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SUMMARY  59 

Standard economic indicators provide an incomplete picture of what we value both as individuals and 60 

as a society. Furthermore, canonical macroeconomic measures, such as GDP, do not account for 61 

non-market activities (e.g., cooking, childcare) that nevertheless impact well-being. Here, we introduce 62 

a computational tool that measures the affective value of experiences (e.g., playing a musical 63 

instrument without errors). We go on to validate this tool with neural data, using fMRI to measure 64 

neural activity in male and female human subjects performing a reinforcement learning task that 65 

incorporated periodic ratings of subjective affective state. Learning performance determined level of 66 

payment (i.e., extrinsic reward). Crucially, the task also incorporated a skilled performance component 67 

(i.e., intrinsic reward) which did not influence payment. Both extrinsic and intrinsic rewards influenced 68 

affective dynamics, and their relative influence could be captured in our computational model. 69 

Individuals for whom intrinsic rewards had a greater influence on affective state than extrinsic rewards 70 

had greater ventromedial prefrontal cortex (vmPFC) activity for intrinsic than extrinsic rewards. Thus, 71 

we show that computational modelling of affective dynamics can index the subjective value of intrinsic 72 

relative to extrinsic rewards, a ‘computational hedonometer’ that reflects both behavior and neural 73 

activity that quantifies the affective value of experience.  74 

   75 

SIGNIFICANCE STATEMENT  76 

Traditional economic indicators are increasingly recognized to provide an incomplete picture of what 77 

we value as a society. Standard economic approaches struggle to accurately assign values to non-78 
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market activities that nevertheless may be intrinsically rewarding, prompting a need for new tools to 79 

measure what really matters to individuals. Using a combination of neuroimaging and computational 80 

modeling, we show that despite their lack of instrumental value, intrinsic rewards influence subjective 81 

affective state and ventromedial prefrontal cortex activity. The relative degree to which extrinsic and 82 

intrinsic rewards influence affective state is predictive of their relative impacts on neural activity, 83 

confirming the utility of our approach for measuring the affective value of experiences and other non-84 

market activities in individuals.   85 

INTRODUCTION  86 

A key index of quality of life is subjective well-being which reflects “how people experience and 87 

evaluate their lives and specific domains and activities in their lives” (Oswald and Wu, 2010). 88 

Individuals with higher subjective well-being display lower mortality rates (Chida and Steptoe, 2008; 89 

Steptoe et al., 2015) and have a lower risk of disease (Davidson et al., 2010). In the workplace, 90 

employees who report higher subjective well-being have higher productivity without loss of output 91 

quality (Oswald et al., 2015), reduced rates of absenteeism (Pelled and Xin, 1999), and are rated 92 

more positively by their supervisors (Peterson et al., 2011). On this basis, maximizing subjective well-93 

being should be of prime interest not only to individuals but also to companies and governments, as 94 

well as a target for health and economic policies (Dolan and White, 2007).   95 

A problem arises when it comes to designing effective measures likely to increase well-being. When 96 

contemplating the future, people exhibit biases in affective forecasting when making predictions about 97 

what it would feel like to experience specific events, consistently misjudging how future events will 98 

impact their affective state and leading them to perform actions that may be detrimental to 99 

maximization of their subjective well-being (Wilson and Gilbert, 2005; Meyvis et al., 2010). In particular, 100 

people overestimate both the intensities and durations of their hedonic responses to future events, 101 

and this is referred to as an impact bias (Gilbert and Wilson, 2007; Morewedge and Buechel, 2013). 102 

Furthermore, the value of tangible goods can be quantified by prices or willingness-to-pay (Plassmann 103 

et al., 2007), but the value of intangible goods and experiences that are intrinsically rewarding (e.g., 104 

hobbies, recreational sports) are often more difficult to define or elicit accurately due to biases (Van de 105 

Mortel, 2008; Nisbet and Zelenski, 2011), while the predictive validity of implicit measures is unclear 106 

(Levesque et al., 2008; Keatley et al., 2013).  107 
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Neuroscience-informed methods can provide a means to evaluate the subjective value of an intrinsic 108 

reward (e.g., the experience of mastering a musical composition for its own sake), allowing extrinsic 109 

and intrinsic rewards to be compared using a common scale of objectively measured neural activity 110 

