful surveys
of statistical analyses of single-unit activity
are Kiang (1968) and Perkel and Bullock
(1968).

As we said, these data may not be rele-
vant to our postulate. It should be noted

that if a number of independent continuous
stochastic processes with independent lATs
are added, as may happen in parts of the
nervous system, the resulting process tends
toward the Poisson independent of the
distribution of the original lATs.

There are relatively few data bearing
directly on the dependence of n(s) on I(s),
in particular, on the constancy of M with
constant / and on the discontinuous change
in ju when we change the intensity discon-
tinuously from one constant value to
another, as in most psychophysical experi-
ments. Kiang's (1968) data suggest that
H decreases over a period of minutes with a
constant intensity signal, but over seconds
the effect is negligible. He has also ob-
served fibers in which n(s) increases for a
while with I(s) and then diminishes as I(s)
is further increased.

As we shall see, psychophysical data in-
directly suggest that for constant intensity
signals,

«[/(s) - /„]»,

0,

if /(«) > /o
if I(s) < /o,

where a and 7 are constants. Psycho-
physical data permit us to estimate 7, but
not a. To anticipate, the exponent 7 is
obtained by magnitude estimation methods.
S. S. Stevens (1970) marshals evidence to
support the view that neural firing rates
and other physiological measures of neural
activity are power functions of intensity.

The second major component of the
theory is a decision center that processes
the sequences of pulses in some fashion to
decide when to respond and/or which
response to make. Since the lATs are
independent and, with a constant intensity
signal, identically distributed (actually,
exponentially distributed under the Poisson
assumption), it is plausible to assume that
all decisions can be formulated in terms of
the values of certain lATs. Exactly how
decisions are reached depends both on in-
herent features of the nervous system and
on the exact experimental situation, in-
cluding our instructions and information
feedback. By imposing different extreme
experimental conditions, various limita-
tions of the nervous system will become
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dominant, and we thus hope to discover
what they are. Our tactic will be to
generate a variety of models6 as we consider
the observable consequences of various
decision rules. The common feature of all
of the rules described in this paper, how-
ever, is that decisions are based on com-
parisons of means of lATs with each other
or with a criterion; thus, the mean IAT
plays a role somewhat comparable to the
likelihood ratio RV in the theory of signal
detectability (TSD; see Green & Swets,
1966).

The basic principle underlying all of the
decision rules is that each IAT is an esti-
mate of the signal intensity; this sterns
from the assumption that the expected
value of the IAT is a monotonically de-
creasing function of the signal intensity
(under the Poisson assumption, an IAT is
an estimate of l/ju(.y)). With this principle
in mind, three simple decision rules arise
depending on the experimental design.

First, there are experiments in which the
onset of a (possible) signal is well defined,
and the problem is to identify which signal
is being presented (included are yes—no
detection, recognition, and magnitude esti-
mation). In such designs, one or more
lATs can be observed under the prior
knowledge that they all arise from the same
(Poisson) process. The rules that we shall
examine have, at most, three free parame-
ters: the number, J, of parallel channels
(nerve fibers) over which intensity infor-
mation is transmitted; the number, K, of
lATs per channel that a subject collects
before initiating a response, and (some-
times) a criterion, ft, against which the
mean of the lATs is compared. When the
subject is under considerable time pressure,
for example, in certain RT experiments and,
as we argue below, whenever the signals are
both faint and brief, we shall assume K = 1.
When there is no time pressure, the value

6 We follow the convention of saying that a specific
decision rule for an experiment coupled with the
other postulates of the theory is a model for that
experiment. The experimental rejection of a model
will be interpreted as the rejection of the decision
rule, not the theory. Of course, if a sufficiently
large number of plausible rules fail, the theory
itself becomes suspect.

of K must be estimated. It is clear that
were the subject free to make K arbitrarily
large, he could, at the expense of taking
enough time, make arbitrarily fine dis-
criminations, which empirically is im-
possible. This leads us to postulate the
existence of a buffer store in which only a
limited number of lATs can be held prior
to a decision. The size of the buffer, K, can
be estimated from psychophysical experi-
ments using brief but intense signals, such
as recognition and magnitude estimation
experiments.

Complications arise because it is not
always clear which decision rule to assume;
even when we restrict ourselves to rules
only involving lATs and we specify / and K,
several alternatives seem equally plausible.
A particularly thorny problem is how to
treat simple detection experiments when
the signal is presented only for a brief time.
Just how should pulses that occur outside
the observation interval be handled? It is
evident that the observer ignores those
events that occur far outside the listening
interval, but it is unclear how sharply the
observer's timing information can be used
to demark the listening interval. Further-
more, the effect of this uncertainty must
vary with signal intensity.

In those experiments in which the signal
is presented for some fixed duration, there is
a real possibility that the subject simply
samples some fixed interval in time and
counts the pulses in that interval. This is
the usual analysis given by the counting
models. If this is the case, then latency
information should reflect variation in the
end of this interval and in other fixed de-
lays, but should be independent of which
signal was present in the interval. We
work out two timing models. The first
simply waits for a neural event to terminate
the trial, even if that event occurs well out-
side the listening interval. The second
model assumes that IAT information
initiates a response if it occurs before a
deadline, which is set at the end of the
listening interval, and initiates a response
at that time if not before. It may well be
that details of the instructions and the
payoffs of the experimental task determine



18 R. DUNCAN LUCE AND DAVID M. GREEN

whether the counting or timing model is
correct in these experiments with fixed
signal durations. In many fixed signal
duration experiments, with no time pres-
sure, the counting models probably provide
the more plausible theory.

Second, there are experiments in which
two or more signals are presented at well-
defined times during each trial (included
are forced-choice and pair-comparison de-
signs). A mean I AT can be observed for
each signal interval, with some number
k = JK of observations entering into each
mean, and then the means compared in
order, for example, to decide which interval
contained the most intense signal.

Third, there are experiments in which
neither the occurrence nor identity of the
signal is at issue, but only its time of
occurrence (included are RT designs with
random foreperiods and the method of free
response). Here the task of the subject is
to notice, by observing lATs, when the
signal intensity is changed,6 and the natural
rule is for the subject to establish a criterion
/3 with which he compares a running average
of K successive lATs on J channels. When
that running average becomes less than a
criterion /3, a detection response is initiated.
By increasing K, the reliability of the detec-
tion can be improved, but at the expense of
delaying it long after the actual onset of
the signal. As we shall see, such rules are
difficult to study, and we work out (incom-
pletely) only the case of J = 1, K '= 1 for
the RT experiment with random fore-
periods. A special argument is used to
generalize the results to / > 1. Consider-
ably more research is needed on this class
of rules.

Of course, rules other than these three
types are possible. One of the most obvious
for some of the above designs are truncated
sequential rules. We have not undertaken
their study here primarily because of the
great difficulty one has in obtaining explicit
expressions for response time densities.

6 By the dictionary definition, "detection" is the
ideal term for this class of experiments, but that
word has long been appropriated for such special
recognition designs as yes-no and two-alternative
forced-choice in which one signal is of zero intensity.

Nevertheless, they should be explored in
the context of this theory. Two papers
relevant to optimal detection for somewhat
different stochastic processes are Bather
(1967) and Shiryaev (1963).

For experiments in which the signal onset
is clearly signaled in another modality,
another type of rule is possible which takes
advantage of a property peculiar to the
Poisson process. This is the fact that the
time from an arbitrary random event, such
as the signal onset, to the next pulse of the
process is an RV with exactly the same
distribution as that of the lATs. Thus,
decisions become more efficient if these
times are combined with the lATs. The
whole paper can be reconstructed using
this type of rule. We elected not to use it
for two reasons. First, if the process is not
strictly Poisson, then the time to the first
pulse after an event does not have the same
distribution as that of the lATs and, in
general, it would be a mistake to treat it in
the same way. Second, life has evolved in
a world in which the potential onset of a
signal is rarely clearly marked in any way—
most signals go unnoticed unless they
attract attention to themselves—and so we
would be surprised if a mechanism would
have evolved just to take advantage of the
extra information available in experiments
having trials.

It should be noted that in all cases where
we use a criterion ft we assume that it is
maintained at a constant value throughout
an experimental run. This is almost cer-
tainly wrong as the existence of trial-by-
trial sequential effects argues. Our strategy
is to assume that the variability in /3 is
sufficiently small so that we can bury it in
the variability of the lATs without too
gross an error. Later, if certain decision
rules seem viable, we will have to use
sequential data to separate IAT and /3
variability.

The present decision rules are wholly in-
adequate to handle frequency discrimina-
tion. One possible approach is to suppose
that different frequencies activate different,
overlapping sets of parallel channels, and
the subject attempts to identify from the
observed lATs which subset is activated.
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For low frequencies, another approach is
suggested by the data of Rose et al. (1967),
namely, that frequency can be inferred
from the discrete pattern of the lATs,
which are multiples of the period of the
input signal, but subject to some random
variation.

Since the pulses are strung out in time,
no matter which rule we postulate some
time is consumed in arriving at a decision.
In those situations with a well-defined
signal onset, we can observe a response
time, part of which is contributed by the
latency of the sensory decision process.
Because the expected value of the IAT in-
creases with decreasing signal intensity,
the decision latency and so the observed
response time is magnified by using weak
signals. In a sense, weak signals serve as
our "microscope" to explore these ele-
mentary, but basic decision mechanisms of
the brain.

We use the letter "I" to denote the
generic density of sensory decision latencies,
sometimes adding subscripts to identify
which signal was presented and which re-
sponse was made. Most of the mathe-
matical work in the theory involves using
the assumed decision rule and the other
postulates of the theory to derive expres-
sions for the various decision densities.
These formulas include as parameters such
things as the Poisson intensity parameters
of the sensory output and, where appro-
priate, /, K, and /3.

The third major component of the theory
is the sum of all times taken to complete
the response excluding the time absorbed
by the decision process. This includes, at
least, the times (a) needed to transduce the
energy into pulses, (6) required for a pulse
to travel from the transducer to wherever
decisions are made, (c) taken in travel from
there to the locus of the response, and (d)
needed for the muscles to act. This list
may not be exhaustive. The sum of all
these nondecision times we call the residual
latency.7 We assume that these residual

7 In our previous publications we called it the
"response latency" because, in thinking about free
response designs, we had focused on the time from

latencies are continuous RVs, that they are
independent of each other and of the
decision latencies, and that they are
bounded. We denote their (unknown)
density by r, with a subscript referring to
the response made if there are two or more.
Clearly, changing either the mode of
stimulation or the mode of response will
change r. The boundedness assumption
means that there is some r > 0 such that
r(t) = 0 for all t > T.

We know and assume very little about r.
We do not attempt to construct any theory
of the residual times. From our point of
view, they are a nuisance factor making it
difficult to get at the decision process.
Although postulating a bound on the
residual latencies seems most plausible, it
should be realized that it is sometimes
crucial in our analysis. This bound, to-
gether with the exponential lATs, which
are therefore unbounded, sometimes per-
mits us to get a fairly clear look into
aspects of the sensory decision process un-
contaminated by the residual times. Were
the residual times unbounded, we could not
use the tails of observed distributions to
estimate parameters.