(FitzGerald et al., 2009). We hypothesized that extrinsic and intrinsic rewards would both influence 111 

affective states, and the extent of their relative influences should be reflected in regional brain activity. 112 

Recent studies (Rutledge et al., 2014, 2015; Vinckier et al., 2018) demonstrate that experience 113 

sampling during reward-based tasks can link affective and motivational responses to extrinsic reward. 114 

Here we extend this approach to investigate how affective state is influenced by the history of intrinsic 115 

rewards.   116 

We developed a reinforcement learning task incorporating both an explicit reward component and a 117 

skilled performance component, where the latter did not affect payment (Figure 1A). On each trial, 118 

subjects selected one of two options, one of which was on average more rewarding than the other, 119 

and then navigated a cursor past a series of barriers (see Experimental Procedures). We 120 

hypothesized that the experience of successful skilled performance, a source of intrinsic reward, 121 

would influence the momentary happiness of subjects in a manner that is quantitatively akin to the 122 

impacts of extrinsic rewards and that this would also be evident at the level of neural activity.  123 

  124 

  125 

INSERT FIGURE 1 126 

   127 

  128 

EXPERIMENTAL PROCEDURES  129 

Participants  130 

37 healthy young adults (age: 25.8 ± 4.7, mean ± SD; 8 males, 29 females) were recruited through the 131 

University College London (UCL) Psychology Subject Database. Subjects were screened to ensure no 132 

history of neurological or psychiatric disorders. Four subjects were excluded due to excessive head 133 

movement during scanning, leaving a total of 33 subjects (age: 26.1 ± 4.9; 8 males, 25 females). The 134 
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study was approved by the UCL research ethics committee, and all subjects gave written informed 135 

consent.   136 

Study Design  137 

Subjects completed the experiment at the Wellcome Centre for Human Neuroimaging at UCL in an 138 

appointment that lasted approximately 90 minutes. Stimuli were presented in MATLAB (MathWorks, 139 

Inc.) using Cogent 2000. The layout of each trial resembled a T-Maze (Howe et al., 2013). On each 140 

trial, subjects selected a blue or magenta box, one of which resulted in 50 points on average and the 141 

other which resulted in 25 points on average. The standard deviation of points received for each box 142 

was 10. Points assigned based on draws from Gaussian distributions. Every 19-23 trials, a reversal 143 

occurred where the box that previously contained the higher number of points on average now 144 

contained a lower number of points and vice versa. On half of the trials, subjects were afforded a free 145 

choice. For the remaining half, subjects were only presented with a single option. After a choice was 146 

made, the chosen option was indicated and four barriers appeared on the screen along with a small 147 

cursor at the bottom of the screen. Following a 1s delay, the cursor automatically advanced along the 148 

path to the outcome. Subjects were able to control the horizontal position of the cursor to avoid 149 

colliding with barriers. If they passed a barrier without colliding with it, the barrier turned green. 150 

Contact with a barrier turned it red and provided immediate feedback about performance. Subjects 151 

then had to press the appropriate directional key to navigate around the barrier for the cursor to 152 

continue advancing on its course. Crucially, the subjects’ final payment depended only on the number 153 

of points accumulated across the experiment and not their ability to quickly navigate past barriers. 154 

After the cursor had entered the chosen box, the outcome was displayed for 800ms after a 1.5s delay. 155 

Total cumulative points were displayed on the top right of the screen throughout the experiment. 156 

Subjects were presented with the question, “How happy are you at this moment?” after every 2-3 trials. 157 

After a 1s delay period, a rating line appeared with a cursor at the midpoint and subjects had 4s to 158 

move a cursor along the scale with button presses. The left end of the line was labelled “very unhappy” 159 

and the right end of the line was labelled “very happy”.   160 

Staircase Procedure  161 

To ensure that differences in affective responses were not due to skill-related differences in how often 162 

each subject collided with barriers, we used a standard staircase procedure called the Parametric 163 
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Estimation by Sequential Testing (PEST) (Taylor and Creelman, 1967). This procedure calibrated the 164 

speed at which the cursor moved for every subject such that they did not contact the barriers on 165 

approximately 70% of trials. This calibration was carried out over 60 trials prior to the start of the task 166 

in the scanner. Continuation of the procedure during the task allowed small adjustments (e.g., to 167 

compensate for any fatigue) to maintain consistent successful skill performance.  168 

Questionnaire Measures  169 

Subjects were administered the Beck Depression Inventory (BDI-II) (Beck et al., 1996), Apathy 170 

Evaluation Scale (AES) (Marin et al., 1991) and Apathy Motivation Index (AMI) (Ang et al., 2017).   171 

Image Acquisition  172 

MRI scanning took place at the Wellcome Centre for Human Neuroimaging at UCL using a Siemens 173 

Prisma 3-Tesla scanner equipped with a 64-channel head coil. Functional images were acquired with 174 

a gradient echo T2*-weighted echo-planar sequence with whole-brain coverage. Each volume 175 

consisted of 48 slices with 3mm isotropic voxels [repetition time (TR): 3.36s; echo time (TE): 30ms; 176 

slice tilt: 0°] in ascending order. A field map [double-echo FLASH, TE1 = 10ms, TE2 = 12.46ms] with 177 

3mm isotropic voxels (whole-brain coverage) was also acquired for each subject to correct the 178 

functional images for any inhomogeneity in magnetic field strength. Subsequently, the first 6 volumes 179 

of each run were discarded to allow for T1 saturation effects. Structural images were T1-weighted (1 x 180 

1 x 1 mm resolution) images acquired using a MPRAGE sequence.  181 

Model-based Analyses 182 

Models were fit to happiness ratings in individual subjects by minimizing the residual sum of squares 183 

between actual and predicted happiness ratings, and this also served as the objective function for the 184 

optimizer. Model fitting was performed using the fmincon optimizer in MATLAB (MathWorks, Inc). The 185 

significance for individual parameters was determined using likelihood ratio tests comparing the full 186 

model with a model that had only a reward or performance parameter but not both. The significance of 187 

those tests is indicated by filled circles in Figure 4. Note that models were first fit to the raw happiness 188 

ratings in order to test the relationship between the happiness baseline mood parameter (denoted w0 189 

in the equations below) and questionnaire measures to replicate findings in the literature. Models were 190 

then fit to standardized ratings. Normalizing ratings prevents individuals with greater variance in their 191 
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ratings from having a disproportionate effect on model comparisons. The standard deviation of ratings 192 

differs widely across participants although rating variance is known to be stable in time (Rutledge et al., 193 

2015) and across tasks (Blain and Rutledge, 2020). 194 

Recovery Analysis 195 

To ensure that the model parameters were recoverable, we performed model recovery and parameter 196 

recovery analyses following established procedures (Wilson and Collins, 2019). To test for parameter 197 

recovery, we first estimated the parameters for each participant. Then, we simulated data with each of 198 

the four generative models using parameters estimated for each participant. To account for noise in 199 

the simulation, we computed the standard deviation of the residuals from the model at the individual 200 

level and then generated Gaussian noise with the same standard deviation using the MATLAB randn 201 

function and added that noise to generated ratings. We then estimated parameters from the generated 202 

data using the same procedure as applied to the actual mood dynamics data (n = 33). The standard 203 

deviations of residuals in the recovery analysis were highly correlated with the noise parameter in the 204 

generative process (e.g., for Reward and Performance, the correlation is Spearman ρ(31) = 0.98, p < 205 

10
-18

). 206 

RESULTS  207 

Subjects completed two trial blocks while in the MRI scanner. We first asked whether subjects could 208 

learn the reward contingencies (Figure 1B) and found that they could, making 85.8 ± 1.0%% (mean ± 209 

SEM, z = 5.0, p < 10
-6

) of choices to the current high-reward option. Subjects were not penalized for 210 

contact with barriers, and thus actual performance was non-instrumental to the receipt of eventual 211 

monetary reward. We observed no correlation between earnings and how often subjects successfully 212 

avoided barriers (ρ(31) = 0.21, p = 0.24). During debriefing, all 33 subjects reported that they believed 213 

there was no association between successful skilled performance and earnings.  214 