If we denote by /y the density of observed
response times when response j is made to
the signal, then by our independence as-
sumption, it is the convolution of the
decision and residual densities, /y and r,
(see Figure 1), that is,

[1]

Because all of our densities are 0 for t < 0,
the Fourier transform8 of /y is

co is real and i* = — 1.

a decision to a response. In talking with others, we
discovered that this was badly misleading, especially
for designs with trials, and so it seems best to alter
the terminology. The residual latency corresponds
to what was called the "irreducible reaction time"
in the classical RT literature.

8 We follow the convention of using small Latin
letters for densities and their capitals for the corre-
sponding Fourier transform.
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FIG. 1. Block diagram of model and time diagrams of the output at each stage.

It is well known that if fs is a convolution
of lj and TJ, then9

This suggests the following general pro-
cedure for testing a model. State the
proposed sensory decision rule and, sup-
pressing the response label j, derive L
(usually, though not always, by deriving I
and then computing its Fourier transform)
as an explicit expression in terms of parame-
ters, such as the Poisson parameters of the
sensory process, /, K, and /3. Devise ways
to estimate these parameters (we often use
the boundedness of r to show that the
shape of the tail of / depends only on / and
not on r, which permits us to use the tails
to obtain estimates). Calculate from the
data F(u)/L(w), which is an estimate of
R(u). By inverting this transform, we
have an estimate of r. We can then see,
first, whether it is a density and, if so,
whether it is independent of manipulations

9 Other classical transforms, including the Laplace,
have the same property of converting convolutions
into multiplications. We use the Fourier because
there exists an excellent computer program, known
as the Fast Fourier Transform, for numerically
calculating transforms and their inverses.

of the parameters. If not, then doubt is
cast on the decision rule. This was done
successfully in Green and Luce (1971).

We show precisely how the boundedness
of r can be used in parameter estimation.
Suppose it has been shown that for suffi-
ciently large t, I acts like a gamma distribu-
tion, that is,

/(i) ̂  ctme-"1 for t > r*. [3]

Then by Equation 1,

"<
l(x)r(t — x)dx

([since r(t — x) = 0 for t — x > r j

•(
= c — x)dx,

for t > T* + T

(t~

C4]

where

a,-
fm\ CT

= d . (-!)"•-* / ym~ie^r
W 7o
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For m = 0, / is proportional to e~'' if
t > r* + T, and so t\ can be estimated from
the tail of /. For m > 0, the dominant
term is tmer^ and again 17 can be estimated.
For some models, but not all, / is shown to
have the above form.

Another approach was suggested many
years ago by Christie and Luce (1956).
Suppose the experiment is run twice with
signals of different intensities, but with the
same response. Assuming that the residual
latency is unaffected by the signal intensity,
we have

Fi(ta) £<XMi)
7^2 (w) Z,(co,/i2)

It is not clear how to estimate m and #2 or,
if they are estimated, how to test goodness
of fit. Note that in the special case where
signal 2 is extremely intense, we can assume
that the decision time is negligible, in
which case F2 estimates R and so

L(u,Vi) — » FI(U)/FZ(W) as/u2— >°°.

A major unsolved problem in this case is to
think through the estimation of parameters,
which is not quite conventional since the
data have been heavily processed before
we get to an estimate of L or /.

Organization of the Paper

The remainder of the paper simply
applies the above general theory to a
variety of psychophysical tasks : discrimina-
tion of an increment in intensity, recogni-
tion of one of several intensities, magnitude
estimation, simple detection, and simple
reaction time. We group these designs not
by any operational criterion, but by the
extreme theoretical distinction of whether
the subject is free to use maximum K per-
mitted by his buffer store or is "forced" to
use a K = 1 decision rule. The former
arises when there is no time pressure and
the signals are both of sufficient duration
and intensity, what we call "strong" signals,
so that K lATs are very likely to occur on
each channel during the presentation. In
particular, those tasks, such as discrimina-
tion, recognition, and magnitude estima-
tion, in which the signals are so intense that
there is no problem whatsoever in detecting

them, seem to permit the use of'the maxi-
mum (see, however, the section entitled
"Estimates of J and K" for a strong
qualification of this remark). The latter
is assumed to arise when there exists an
experimentally imposed time pressure,
which can take at least two forms: explicit
instructions and payoffs to be as fast as
possible or the use of weak signals of brief
duration. We do not attempt here to study
the difficult intermediate category of experi-
ments in which no explicit time pressure
exists, but the intensity-duration of the
signal is insufficient, on the average, to fill
the buffer store during the presentation of
the signal.

We take up these topics in the order:
strong signals, weak signals, and RT. The
reason for this order is increasing analytic
complexity. For strong signals, we derive
only statements about choice probabilities
and do not study the response times. For
weak signals, we derive both probability
and temporal relations, but the latter are
comparatively simple. Finally, in the RT
section we focus almost entirely on the
complex problem of detecting the onset of
a signal when it can occur at any time.

The basic procedure followed in the
analysis of each design is the same. First,
we state the exact nature of the experi-
mental task. Next, we describe a decision
rule which might be suitable. Finally, we
derive equations for the densities of the
various decision latencies and for the con-
ditional response probabilities from the
decision rule and other assumptions of the
theory, calculate Fourier transforms of the
densities, and indicate (if we know) how to
estimate parameters. Wherever possible,
we cite relations to well-known results,
either theoretical or empirical.

Parameter Estimates

Problems of estimating parameters arise
in any theory of this type, but they are
especially acute in the present theory for
several reasons. First, the parameters
often enter the equations as products—
yu(s)/3, JK, etc.—and so they are not com-
pletely identifiable. If JK = 100, then
either J = 100 and K = 1 or J = 1 and
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K = 100 is an equally good possibility.
This ambiguity cannot be reduced if we
stay in a single experimental context. Only
by studying behavior in a variety of experi-
ments can we arrive at estimates in which
we have some confidence. Second, in
many cases we do not have completely
satisfactory analytic methods for estimat-
ing parameters. Partly this results from
difficulties in solving equations; partly
because we have not worked out the correct
model. For example, we are reasonably
confident from various data that / > 1;
however, at present we have formulated
only a / = 1 model for simple RTs with
random foreperiods. Estimates from this
model differ from / > 1 models for other
experiments by as much as an order of
magnitude. Finally, at present we are at
the mercy of a few observations from
different experiments run in a number of
different laboratories for various reasons
unrelated to our theory. Nevertheless, to
help clarify the theory and to indicate how
one might proceed, we make tentative
estimates of the basic parameters from
existing data. The reader should not take
these estimates too seriously; we do not.

Comparison with Other Theories

As we have already suggested, the present
theory has much in common with well-
known theories; but it differs in significant
ways. It is well to appreciate the simi-
larities and differences.

Just as in TSD, we assume that the
subject observes a sensory RV and com-
pares it with a criterion or with another
sensory RV. Here, however, the RV is one
or more lATs, whereas in TSD it is a likeli-
hood ratio, a rather sophisticated function
of the sensory datum and the context of the
experiment. Since our sensory process is
assumed to be Poisson, the sum of k = «J
lATs has a gamma distribution with k
degrees of freedom, and so the estimate of /^,
the reciprocal of the mean of k lATs, has a
known distribution different from the
normal generally postulated in TSD. Of
course, the lATs are temporal RVs and
permit us to derive latency distributions,
whereas the likelihood ratios have nothing

explicit to do with time. John (1967) has
sketched a theory in which an RV, mono-
tonic with time, is compared with a
criterion.

Other theories, including TSD, the
Poisson counting models, and some simple
RT models in which there has been an
explicit attempt to deal with time (Carter-
ette, 1966; Edwards, 1965; Estes, 1960;
LaBerge, 1962; Laming, 1968; Stone, 1960)
differ from ours by assuming the existence
of a temporal structure other than that
created by the output of the sensory
process. The main idea is that there is
some sort of time quantum, either imposed
by the experimental design (TSD) or by
the subject, and within each quantum an
RV is observed and compared with a
criterion. In most such models, observa-
tions are taken until one, or the average,
RV gets outside an interval of indecision,
that is, a Wald-type sequential test is em-
ployed. Unfortunately, it is usually im-
possible to derive exact closed-form expres-
sions for the resulting latency distributions.
By contrast, we postulate no internal tem-
poral structure other than that provided
by the output of the sensory process, and
the resulting lATs are our sensory RVs;
often, latency distributions are easily
derived. Of course, if there really is an
inherent human time quantum over which
information is integrated, as Kristofferson
(1967a, 1967b) has argued, it is important
to model it correctly; however, the current
concensus is against that hypothesis and it
seems imperative, therefore, to work out
temporal models which do not include any
time quantum. Ours do not include such a
quantum.

PSYCHOPHYSICS OF STRONG SIGNALS

Assuming that a buffer store exists, we
may give a theoretical definition of a strong
signal as one of such intensity and duration
that, almost certainly, more lATs will
occur during its presentation than can be
accommodated in the buffer store. More
formally, if K is the (IAT) size of the store,
T the duration of the signal, and /* its
Poisson parameter, then the signal is strong
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if pT is considerably larger than K. For
strong signals that are also intense (large n),
detection is not the issue; rather, experi-
ments are aimed at understanding the
apparent magnitude of the signals or the
discriminability of two such signals when
their intensities are about equal.

The models we shall investigate, called
limited memory timing, assume that the
subject is allowed, both by the signal and
by the reward structure, to accumulate as
many lATs as are permitted by his buffer
store, namely k = KJ, where J is the num-
ber of distinct channels. On the average,
this requires K/n seconds per channel. We
assume that he uses the average duration
of the lATs as an estimate of I/At, and
we derive some probability predictions of
this model for discrimination, recognition,
and magnitude estimation designs. We
do not write down any of the equations
for the densities of decision latencies be-
cause, with large At, these latencies are such
a small fraction of the response time that
they probably cannot be used effectively to
study decision rules. (If the present
theory is conceptually correct, most simple
RT studies, with their very intense signals,
elicit information mainly about the residual
latency, not the decision one.)

At least two other plausible models exist
for strong signals. In the counting models,
which have been investigated by others, no
memory limitation is postulated, and the
subject is assumed to count the number of
pulses that occur within the signal interval.
Just how that interval is demarked for the
subject is a moot point. In addition, the
counting model has the unfortunate feature
of predicting error-free performance as
pT—»oo ; it is well known that increasing T
beyond, at most, a few seconds does not
improve performance.

Perhaps the most appealing models from
an intuitive point of view are those we may
call sequential, limited memory timing. The
subject is assumed to accumulate informa-
tion until either the evidence in favor of one
response becomes sufficiently persuasive or
until the memory is saturated, whichever
comes first. Their intuitive appeal is
strongly offset by their mathematical com-

plexity. It is often impossible to calculate
the distribution of the number of lATs to
a decision without making grossly simpli-
fying assumptions.

Discrimination of Intensity

In this section we shall consider pair-
comparison designs in which two signals,
Si and $2, differing only in intensity, are
each presented for duration T on each trial.
We let m = ft(s{). The subject is to report
which, the first or second, is the more
intense in his judgment. The design in
which one signal is held fixed and the other
varied is called the method of constant
stimuli.

We simply assume that as each signal is
presented, the subject stores the first
k = KJ lATs, records the total time (i.e.,
forms their sum), compares the two totals,
and reports whichever is smaller as the
more intense signal. If we let T,- denote
the total time RV arising from signal Si,
then

/>(l|5i,*,) = P (T , -T i>0)
= P(T,/T! > i)

is the probability that the first signal is
reported as more intense. It is well known
(see Parzen, 1962, p. 137) that

where

p =
Mi

Mi

This is the incomplete Beta distribution
If(k,k) or, equally, the F distribution

= Q(-;2k,2k\

It can be written in another way,

i=0

where
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50

FIG. 2. Variation of percentage of correct response in an intensity discrimination task. (The
abscissa is the ratio of the rate parameters for the two signals. The parameter is the number of
independent channels on which the decision is based, k = KJ.)

is the negative binomial distribution. As
Green and McGill (1970) note in a similar
model, for large k, Equation 5 is well
approximated by

p(\
d ' /VS

91(0,1), [6]

where

d' = V& - 1/2^- - lY [7]
\ M 2 /

Figure 2 shows p(i\Si,s^ as a function
of /ii/M2 for several values of k.

Observe that ^>(1|51)52) is a constant if
and only if Mi/M2 is constant. Since, by
hypothesis,

_I(si)

-/o"!1

^ToJ

"L
is a constant if and only if

/(««) - /o

is a constant, so Weber's law holds for
7(52) » 70. As 7(s2) approaches 70, two
effects contribute to the observed increase
in

A7 I(si) — 7(^2)

Most obviously, 70 can no longer be
neglected and A7/ (7 — 70) is constant only
if A7/7 is increasing. More subtly, as /j, is
decreased, the number of lATs that can be
observed before the signal is terminated
must, necessarily, decrease. In effect, the
size K of the storage is functionally de-
creased and, as we show in Appendix A,
as long as

Mi 1 + l/(2fe - 1)*
M2 > 1 - I/(2k - 1)*

then in order to maintain p(\ s\,s^) at a
constant value, /ii/Mz must be increased
as k is decreased.

Another interesting feature of the model
shows up if, instead of memory limitations,
we assume extreme time pressure (K — 1)
(due to short signal duration) and a single
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channel (/ = 1) and so set k = 1 in
Equation 5,

p(l\Si,S2) = p =
MI
+ M2 -

Notice that this generalizes nicely to m
signals :

P a K • • • ,*«) = / /"i*-*1' n
J o «-2

0

Ml
[8]

i—1

Models based on Equation 8 have been
called choice models and were investigated

by Luce (1959) and others. Within the
present framework, we would only expect
them to hold for intensity discrimination
when the subject is under severe time
pressure and has only one channel.

Biased Discrimination of Intensity

If the payoffs are asymmetric, so that it
matters to the subject which type of error
he makes, then we anticipate biased re-
sponses. If his available information is the
two random variables TI and T2, the bias
could take various forms. One possibility
is to say signal 1 when TI — T2 > «;
another is to say signal 1 when T2/Ti > 5.
With e = 0 and 5 = 1, these are equiva-
lent ; in general, however, they are distinct.
We consider them separately. For the
first, the argument given in Appendix A
yields

P(Tt- T i> e) =

> 0

[9]

P(T2 >O) , e < 0

where P(T2 — TI > 0) is given by Equation 5. Observe that for k = 1, Equation 9
reduces to

from which the following receiving operator characteristic (ROC) curve derives:

\P\ —t _ — ' P(l\s2>si) < 1 ~ P

i / s f l — P(l\sa,si)~]f>>l1"- ,.,
1 - (1 - P) , p(l\S2,Sl) > 1 - p

[11]

Plots of the ROC curve generated by where
Equation 9 for several values of k are
shown in Figure 3. p(») = -£

Ml + <

The other possibility yields (Appendix A) For k = I ,

T \ /o i. 1 ^ 1 ^(1 ^11^2) == ;—;—
_J > fj\ = (2« — 1)! pi + 6/42

' •-! from which we obtain the ROC curve

X i rwi v\~\
k
~

i
ijv ri9~i/ L^^J- *>J "••*• L1ZJ

/>(2|ji,j M2
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.2 .3 4 .5 .6 .7 .8 .9 1.0

FIG. 3. ROC curves for intensity discrimination experiment with MI =2,
M2 = 1 and two different decision rules. (The solid curves are generated by
varying the criterion on the difference on the sum of k lATs associated with
each interval. The dotted curves are generated by varying the criterion on
the ratio of the sum of k lATs associated with each interval.)

which is identical to that of the choice
model (see Luce, 1963a). The curves
generated from Equation 12 for various
values of k are also shown in Figure 3. It
is unlikely that experimental data could be
used to distinguish between the curves
based on Equations 9 and 12.

Before leaving our discussion of the
discrimination of intensity differences, we
should comment on an obvious deficiency
of models in this area. The present timing
model says nothing about the interval sep-
arating the two signal presentations. Ac-
cording to the model, it is irrelevant, where-
as, in reality, discriminability does dimmish
with increasing separation between the two
signals. The obvious way to remedy this
situation within the counting model is to
assume that the count is not recalled with
perfect fidelity (Kinchla & Smyzer, 1967).

Similar assumptions might be made within
the timing model concerning the fidelity of
the time recorded for the first signal.
Various alternatives are possible, but none
has been worked through to any interest-
ing predictions; we leave this as a con-
spicuous open problem.

Recognition of One of m Signals

By a recognition (absolute identification)
design we mean that on each trial, one of
w signals, si, • • • ,sm, is presented and the
subject is to identify which by using one
of m responses that are in one-to-one corre-
spondence with the signals. Usually the
correspondence is established as being
order preserving. In our analysis we
assume the signals differ only in intensity,
hence .y»+i is more intense than Si for all i.
Our approach to recognition parallels that
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of Thurstonian psychophysics, except we
use a gamma distribution rather than the
normal. In particular, we assume that the
signal duration is sufficiently long and the
intensities sufficiently great that, almost
certainly, k lATs can be observed, and that
their sum is a random variable T< which
has a gamma density with parameters k
and m when signal s,- is presented. We
assume that the subject selects m — 1
criterion values

0

and that his decision rule is to respond p if
and only if

Clearly, then

Thus, if the model is correct, the geometric
mean of

For large k the central limit theorem yields

P ( R < / » U < ) S (°i(P) 31(0,1), [14]
7-00

where

it P$v n en= V& :=-. [15]

Thus, Equation 13 is approximately a non-
equal variance Thurstonian model. The
equal variance case, in which z<(/>)
= (ftp — m)/<T, has been proposed for in-
tensity recognition by Durlach and Braida
(1969) and is tested experimentally in
Braida and Durlach (1972).

Given recognition data, the (m— i)m z»(/>)
can be obtained from Equation 14 (the
cases where z,(p) = — oo or oo are omitted
from the estimation scheme). We can then
use Equation 15 in the following (non-
optimal) way to estimate parameters. We
note that from Equation 15 it follows
immediately that

and

over all i, j, i > j yields an estimate of
ftp/ 'ft,. Similarly, the geometric mean of

over all p, q, p > q yields an estimate of
m/Vj.

Since m > 0 and the unit of measurement
is not determined, there is no loss of
generality in choosing the unit so that

We then have as an estimate of /u»,

. l f /AAMi = « 5 UJ •
With that in hand, we can use Equation 15
to estimate /3P/V& by forming the geometric
mean of

zj(p) - Zj(p)

over all i, j, i > j. Finally, from Equation
15 we see that the mean over all i and p of

is an estimate of V&.
With all of these parameters estimated,

we may use Equation 15 to predict the
m(m — 1) (less the oo cases) observed Z{(p)
from the 2m — 1 free parameters. These
predictions can be displayed as a scatter
diagram and evaluated by a chi-square test.

It should be of interest to compare the
estimate of IH/HJ obtained in this way with
those obtained by magnitude estimation
(see the next section).

Magnitude Estimation

Experimentally, magnitude estimation
(ME) and recognition have much in com-
mon : a single signal is presented on each
trial, and a numerical response is required
in which a larger number is assigned to a
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more intense signal. They differ, of course,
in that the experimenter establishes a one-
to-one correspondence in the recognition
design between the responses "1," "2," • • • ,
"m" and a fixed set of m signals ; whereas he
asks the subject in the ME design to reveal
his "built-in" one-to-one correspondence
between all positive real numbers and all
possible signals for an unspecified sample
of these signals. One notable consequence
of this difference is that there are correct
and incorrect responses in the recognition
experiment, and so payoffs can be used,
whereas no concept of error is appropriate
in the ME design. Our theoretical analysis
differs considerably.

We simply assume that the subject
attempts to estimate c\j., where c is an
adjustable unit parameter, by observing k
lATs and using the total time T as his
information about the signal. In fact, we
assume that he responds M = ck/1 as his
estimate of the magnitude of the signal.
Since T is distributed as a &th order gamma,
its reciprocal has the Pearson Type V
distribution (see Kendall & Stuart, 1958) :

Perhaps the most unusual feature of this
density is its high tail — of the form x~(k+1}

as x becomes large. This agrees with the
observations of Luce and Mo (1965) and
Schneider and Lane (1963). In fact, the
tails are so high that moments beyond
k — 1 do not exist. The mode, mean
(for k > 1), geometric mean (for k > 1),
and variance (for k > 2), which are easily
derived, are given by:

respectively, where C is Euler's constant
(= .577216). Since the observed mean or
median magnitude estimates are, approxi-
mately, power functions of signal energy
(S. S. Stevens, 1957), the postulate that n is
a power function of intensity is reasonable.
Moreover, this gives a way to estimate the

exponent y. This assumption was used to
account for Weber's law.

If this model is correct, it is clearly better
not to work with the data and Equation 16
directly, but rather to form reciprocals.
These have the density

[18]P — = y =

- 1)!

which, because of its exponential tail, has
much more stable moments than Equation
16. The mean and variance both exist
and are

1
— and

and so we have the following estimate of k :

= mean2/variance. [19]

If all forms of signal intensity are receded
in pulse trains with a rate that increases
with intensity, then comparisons of in-
tensity between modalities is a possibility.
At least intensities on different modalities
are represented by a common measure,
time, and so we need only postulate that
the nervous system is capable of making
comparisons of lATs originating in the
different senses. Thus, the a priori mys-
terious, but successful, method of cross-
modality matching makes complete sense
in this theory. Because of our power func-
tion assumption, we predict a power
function matching relation with an ex-
ponent that is the ratio of the two ME
exponents, which is what is observed. In
addition, since both signals exhibit varia-
bility in their I AT representation, we
predict that the distribution of matches
should be more variable than the reciprocal
of the corresponding MEs. We do not
know of data bearing on this prediction.

If we approach ME data much as we did
recognition data, we have from Equation 16

91(0,1),

- 1)!

[20]
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where

[21]

Here p is a cut point established by us, not
by the subject. Considering only the m
term, the dependence on k and the criterion
p are inverse to that found in the recogni-
tion model (Equation 15).

Estimates of J and K

According to the ME model (especially
Equation 17) and S. S. Stevens' (1957)
data, we know that for 1000-Hz. tones,
approximately,

Mi

where I is acoustic power. It is also well
known that the Weber fraction correspond-
ing to p(l |si,s2) = -75 is about .08, so the
corresponding parameter ratio is

^ = (1.08)-3 = 1.023.
M2

Using Equation 6, the normal approxima-
tion to Equation 5, we have an estimate of
k = JK of about 1750.

With k known, it is sufficient to estimate
either J or K. The only methods that
have occurred to us are for /. One possi-
bility, using ME data, is suggested by data
of S. S. Stevens (1966) and J. C. Stevens
and Hall (1966), which were both concerned
with the dependence of MEs on signal
duration T. For both brightness and loud-
ness, the MEs increase linearly in log T and
then abruptly become constant. In the
case of brightness, the location of the
corner is a function of intensity, being at
about 10 msec, for an 85-decibel (db.) signal
and at about 100 msec, for a 55-db. one.
This strongly suggests that the subject does
not fill his buffer store before determining
his estimate, but rather that only a few
lATs are collected on each channel. The
times indicate a 10 to 1 ratio in the fis over
a 30-db. range which agrees with the fact
that the range is equivalent to a stimulus
ratio of 103 and that the brightness ex-

ponent is about 1/3. Indeed, the numbers
are such that on the basis of threshold data,
using fixed intervals, we are probably safe
in assuming that only one IAT is obtained
from each channel.

The situation for loudness differs in one
important respect: the corner, which is at
150 msec., is independent of intensity.
This strongly suggests that the number of
lATs accepted increases with intensity,
which agrees qualitatively with the finding
mentioned by Luce and Mo (1965) that
their estimate of k increases; however,
they reported a factor of only 4 over a
47-db. range whereas we would predict,
using an exponent of .3, a factor of 26 in
order for the location of the corner to
remain fixed. In contrast Schneider and
Lane (1963) using magnitude production,
but converting their data to an equivalent
estimation form, found the standard devia-
tion of the estimates to be 1/5 of the mean.
From Equation 17, this yields the estimate
of k = 27.

There appears to be a discrepancy here
in that the Stevens and Hall data for loud-
ness estimation suggest that k increases
with intensity, whereas those of Schneider
and Lane for loudness production suggest it
does not. Further investigation is required
to determine if this is a difference between
estimation and production or if something
deeper is wrong with the theory.

Assuming only one IAT per channel,
K = 1, for the Schneider and Lane experi-
ment, / = 27 and so K = 1750/27 ̂  65.

The reader is no doubt perplexed, as are
we, about why 65 lATs should be collected
per channel in a discrimination experiment
and only 1 or a few in the ME procedure.
The only explanation that we have thought
of, and it is wholly ad hoc, is that calculat-
ing a reciprocal is considerably more com-
plex than comparing two sums, and so vast
amounts of storage capacity are reserved
to carry it out. We would be more con-
vinced of this had the loudness data been
similar to the brightness data and so
suggested K. = 1, independent of intensity.
There seems to be a problem in need of
better explanation.



30 R. DUNCAN LUCE AND DAVID M. GREEN

PSYCHOPIIYSICS OF WEAK SIGNALS

We turn next to one of the classical areas
of psychophysics, the detection of weak
signals. Here the focus continues to be on
various response probabilities, but in con-
trast to strong signals the response times
begin to assume some interest because the
delays of the sensory-decision process are
no longer negligible relative to delays of the
residual process.

The essential problem for the subject is
to decide on each trial whether or not a
signal is present in a noise background.
Because the signal is weak, we know that
the density of Poisson events is low or, to
put it another way, that the expected value
of an IAT is moderately large. We may
impose time pressure on the subject either
by deadlines and payoffs or by instructions
while leaving the signal on until a response
occurs, as in a type of RT experiment with
catch trials, or by using signals of such
short duration that a failure to decide
quickly almost certainly brings into play
pulses not due to the signal, as in a con-
ventional yes-no design. We shall suppose
that both of these procedures invoke de-
cision rules that involve only a single or
very few lATs from each channel.

It is not customary to regard fixed-
interval detection experiments as involving
any strong time pressure, but clearly they
do if anything like the present theory is
correct. For example, suppose that a 500-
msec. interval is specified and that a faint
signal is presented with, let us say, a value
of yu = 4, then the expected time to the
first event is 250 msec, and the second is
500 msec. This suggests that on the aver-
age, it would be futile to wait for a second
IAT and that, indeed, it may be futile to
wait for even one if the second impulse
lies beyond the end of the signal interval.

We examine situations having only two
signals: noise of constant power, n, and a
signal of fixed frequency and intensity in
that noise, 5. Thus, there are only two
Poisson parameters, p. = n(s) and
v = ti(n), where p, > v. We use obvious
mnemonics for the responses: Y for yes,
N for no, 1 for the first interval, 2 for the
second. A typical conditional response

probability is denoted p(Y\n), that is, the
probability of a yes response given that no
signal was presented. The response time
and decision latency densities are sub-
scripted similarly, so for example, /ny is
the density of the yes response times to the
presentation of no signal, and /,N is the
density of the no decision latencies to the
presentation of a signal.

Yes-No Design with Response-Terminated
Signals

It is convenient to begin with an uncon-
ventional yes-no design because it is one
of the simplest to analyze. With that as
an example, we turn later to the usual
fixed-interval design. Consider an experi-
ment in which the potential onset of a
signal is clearly indicated to the subject
(by an intense signal in another modality,
e.g.). On some trials there is no signal.
On the others, a constant intensity signal
is presented and remains on until the sub-
ject responds Y or N. The subject is
pressed (by payoffs or instructions) to re-
spond as fast as he can. In other words,
this is a simple RT experiment with zero
foreperiod and catch trials, but with a
faint response-terminated signal (which is
not usual in the RT literature).

The decision rule we shall suppose is that
the first K lATs are obtained from each
channel and if the average of these k = «J
lATs is less than /?, respond Y; otherwise
respond N. The decision time is then
simply the time of the slowest (K + 1)
pulse, which has the (K + l)-order
gamma distribution yK+i,p(t) with intensity
parameter /u. Since if J RVs have a com-
mon density, that of the largest is

- [22]

From this, a direct calculation yields the
mean reaction time (MRT),

MRTS = +f N P(N s)

[23]
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where

*(/,«) = /

00 x*+1e~x

0 K!

; vite~"dv~\J~1

X | / y~^ dx [24]

and fY and ?N are the mean residual
latencies for, respectively, Y and N re-
sponses. For large K, Equation 24 can be
transformed by the central limit theorem
into

h(J,K) ^ K + 1 + K + IH(J),

where
/•» r /•* -p-i

= / / *9i(o,i) / 31(0,1) dx
J -<f> \ '-oo J

is the mean of the largest of 7 normally
distributed RVs with mean 0 and variance
1. Several values of H(J) are given in
Table 1.

To get some idea of the error of the
approximation for small K, we compute
h(2,l) — 2.750 as compared with the ap-
proximate value of 2.797, an error of less
than 2%.

Note that if fy = nsr, then if we can vary
K experimentally, Equation 23 implies

MRTn = - MRTSv
f H> [25]

This linear regression provides a test of the
model as well as a way to estimate yu/ v and f.

Although the density of decision times is
not simple in this model, the expression for
the response probabilities is. Let T denote
the sum of k — JK lATs. Because each
I AT is exponentially distributed, T has a
gamma distribution of order k. Thus,

g,(x)dx,

where

&(*) = (k - 1) I

[26]

[27]

TABLE 1

H(J) VERSUS /

J

2
5

10
20
60

100
200
500

1000

H(Jt

.564
1.163
1.539
1.867
2.319
2.508
2.746
3.037
3.241

Note.—These values are taken from Table I of Tippett
(1925). Values of H(J) for all values of /, 2 < J < 1000, can
be obtained by taking i of the mean range values given in
Table X of Tippett (1925) or, for less accurate work, they may
be interpolated on a plot of H(J) versus log J, which is nearly
linear.

which is a Pearson Type V density (see
Kendall & Stuart, 1958).

As we have seen in Equation 17, the
mean m of gs exists only for k > 1 and the
variance of cr2 only for k > 2, and

Thus, for k > 2, the difference between the
signal and noise densities normalized by
the standard deviation of the latter is

[28]

If we approach the problem as in TSD,
we consider the likelihood ratio

and so

AA*
L(x) = ( - I <r-o.-'>*,

W

InL (x) > 17 if f x < c =
kin

v

which, therefore, leads to exactly the same
equation as 26, with c replacing kfi.

By substituting z = n/x in Equation 26,

dz, [29]
(k- 1)!

which is the incomplete gamma function.
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FIG. 4. ROC curve for first K lATs from / parallel channels. (The
parameter k is the product of JK. The parameter it/v is the ratio of the
rate parameter associated with the signal compared to the rate parameter for
noise alone.)

For large k, the gamma density approaches
the normal 3l(£,V&) and so, approximately,

KY|S)S 31(0,1). [30]

A similar expression holds for p (Y | n) . Let
z(s) and z(n) denote the normal deviates
corresponding to p (Y 1 5) and p(Y\n),

- l . [31]

Thus, on normal-normal paper, the ROC
curve is approximately a straight line with
slope n/v. Note that by setting z(n} = 0,

[32]

which differs from the true value by re-
placing k — 2 by k. For measurable levels

of detectability (d' ~ 1) the slope n/v is
approximately 1 + 1/V& which approaches
1 as k increases. As Figure 4 shows, the
normal approximation is excellent for all k;
however, the actual slopes are considerably
less than n/v for k as large as 10. This
results from errors in approximating the
gamma distribution by the normal
distribution.

It should be noted that the shape of the
ROC curve is very unusual. For example,
with k — 1 it is

p ( Y \ s ) = 1 - [1 - /»(Y|«)>",

which is the power function ROC curve
shown in Figure 5. This is different from
the power relation,

p(Y\s) =

suggested by Egan,
Schulman (1961).

Greenberg, and
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Some caution is required in interpreting
this prediction since most published data
are for fixed-interval designs and, as is
shown later (Equation 35), the ROC curve
for the corresponding J = 1 fixed-interval
case is approximately of the correct shape.
Moreover, as we have shown empirically
(Green & Luce, 1972), even with response-
terminated signals, what happens depends
on the payoff structure. With an imposed
deadline such that responses later than the
deadline are penalized, the slope of the
ROC curve in a normal probability plot is
1 or slightly less. However, if the deadline
is imposed only on signal trials, the slopes
are considerably greater than 1.

Speed-Accuracy Tradeoff

At least in situations with response-
terminated signals, it has been generally
felt that within limits, subjects should be
able to increase their accuracy of per-
formance at the expense of taking more
time. This is not a matter of variation
over the ROC curve, in which case a change
in criterion decreases one of the errors, for
example, p(Y\n), only at the expense of
increasing the other, £(N|s). In a speed-
accuracy tradeoff, both types of errors are
to be reduced at the expense of taking
more time to respond. Empirically, the
results have been ambiguous, ranging from
fast guess results in which the subject
completely fails to identify which signal is
presented or identifies it nearly perfectly
(Swensson, 1969, Experiment I; Swensson
& Edwards, 1971)j;o difficult-to-discrimi-
nate signals in which he exhibits a tradeoff
(Swensson, 1969, Experiments II and III).

Within the present model, such a tradeoff
can be effected only by using more than
one IAT per channel on which to base the
response. Obviously, increasing the num-
ber of lATs on which to base an estimate
of l//t decreases the variability of the
estimate and takes more time. In fact,
from the approximation to h(J,K) above,
we see from Equation 23 that

MRT,(« + 1) - MRT.OO

_! + [(« + 2)* - (* + 1

P{Y|s)

0.4 0.6
P(Y|n)

FIG. 5. The k = 1 ROC curve for response
terminated yes-no design. (The ordinate is the
probability of a Y response given that a signal was
presented. The abscissa is the probability of a Y
response given that no signal was presented. The
parameter is the ratio of the rate parameter as-
sociated with the signal compared to the rate
parameter for noise alone.)

Thus, if the signals are very intense and so
H is large, a negligible change occurs in the
response time; whereas, if the signals are
very faint and n is small, a large change
occurs and the tradeoff appears to be dis-
continuous. For example, with p = 4, the
change is at least 250 msec., which is likely
to be interpreted as an observer who can
operate only in two modes. For signals of
moderate intensity, say /u between 20 and
50, we are likely to see a more "continuous"
trade of speed and accuracy because in that
range each additional IAT adds, on the
average, from 20 to 50 msec.

Yes-No Design with Fixed-Signal Duration
(J = K = 1 Model)

The problem of how to deal with interval
markers becomes perplexing when we
analyze the conventional yes-no design.
The situation is exactly the same as the
preceding one except that the signal is
terminated T seconds after its onset, inde-
pendent of the subject's response; more-
over, the period during which it might be
present is clearly marked by a strong
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signal in another modality. On all trials,
we wait for a response to occur, and we
record Y to an s presentation as a correct
response even if the response occurs long
after the termination of the signal.

The major question in analyzing this
experimental design is what decision rule
to use. The problem is whether or not the
nervous system takes into account the
information about the end of the signal
interval. If it does not and if the first IAT
does not lie wholly within the signal
interval, then the second pulse is generated
by noise, not by signal. If it does, then
we have a type of deadline model. We
derive the various RT densities and con-
ditional response probabilities for both
rules on the assumption J = 1, and then
show that the second is inconsistent with
some RT data. The model for general /
is complicated.

Case 1: Decision based on the length of the

first IAT independent of when it occurs.

This is exactly the same rule as was used
above but with J = 1; it ignores the infor-
mation about the end of the signal interval.
The equations for n trials are, of course,
unchanged (Equation 29 with v substituted
for n, n for s, and with k = 1). The signal
case is a good deal more complex because
the signal may end before the second pulse
arrives. In Appendix B we derive the
response density, from which one can
derive the following expressions for the
response probabilities and MRTs:

1 - e-rf - (1 -

[33]

Eliminating /J, we have for the ROC curve

-1- l-

p ( Y \ s ) =

;- l),

p(\\n) < 1 -

1 - [1 -
[35]

v v

p(V\n)

Observe that the upper limb,
1 — e~"T, is linear and the lower, curvilinear;
some have felt that the data support a
curve of this character. For /3 < T,

MRT.Y = fy + - (1 -

+ - - 1

X

X (1 -

MRT8N = fN +

£ (Y | *) [36]

p(Y\n) = 1 - [34]

). [37]

The calculation of the MRT equations for
/J > T is left as an exercise.

Some Data

Observe that if the false alarm rate is
held constant (i.e., v and /3 are constant in
Equation 34), then MRTSY (Equation 36)
decreases with increasing T, as was re-
ported by Grossberg (1968) for brightness.
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In fact, if
1 _ e-»f> ̂

MRTsY ̂

i is sufficiently small so that
t then

if

as

Since Grossberg obtained a nearly neg-
ligible false alarm rate, /? must have been
exceedingly small. So for small T, for
example, 10 msec., we see that

MRT.y ̂  fy + <

« 1

Taking as a reasonable guess fY = 100
msec., his data place v in the range of 3-4
and for these faint signals, M in the range of
3.5-7.

We next examine whether Bloch's law
obtains in our model. For small v/3 and
vT, Equation 33 reduces to:

<

> T.

If we assume both that AI»» and nT are
sufficiently small so that terms greater
than (/ijT)2 can be neglected, then this
becomes

1 - e-"r(l - v/3 + vT),

- G*r)'/2, 0 > T.

Holding the false alarm rate, and so vft,
constant, we see that p (Y | s) constant im-
plies, for small /3, that /j?T is constant,
whereas increasing /3 alters this until, for
0 > T, nT is constant.

According to S. S. Stevens (1966), MEs
for brief flashes rise as from the .4 to .5
power of J. If the latter, then /j,2T con-
stant is equivalent to IT constant, which

is Bloch's law. This is well confirmed for
small T. According to the model, for
T < (8 we should find that it is replaced by
the constancy of PT, which is not reported.
Turning to the loudness data, Stevens and
Hall (1966) report that near threshold,
J-8r is a constant for equal loudness,
which for the model to hold, requires n to
be the .4 power of /. The usually quoted
figure is .3; moreover, J. C. Stevens and
Hall found that, unlike the brightness data,
the exponent is unaffected by the brevity of
the signal. However, it is well known that
near threshold the apparent exponent is
considerably in excess of .3 because the
dependence is on / — /o, not on /. So this
model does not seem grossly inconsistent
with what is known.

Case II: Decision based only on lATs
within (0,T). The decision rule is this.
Choose ft < T. Respond Y if at least two
pulses occur within (0, T) and if the first
I AT is less than /3; otherwise, respond N.
In Appendix B, we show that

p(Y\s) = 1 -
T, 0 < T. [38]

We cannot get an explicit formula for the
ROC curve for /8 < T and it is obscure
what to assume for /3 > T. Numerical
calculation yields the former. For the
latter, we can either assume the subject
stays at the value ft = T, jumps to (1, 1),
or forms a linear combination of these two.
The latter is shown in Figure 6.

The MRTs (Appendix B) are:

MRT.Y = fy + (1 -

+ i)

[39]

MRTsN = fN +

). [40]
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This model is almost surely wrong. We
note from Equation 39 and /3 < T, and if
M/J is small,

r 0
+ i

as T • <».

1
As is easily seen, for 0 < T, —^ < - + j3,~ V.T M
contrary to Grossberg's (1968) data.

Two-Alternative Forced-Choice Design
(J = K = 1 Model)

In this well-known design, two listening
intervals are defined. They are each of
duration T and are separated by a short
time. On each trial, the signal is presented
in exactly one interval and the subject is
required to say which. The possibility
exists here, as in the yes-no design, that
the subject bases his decision on events
outside the listening interval. We assume
not, however, and so we assume the natural
analogue of the decision rule just studied:
the first IAT is observed in each interval
and the one having the shorter IAT is
reported as containing the signal. The
only difficulty, which is serious with weak
signals, arises when at least one interval

does not contain any IAT; in that case, we
let T be the conventional length of the
first IAT. Since this can happen with
positive probability in each interval, there
is a positive probability of an unresolved
decision; we assume that with bias b the
subject chooses the first interval.

We will not attempt to calculate the
densities of decision times, which of course
is possible, but will content ourselves with
the response probabilities. Let the RV of
the time of arrival of the itii pulse be
denoted Yj. Define the decision random
variable

\r __

Thus,

P(X = t \ s )

Y 2 -
T,

if
if

Y2 < T

Y 2 > T.

P(X = t\n) is the same with v substituted
for fi. Assuming the independence of the
two intervals,

p(l\s,n) = P(XX- X2 < 0)

= / P(X! = i|s)
Jo

M + v \ju

= *\n)dxdt + 6P(Xi = T\s) P(X2 = T\n)

-" + vte~'T - (1 + vT)er'T~\dt + b(\.

X (1 + vT) «-o.+')r

-
v

+ v

Observe that as T —* w , the model
reduces to the so-called unbiased choice
model suggested by various authors (for
some history see Luce, 1959, 1963a; see

the section on "Discrimination of In-
tensity" for a generalization).

If we assume that varying b generates
the forced-choice ROC curve, then it is
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given by

p(l\s,n) - n,s)

H + v

li V

2- - 2-
V f l

+ v (/«- (42)

Note that this is a straight line with slope
1 as has been obtained by similar considera-
tions in the threshold theories (Atkinson,
1963; Krantz, 1969; Luce, 1963a, 1963b;
Norman, 1964). Here, in effect, the
threshold is not in the subject but in the
limited listening interval of the experi-
mental design.

It is important to realize that according
to the present theory, the method of gener-
ating the ROC curve differs in the yes-no
and forced-choice experiments. In the
former, a response criterion is varied much
as in TSD; in the latter, a response bias
is applied to inherently ambiguous infor-
mation much as in threshold theories. In
both cases, the limited period of signal
presentation leads to an effective threshold
which is reflected in the ROC curves.
Eliminating this threshold by having very
long intervals (T—> w) drives the yes-no
ROC curve toward a power function and
the forced-choice one toward a single point.
The present model suggests that different
aspects of TSD, threshold, and choice
theories will be evident depending on
details of the experimental situation.

SIMPLE REACTION TIMES WITH
RANDOM FOREPERIODS

Consider next a simple RT experiment
in which there is a signal on every trial and
the subject is asked to respond as soon as
he detects it. Unlike the previous designs,
there is only one kind of trial and only one
response. In order to make the task
difficult and to insure that the subject

0.4 0.6
P(Y|n)

FIG. 6. ROC curve for decision rule basedjon
first IAT within signal interval. (T is the duration
of the signal interval, ju the rate parameter associated
with the signal. The noise alone rate parameter, t>,
times the signal interval was .8 for these calcu-
lations, vT = .8.)

really waits for the signal, it is common
experimental practice to make the time
from the beginning of the trial (warning
signal) to the onset of the reaction signal a
random variable. (In our experiments, we
have used a discrete approximation to an
exponential density because in that case
the length of the wait provides absolutely
no information about when the signal will
occur; some experiments have used other,
less desirable distributions.) The only
unconventional features of the design we
shall study is that the signals are response
terminated. This seems appropriate when
weak signals are used; it is usually not
done with the intense signals used in most
RT experiments.

The analysis below was carried out
because we had run such an experiment
to test a previous theory. It is included
here, even though in important aspects it
is incomplete, because the experiment is
inherently interesting and because, in
contrast to the above models, the analysis
is mathematically more difficult. The only
case that we work out at all fully is /
= K. = 1. To analyze data, however, we
really need the / > 1 case. The only model
we have worked out, which is somewhat
different from those above, assumes that
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the J = 1 model applies to each of the
channels individually, and that the outputs
of these channels all feed into a single
channel to which the / = 1 model again
applies. No work has been done on K > 1.

Let S denote the random time of signal
onset after the beginning of the trial, that is,
the foreperiod, and let R denote the time
of the response, again measured from the
beginning of the trial. Our problem is to
derive the distribution of R under the
decision rule that a response is initiated at
the end of the first IAT that does not
exceed /3. The difficulty of the problem
lies in the fact that we work not with the
first IAT, as in the yes-no designs, but
rather with the first IAT that meets a
criterion. This difficulty' appears to be
inherent in any situation where the possible
onset of the signal is not specified experi-
mentally.

Analytically, the distribution of R is
composed of its separate distributions at
fixed foreperiods, each component distri-
bution being weighted by the probability
of that foreperiod. So we first examine the
case of a fixed foreperiod, that is, S = x.

We, therefore, consider a Poisson process
with parameter v during the interval [0,x)
and with parameter n (>v) during the
interval [#,<»). Let YI denote the time
of the itii event in this process, where
YI+I > YI. Define the decision random
variable D as follows:

D = t if and only if for some integer j,

Y, = t, Y, - Y,_x < /S,

and for all i = 1 , • • • , j — 2 ,

Yi+1 - Yi > 0.

That is to say, D is the wait until the end
of the first IAT that is < ft. We introduce
the notation

l(x,t) =P(D = [43]

-fJo

introduce

lo(x,t)

= P(D = *|S =* and Yi = 0), [44]

which is the same density subject to the
condition that the first event occurs at
time 0.

Although most RT data are given in the
form of approximations to the following
conditional density

= P ( R - S = t R > S )

'p(R-S = *|S =*, R > *)

XP(S = x)dx,

it is not sufficient simply to study l(x,i)
for t > x. The reason is that the observed
response time density is the convolution
of the decision density with the residual
one, and so some responses following signal
onset arise from decisions reached before it.

Our problem is to derive an equation for
l ( x , t ) . This is a rather more difficult task
than its simple statement suggests. The
only relevant literature which we have
found is Gilbert and Pollak (1957) who
studied the case x = 0; they called it a
Poisson coincidence counter. To some
degree we will repeat a portion of their
work, but it is more difficult than it is worth
not to make our treatment of our particular
problem self-contained.

Expressions for \o(0,t)

The key to understanding the process is,
first, to understand the simplest case in
which there is only one Poisson process
and the first pulse is at the origin, that is,
to solve for /0. In Appendix C we show
that /o satisfies

0 < t <

fJo
e>"<h(Q,y)dy,t> ft,

[45]

for the distribution of decision latencies.
It is also convenient theoretically to

which is an integral equation of retarded
type with a lag of ft. We can solve it in
three ways (see Appendix C), each of which
may prove useful at one time or another.
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First, we have an explicit series expansion ;
we have found this expansion least useful.

m-l

/o(0,0 = fie-"' £ a(m - 1 - i)

X
- (m- 1)0]'

where
(m - 1)0 < t < m$ [46]

o(0) = 1, o(l) = 0,

m-l t

t-1 ft!

for > I- [47]

Second, we work out an approximate solu-
tion for small /3. The trick is to make a
Taylor's series expansion of the integral
in Equation 45 about t in powers of j3 and
retain only the linear term. The free
constant is determined by the fact that so
is a density. This yields the approximation

0 < t <

i "en1' * t > /3
[48]

[49]

And third, we can find the Fourier trans-
form of lo(0,f); it is surprisingly simple:10

M - r
Jo

a
[50]

10 As J. W. Tukey suggested to us, a simple direct
argument leads to Equation SO. The process
consists of n = 1, 2, • • • , independent drawings from
the exponential distribution, the first n — 1 of which
are >/3 and the nth is </3. As is easily computed,
these two truncated densities have transforms

and

_ g _((1+,.u )/s]

(l -
and probabilities of occuring e~<^ and 1 — e~^,
respectively. Thus,

io(0,w) =

which is Equation SO.

Results for l(x,t) when x < /3

We now use these expressions for /o.
First, we find the Fourier transform of /
(see Appendix C):

/•«,
L(x,u) = I e-^'lfr,

Jo
f)dt

X + -
+

io(0,«)

X [> + (M - ^

X [1 -

.
1M -f- jU

[51]

where Z,o(0,w) is given in Equation 50.
Assuming for the moment that we have

estimates of the parameters v, n, and 0, we
can use Equation 51 as follows. With a
fixed foreperiod, the response density is a
convolution of the decision time with the
residual time, so its Fourier transform
F(x,w) can be written

Or, to use more data, if we have a distri-
bution g of foreperiods,

-r.g(x)L(x,u

This permits us to calculate R and so r
from the data using Equation 51. The
only difficulty is in estimating the param-
eters, with which we deal below.

For x < ft, we can compute the MRT
from a signal onset at time x by using
Equation 51 and the fact that

tf(t)dt = —



40 R. DUNCAN LUCE AND DAVID M. GREEN

Carrying out that computation,

= f + -(1 - e~>*) + (A - Bx)e~

-">* - x, x < ft, [52]

where

c = 5(r^7^ - V'
For v = 0 or x = 0,

MRT* = C53]

and

\ dx
T,\ v
— ) = - - < 0.

A-o M

It is evident that as the mean foreperiod
is increased, the subject can maintain a
fixed false alarm rate only by decreasing ft.
Since this increases both A and C, MRT^,
x < ft, must increase with increasing mean
foreperiod. This was observed in Green
and Luce (1971). Unfortunately, we can-
not check their observations in greater de-
tail until we know more about l(x,t) for
x > ft.

MRT Data

Assuming that the noise is negligible,
so Equation 53 applies, and recalling
from Equation 17 that the mean (or
geometric mean) MEs are proportional to
/*, that is, ME = Dp, then

MRT ̂  f +

2D

ME'
D D2

ME + ME2/3

for fj, large

for n small

Vaughan, Costa, and Gilden (1966)
showed that the data of several authors for

visual signals of fixed duration are con-
sistent with the formula

MRT = f + £>'//*,

where / is luminance. As they point out,
it is noteworthy that "subjective bright-
ness," as determined by the method of ME,
grows as J* (J. C. Stevens & Stevens, 1963;
S. S. Stevens, 1957; S. S. Stevens & Ga-
lanter, 1957). Assuming that the magni-
tude estimates are proportional to /*, then
at least for moderately large p we would
expect Vaughan et al.'s result. The only
complication in this argument is that they
obtained the data using exceedingly brief
signals—in their own data, T = 10 /^sec.
(in those of others T = 55 msec, to 575
msec.). For these data to be compatible
with our theory, it is necessary to suppose
that the effect of a very brief visual signal
on the neural pulse train is much longer
than the signal's duration.

For loudness, McGill (1960) has inter-
preted his data as showing MRT is linear
in ME~*. Taking the data reported in
McGill (1963), unpublished data of J. G.
Snodgrass (personal communication, 1962),
and those of Chocholle (1940) and choosing
f to be 5 msec, smaller than the MRT to the
loudest signal, we obtain the curves shown
in Figure 7. Since Chocholle did not obtain
MEs, we have plotted his data as if the
magnitude exponent were .3 (his other two
subjects give nearly identical results).
These plots seem to support the theory;
however, whether or not one says the slopes
are —1, as predicted, depends on exactly
what choice one makes for f. Altering it
by only a few milliseconds has an enormous
effect on the apparent slope. McGill made
a different choice from ours. Chocholle's
data, which cover the range down to the
subject's threshold, exhibit the predicted
steepening of slope at low intensities.

Estimation of Parameters

We need schemes to estimate v, n, and ft.
As we shall see, we have satisfactory
methods for estimating v and ft, but not for
ju except when ft is small. For other ft we
do not presently have a method for estimat-
ing JU-
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FIG. 7. Plots of MRT - f versus ME of loudness of 1000-Hz. tones from
three experiments. (For Chocholle's data, it is assumed that ME = «/•'.
In each case, F = MRTmin — 5 [in milliseconds]; for the Snodgrass data,
the loudest signal [ME = 1500] is not on the graph.)

On the assumption of a known small /8,
then to estimate n it is sufficient to estimate
n' and use Equation 49. To estimate v'
we use the approximate expression for
lo(0,t), Equation 48 (which is where the
assumption of small /3 enters), in equations
for l(x,t), convolute the result with r,
and integrate that over an arbitrary dis-
tribution of foreperiods. As we show in
Appendix C, the resulting density of re-
action times has tails of the following
form:

fa-a(() =P(R- S = *|R 2 S)

^Ae-"1 + Be-"",

t > r + 2/3, [54]

where n' is given by Equation 49 and A
and B depend on v, n, r, and the distribu-

tion of foreperiods. Observe that

1 +

and so for /3 sufficiently small, p.' is
appreciably smaller than p. Thus, er"'*
is the dominant term in Equation 54 and
so the tail of the distribution of RTs
allows us to estimate /*'.

To get at the parameter v, consider
l(x,t) for t < x. It can be shown (Ap-
pendix C) that l(x,t) = l(t,t) for t < x
and that it satisfies the following integral
equation of retarded type:

/ < 8

ve~" e"l(z,z}dz + vBL

t > 8. [55]
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To calculate the Fourier transform, we
note that l(t,t) = l(°°,t), and the latter
is simply the convolution of ve~" with
l»(<x>,t). Therefore,

j;

L(u>) = Z,(oo,w) = — r^-Z,0(°°,co).

However, Z,0(°°,w) is just Lo(0,w) with
replaced by v, so by Equation 50,

[56]
1 -

MO + V

Moreover, if we assume that for t > T'

, [57]

then direct substitution into Equation 55,
collecting terms in e~vt and e~"rt, and choos-
ing v' and C so that the equation is satisfied
yields

v = » - - T'). [58]

Let /R denote the density of response
times for which the response precedes the
signal onset. If we assume that the density
of foreperiods is X e~X(, then

f*(0 = Ke-w>', t > T' + T, [59]

where K depends on v, /3, and r. Thus, we
can estimate v' from the tail of /«.

In order to estimate v and /3, we need
another expression relating them. We
turn to that next.

False Alarm Probability

If we use an exponential distribution of
foreperiods, the probability of a false
alarm is easily seen to be given by

P(R < S)

= r e-
Jo

(x — y)dydx,

which is simply the LaPlace transform of
the convolution of I and r, and so it is the
product of their respective LaPlace trans-
forms. By the same technique as used
to get the Fourier transform of /(/,/) in

Equation 56, we obtain

P(R < S)

1 -

where

_x = /
Jo

-CVBO/J

-*'r(()dt.

[60]

[61]

Observe that by solving Equation 58
for (3 and substituting it in Equation 60,
we obtain

P(R < S)

-R-x

where

- f(x,a)

(1 + a*)[l + ax - /(*,<*)]'

x ~ v'/v
a = \/v'

f(x,a) = (1 - x) a+«*>/ <i-*>.

This function is plotted in Figure 8. It
can be used as follows: Since X is deter-
mined by the experimenter and v' can be
estimated by Equation 58, a is known.
Observe that for X sufficiently small,

#_x ̂  1 - Xf.

We can determine f from a very intense
signal, so P(R < S)/R-\ is also known.
Thus, x is determined, from which we ob-
tain v, and so /3 is determined from the
plot of /3v (Equation 58) also included in
Figure 8.

Moments of the Response Time Distribution

If the signal onset is exponentially dis-
tributed, the overall response time density
s

r
Jo

Its Fourier transform is

\er**l(x,t)dxdt

where L is given by Equation 51 for x < ft.
If an explicit expression could be obtained
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FIG. 8. Plots of P(R < S)/R-\ versus x = v'/v with a = X/V as a
parameter and of fiv versus x. (Assuming P(R < S)/R-\ and a known, this
plot may be used to estimate c and (3.)

for x > ft, then the moments could be ob-
tained by taking derivatives of L\(u) and
letting co —> 0. For example, the mean
would be given by

lim * dL\ (co)
w-»0 1 •

aU

In principle, this gives us all the additional
equations needed to estimate the parame-
ters without invoking any approximations.

Estimates of nfor Sound Intensity

It is easy to estimate Mmax/Mmin from the
empirical fact that, roughly, Imax//min is
1010. So, from the ME exponent of .3, we
conclude AWx/Aimm is about 103. It should
be realized that this estimate is considerably
larger than the observed range of pulse
rates in the peripheral fibers (Grossman &
Vierstein, 1961; Kiang, 1965; Rodieck
et al., 1962). A range of 102 is unusual;
10 is much more common. This suggests
either some sort of transfer from one

neural path to another as intensity in-
creases or that the central system has
considerably more dynamic range.

We do not know of psychophysical data
that permit us to estimate either ^min or
Mmax- The nearest that we can come to it,
which illustrates the method we would use
to estimate /tmin if the data were available,
is to estimate the value v, corresponding to
the noise background used in our experi-
ments, namely, a noise power density of
40 db. We use two methods. The first
probably underestimates v because it as-
sumes J = 1. It is based on the analysis
of the random foreperiod RT experiment.
We estimate v and ft by the method sug-
gested following Equation 60. According
to Green and Luce (1971), in an experi-
ment with mean exponential foreperiod of
2 seconds (X = .5) and with 10,000 ob-
servations collected from each of two sub-
jects, the tail of fa (Equation 59) is ex-
ponential, v' ̂  .07, and P(R < S) ̂  .1.
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If we assume, as is plausible, f = .2, then
jR_x = 1 - (.5) (.2) = .9. Solving in Fig-
ure 8, v^ .35 and /3 ̂  .8.

The second method is based on fixed-
interval yes-no data and on the assumption
that the response rule ignores the termina-
tion of the interval. In that case, the
noise equation is the same as in the re-
sponse terminated case, Equation 26.
With a reasonably strict criterion, it is
probably safe to assume K = 1, /3 < .2,
and that £(Y|«) ̂  .1. If so, using the
normal approximation to the gamma, we
see by Equation 30

JJ("0 - 1) = z(n) £* - 1.30.

Using our estimate of J = 27, we obtain
v > 3.72. Note that this corresponds well
with the estimate from Grossberg's (1968)
MRT data for brightness.

With the latter estimate, a signal 65 db.
above the noise would have a value of fi/v of
about 10«-6<-3) = 90, SOM > 335, For T = |
second, nT > 167 > 65 ̂ K, hence these
numbers are consistent with our definition
of a strong signal.

According to the data of Rose et al.
(1967), the representation of signals of
frequencies not greater than 2500 Hz. in
the peripheral neurons is quantized in the
period of the signal. Thus, a maximum
rate for a 1000-Hz. signal would be a
pulse every millisecond, that is, a value
of 1000 for jit. This does not appear
grossly inconsistent with the psychophysi-
cal estimates.

The order of magnitude difference in our
estimates of v, .35 and 3.72, probably re-
sults from the fact that we have incorrectly
assumed J = 1 in analyzing the random
foreperiod experiment. To show that this
may account for the discrepancy, consider
the following / > 1 model for this experi-
ment. Each of the J parallel channels
processes pulses as we have assumed; how-
ever, whenever two successive pulses are
less than 8 apart, it triggers not a response,
but rather a pulse on a common channel.
If 5 is small, say a few milliseconds, this
could be done by energy summation at a
synapse with a threshold. The common

channel, then, carries the superposition
of the outputs of the / parallel channels.
When there is no signal, the pulses on the
common channel should not cluster; when
there is, they should cluster. Moreover,
if / is sufficiently large, the process on the
common channel is approximately Poisson,
even though the recurrent events on the
parallel channels are not (see Cox, 1962,
pp. 71-79). Finally, we assume that the
common channel triggers a response ac-
cording to the / = 1 model with a criterion
/3^S.

From Equation 50, we obtain

as the mean time between successive out-
puts of each of the parallel channels. Thus,
the intensity parameter of the common
channel is

„ = „ - g->

So, if v = 3.72, J = 27, and 6 = .001,
then v' = .373, which seems to account for
the order of magnitude difference in our
estimate.

According to the arguments leading to
Equations 54 and 59, the tails of both the
false alarm and RT densities should be ex-
ponential in a simple RT experiment with
an exponential distribution of foreperiods.
Luce and Green (1970) verified this pre-
diction, and they estimated11 the parame-
ters //' and v' for various signal intensities.
Let MI and v\ denote the corresponding true
single-channel values which are related to
n' and v' by Equations 49 and 58, respec-
tively. Finally, let M and v be the under-
lying parameters on the several parallel
channels, as just derived. If n$ is small

11 The cut point used in analyzing these data was
500 msec. Recall that Equation 54 was derived for
t > r + 2/3. We are probably safe in assuming 7
is not greater than 300 msec. ; this is based on simple
RT distributions to intense signals, which according
to this theory is dominated by r. So the above
inequality would hold if /3 were less than 100 msec.
However, using the method for estimating 0 out-
lined in connection with Figure 8, we estimate /3
for these data to be about 1 second. Therefore,
we have no reason to believe our approximations are
applicable. In spite of that, we continue the calcu-
lation as if they are justified because the results
seem consistent with earlier ones.
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FIG. 9. Estimated ///"' versus the ratio of signal power to noise'density
in decibels. (The two Poisson parameters were estimated from the tails
[> 500 msec.] of RT densities. This is Figure 9 of Luce & Green, 1970.)
(Reprinted from an article by R. D. Luce and D. M. Green in Perception and
Psychophysics, Vol. 7. Copyrighted by Psychonomic Journals, Inc., 1970.)

relative to 1, then

/ — 1 + Mi/3 vW ~

Figure 9 presents the empirical plot of
p'/v' versus signal-to-noise in decibels for
two subjects. We see that to a good ap-
proximation n'/v', and so by what we just
showed fi/v, is a power function of I(s)/
I(n), confirming again one of our basic
postulates. Moreover, taking into account
the factor of 4, the estimated exponent y

is .4, which is well within the range of
values found by magnitude estimation of
the intensity of pure tones.

For a particular signal-to-noise ratio, we
can also estimate n,/v from response ter-
minated yes-no ROC data. For example,
we have found that 10 logP/No = 16.5 db.
yields a value of about 1 for d', that is,
z(s) = 1 and z(n) — 0. From Equation 32,
we see that

= 1 +
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which with our estimate of 7=27 yields
H/v = 1.193. By the above argument, the
observed value of n'/v' should be (1.193)4

= 1.85, which falls between the two data
points. If we reverse the argument, this
provides an independent estimate of /
which agrees with the earlier one from ME
data.

SUMMARY

The postulates of the theory are: signal
intensity is transformed into / identical
Poisson processes on parallel channels; the
(intensity) parameter of these Poisson
processes is a power function, with exponent
7, of signal intensity; decisions are based on
the lATs of pulses, which are estimates of
the Poisson parameter; up to K lATs per
channel can be collected and stored prior
to reaching a decision; and observed re-
sponses are delayed beyond the decision
time by the addition of a residual latency
which is no longer than r seconds.

These ideas were worked out in some
detail for various standard types of experi-
ments, and a number of well-known results
were shown to follow, several postulates
were tested, and estimates were made of
the several parameters.

Aside from neurophysiological data on
peripheral nerves, the strongest evidence
for the Poisson assumption comes from the
exponential decay of RT densities. Sup-
port for the power function came from three
direct sources—ME data, the nature of the
decrease in MRT with signal intensity,
and a plot of Poisson parameters (estimated
from the tails of RT densities) versus signal
intensity—and one indirect one—the pre-
diction of Weber's law. It is gratifying that
all three estimates of the exponent y were
about the same, .3-.4 for sound intensity.
Actual values of the Poisson parameters,
based on yes-no and RT data, suggest a
value of v, corresponding to the noise back-
ground, of about 3-4, or a mean IAT of
250-350 msec. A signal-to-noise ratio cor-
responding to a d' of 1 yields a ratio of
M/V of about 1.2.

The estimates of the constants / and K
are less secure, and future work should
attempt to find additional ways to estimate

them. From Weber's fraction, we con-
cluded that for 1000-Hz. pure tones, JK
has a value of about 1750. Two arguments,
one based on the ratio of the mean to
standard deviation of MEs and another on
a yes-no ROC curve and a previous esti-
mate of fj,/v, suggested that / is about 27,
in which case K is about 65. Finally, we
estimated T to be about 300 msec, on the
ground that simple RTs to intense signals
are very nearly the residual latency.
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APPENDIX A

PROOFS OF EQUATIONS FOR MODELS WITH STRONG SIGNALS

Proof that p(l |s/, s2) decreases with decreasing k.

From the assumption

->
1 —

we conclude immediately that p > J 1 + ( T; T 1 • Thus, for x > p,
L \ 2« — I / J

So

Pk(\ | Od
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Proof of Equation 9

Let /,• denote the density of T,-, then

P(T2 - T! > e) = / / /,(* + t)fi(x)dxdt
Jt J maxf.Ot-t)

/max(0i—()

Observe that

/"" [* k~l I k — 1 \
I PA* (M —I-., f \ ~\k—la— (Ml~rM2) #/7v — / *»fc~"•! \ I 1-v*^^'—^
I LvV ^A r **/ J ^ Cl'A' ^~ I »v X _, I , IA (

Jo Jo <-o \ * /

,=o \ »' / (MI + M2)*+t '

For e > 0, / > 0 and so max(0, — i) = 0, and substituting and simplifying yields the first
part of Equation 9. The second part, e < 0, requires separating the integral at 0,

P (T, - T! > e) =
K ; . _ e _(

+ / e-"2(

h-l-i ( _f* !-
L

+ P(T2 - Ti > 0)1

Proof of Equation 12

The proof of Equation 12 parallels that of Equation 5:

h(ty)yh(y)dydt

( 2 * - D l •"

+ -<
\ M

which yields Equation 12 by substituting

_ 1
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APPENDIX B

PROOFS OF EQUATIONS FOR MODELS WITH WEAK SIGNALS

Proofs of Equations 33-37

Assume J = K. = 1, a signal of duration T, and the response rule that the first I AT is compared
with ft and respond Y if it is < /3; N otherwise. Let Y,- denote the time of the ith pulse. For

P(Y2 = t\Yi = «&s)P(Yi = x\s)dx

/
Jo

I
Jt-t-/>

T

t-ff
+ e-"T

t</3

, T < t < T + 0

J-/S

Similarly,

fo,
- Yi > /9|Yi = < -

T<t<

t<

1

p(N\s)

°'

The argument for ft > T is similar:

f i

o

/.T(0 =

f' .-
Jt-e

/3 < « T

T< t < T

P< t< T

T< t< T+/3

t< T

T < t<&

/3< t< T
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+ j-V-t*—)*1^ - 7>-"<,
t < T

T < t < 0

/3 < « T +

r + / 3 < i .

< < 0
/3 < * < r +
T + (3 < /

«0
^ < « r +

Since these are densities, the expressions for £(Y | s) and />(Y | ») may be obtained by integrat-
ing them and setting that = 1. Equations 33 and 34 result. To obtain Equations 36 and 37
for MRTs, we first calculate the Fourier transforms:

Y d -/

(_
\
\

^

fJo

> + M / V

We then use the fact that

to obtain the MRTs.

Proofs of Equations 38-40

Observe that no response is initiated later than T and, since the residual latency is bounded by
T, no response takes longer than T + T.

The calculation of Y responses is much as before:

/
J t

i

i

t-»

-"«-*><£*; / < /3

f^-^dx, ft < t < T

T< t

«/3

18 < t< T

T<t.

The N responses arise in two ways: either the first I AT is wholly within (0,r) and it exceeds
ft or there is at most one pulse in (0,T):

f O t<0

[ 0 T <t.

Note that the expressions for n trials are obtained by replacing /i by v.
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By integrating either density (the latter is easier), we obtain Equation 38.
The Fourier transforms are :

- y c1 -M/

from which Equations 39 and 40 follow.

APPENDIX C

PROOFS OF EQUATIONS FOR SIMPLE REACTION TIMES

Given the definitions of I and k, Equations 43 and 44, and the independent exponential
distribution of lATs, it is not difficult to see that they satisfy the following pair of functional-
integral equations:

ve v"k(x — y,t — y}dy, t< x

, t - y)dy, t>x

[Cl]

k(x,t)

t < x

x< t< (3 }-x

t <

[C2]

x>@.

Setting x = 0 in Equation C2 yields Equation 45.
For x <• ^i t, Equation C2 yields

x< t<

--«<

Using this in Equation Cl yields for * < /3,

t < x

->>* v I <r>">lo(Q, t - y~}dy + ju / e-»»l0(0, t - y)dy\, t > x.
L JO Jx J

[C3]

Proof of Equation 46

Define
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By Equation 45, <p satisfies

We show that

j=o

solves this equation if a is defined recursively as in Equation 47. Since this function is 1 for
0 < t < 0, we consider t > /3. Suppose m is such that (m ~ l)/3 < t < #z/3, then by induction

/

(-£ r m-2 A/3 /V-/3 T

<o(z)dz = M E / v(2)dz + / ^(z)rfz
L »-l J (t-l)/3 7 (m-z)fl J

{ m-2 ftf rt-(m-l)P I

Z / v[y + (» - l))8]iy + vCy + (m -
<-i Jo Jo

- E /*£.«- i - ̂  + /'"•""' E «(» - 2 - ,/
»-i Jo j-o j! Jo y-o j l

/ n j_^ c 1 ^XD - (OT - l)/3]*= a(m - 1) + Z, a(m — 1 - k)— — -i
ri - '-^-=L

Another approach to solving integral equations of retarded type is to differentiate them and
attempt to reduce the problem to one of differential equations of retarded type. These have been
studied in some detail (see Bellman & Cooke, 1963; El'sgol'ts, 1966).

Care must be taken, however, since information is lost. For example, our integral equation
for f says f is discontinuous at t = 0. If we differentiate, ignoring all potential discontinuities,

-0),

<p(f) = 1, 0 < t < /3.

This is dealt with on page 6 on El'sgol'ts and the solution is

It is easy to see that this does not solve the integral equation because it is continuous at t = /3.

Proof of Equation 48

Rewrite Equation 45 and use the linear term of the Taylor series,

f l , ' < £

e"/o(0,0 = M P

Vo

""{/'<-Jo
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Differentiate this for t > /3 and collect terms

/'0(0,0 = - n'

where

Equation 48 follows by integration except for a constant of integration which is evaluated by

f"
setting / J0 (0,0* = 1-

Jo

Proof of Equation 50

From Equation 45,

/•»
L0(0,co) = / e-"'l0(0,t)dt

Jo

/

/s r» /"<-0
e-^iie-^dt + I e-

ia>i\i.e-^ \ e"vh(Q,y)dy
JP Jo

f
e-<»+P>z /

Jo

Integrating by parts, taking into account that /o(0,0 —> 0 as /—> <x> because /o is a density, we
obtain

•iu -\- n

Solving yields Equation 50.

Proof of Equation 51

By Equation C3,

fx • r
T (v M l = I p—wt](*f f \ f J f -\- I a—itatJf*. A/7*
i-t I ,VjUJ I ~~ I K v\Jv1l' jit-l/ \^ I K v \-lv\l') It'll

Jo J*

CM fx

— y)dydt

>* / g-*»tp I
J * J x

erwj0(0, t _ y)dydt.

The first integral is trivial. The second one can be dealt with by a change of variable and an
integration by parts :

ei"h(0,z)dzdt = ~— - g-<.M-»)t / ei"k<0 z)dz
-x v» + 1 '

,t) - e""-^ J0(0, < - x)~\dt

|Lo(0,w) - 7-^—
L w + A i
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A similar treatment of the third integral yields

.
«0 + fi

Adding the three terms gives Equation SI.

Proof of Equation 54

In the following estimates of l(x,f) we are only concerned with t ^ s and so it will prove
convenient to write the second argument ast + x , t s f 0. Consider, first, the case x ^ )3. The
plan is to substitute the approximate solution for k(Q,t), Equation 48, into the second part of
Equation C3. Observe that if we confine ourselves to t > ft, then t -\- x — y ^ /3 if{ y ^ t -\- x
— /3 > x, hence the two integrals of Equation C3 divide into three:

f rx rt
x} = e<"-">*| v I e-fVu'e-n'ing-n'tH-v-rtfLy -|- M /

I Jo Jx
'(«+•-»),

/*Jt+

Carrying out the integrations and taking note of the fact that p = n' + n/(l + ju/3) yields

Z(*, * + 0 = A"e~^ + B"e-»'\ x ^ 0 < t,

where A", B" are functions of v, p, /3, and x which we do not need to specify.
For x > /3, we proceed by a somewhat different argument.12 Let Y be the time of the last

pulse, if any, prior to the signal onset at time x, or 0 otherwise, and let Y' be the time of the first
pulse after the signal onset. Since, in a Poisson process, the time from x back to the preceding
pulse is exponentially distributed with the parameter of the process, we see that

v <.
P(Y ' -y ,Y ' -Y>j8 |S -*> i8 ) -M*-"' >

Observe that if t > 2/3, then t — y < /3 iff y ^ t — /3 > (3, so

l(x, t + x) = [' P(T = y, Y' - Y > 0|S = * > j8)fc(0, / - y)dy

ft
/

Je

5"e-"'(, x> p, / > 2/3,

where A", B" are functions of v, p, and /3 in the range x > j3.
Thus, the density of RTs ^ r to a signal with onset x is

I
Jtt-p

/(*, < + *) = / /(*, t + x - y}r(y)dy, t ̂  r.
Jo

For t > r + 2/3, < — y > 2/3 and so we may substitute the above approximations for
/(x, / + x — y), yielding

/(*, t + x) = A'e-"1 + B'e-"'', for t > T + 20,

12 We are indebted to E. Thomas for pointing out this argument.



56 R. DUNCAN LUCE AND DAVID M. GREEN

where A', B' are functions of v, M, ft, x, and r. Assuming an arbitrary density g of foreperiods,

/*oo

/
fa-s(f) = C I g(x)f(x, t + x)dx

Jo

, for t > r + 2ft,

where A, B are functions of v, n, j3, g, and r.

Proof of Equation 55

First, we show that for t < x, l(x,f) = l(t,f). By Equation Cl, we see that it is sufficient to
show that k(x,t) = h(t,f). By Equation C3, this is true for x < )3 and for t < /} < x. For
j3 < / < x, it is true provided that l(x — ft, t — /3) = l(t — ft, t — |3). By a finite induction
of the form x — ifi, the proof is reduced to the already proved case of x < j9. Now, with 2 < x,
Equations Cl and C2 yield

l(t,,0 = / ve-'»l0(t — y,t — y)dy
Jo

'}dy,

/;
t<

ve-"vve-"(i-^dy + I ve-vve-'^l(t — y — ft, t — y — ft)dy, t >

e-"'
Jo

t < ft

t> 8.

Proof of Equation 59

Assume t > T' + T. Then

= K'

= K' \e~**dx \ l(t-y,t-
Jt Jo

x, t — y)r(y)dydx

y}r(y}dy

' \
Jo

De"'

e"'vr(y)dy.

Partial Results about l(x,t) for x ^ ft

From the argument given in deriving Equation 54, for x > ft,

ft

l(x, t + x) =
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By routine integration,

where Lo(0,w) is given by Equation 50. So, using Equation 55,

/*oo

L(x,u) = I e-*"l(x,f)dt

;)dy
fx /•«

/ e-iatl(t,t}dt + <T™X I e-™vi(x, y + x
Jo Jo

The problem in going further is how to evaluate the integral in the second term. One possi-
bility is to use the approximation of Equation 58; however, we are uncertain how good it Js
near /3. If so, then it is easy to calculate the mean decision time for x > ft, which together with
Equation 52 allows us to calculate the MRT for any distribution of foreperiods. As this expres-
sion is both complex and approximate, we do not present it.

(Received March 30, 1971)