Reports of affective state for example subjects are included in Figure 1C. On average, subjects 215 

reported being happier after receiving outcomes from the high- compared to low-reward option (high-216 

reward:63.8 ± 1.9, low-reward: 59.5 ± 2.1,  z = 4.7, p < 10
-5

), consistent with previous research 217 

(Rutledge et al., 2014, 2015). On average, subjects reported also being happier when they navigated 218 

through the barriers without collisions compared to when they contacted at least one barrier (without 219 
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collisions: 63.5 ± 1.9; collision: 60.0 ± 2.1, z = 4.6, p < 10
-5

), suggesting that intrinsic rewards related 220 

to performance influence subjective affective state.  221 

Because participants vary in how they use the scale, we next z-scored happiness ratings. Consistent 222 

with analyses using non-normalized ratings, subjects reported greater average happiness after 223 

receiving high compared to low rewards (high-reward: 0.08 ± 0.01, low-reward: -0.18 ± 0.02, z = 4.8, p 224 

< 10
-5

, Figure 2A). Subjects also reported being happier after navigating through the maze without 225 

contacting any barriers compared to when they collided with at least one barrier (without collisions: 226 

0.08 ± 0.01; collision: -0.17 ± 0.03, z = 4.7, p < 10
-5

, Figure 2A), consistent with an impact of intrinsic 227 

rewards. There was considerable variation across subjects in terms of how much extrinsic rewards 228 

and skilled performance contributed to momentary happiness (Figure 2B), but there was no 229 

relationship between happiness for reward outcomes and happiness for skilled performance (ρ(31) = -230 

0.20, p = 0.26).  231 

 232 

INSERT FIGURE 2 233 

INSERT TABLE 1 234 

  235 

Computational model of affective dynamics  236 

We next employed a previously established methodology (Rutledge et al., 2014, 2015; Blain and 237 

Rutledge, 2020) to quantify the extent to which rewards impacted on the affective state of our 238 

participants. In particular, we aim to replicate that (1) the recent history of reward influences happiness 239 

and (2) that the baseline happiness parameter correlates with depressive symptoms. To that end, we 240 

fit the raw happiness ratings.  We considered influences that decay exponentially in time:  241 

Happiness( ) = w + w  ∑ γ   +    (1) 242 

where t and j are trial numbers, w0 is a baseline mood parameter, wreward captures the influence of 243 

reward which is the z-scored reward outcome of the selected option on each trial, and 0 ≤ ɣ ≤ 1 244 

represents a forgetting factor that reduces the impact of distal relative to recent events. If this 245 

parameter is equal to 0, only the most recent reward outcome influences happiness. The model 246 
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includes a Gaussian noise term, ϵ ~ N(0, σ). The parameters of this model are recoverable (see Figure 247 

3A and Table 1 for details about parameter recovery). Parameters were first fit to non-normalized 248 

happiness ratings in each individual subject. The mean r
2
 was 0.26 ± 0.03 and the mean forgetting 249 

factor was 0.40 ± 0.06 (mean ± SEM, Figure 1C for example subjects). Consistent with previous 250 

findings (Rutledge et al., 2014, 2015), happiness was significantly associated with the history of reward 251 

(wreward = 0.06 ± 0.01; Wilcoxon signed rank test: z = 4.7, p < 10
-5

). Sigma was estimated to be on 252 

average 0.13 ± 0.01.  253 

Likewise, consistent with previous findings during risky decision making (Rutledge et al., 2017), we 254 

found that baseline mood parameters, estimated using raw happiness ratings while accounting for 255 

mood dynamics due to reward history, were negatively correlated with symptom severity assessed 256 

using the Beck Depression Inventory (BDI-II; Beck et al., 1996; Spearman ρ(31) = -0.35, p = 0.046). 257 

This result shows that depressive symptoms relate to happiness ratings during a novel task including 258 

a performance component consistent with previous findings during risky decision making (Rutledge et 259 

al., 2017) and  learning in volatile environments (Blain and Rutledge, 2020). This relationship is 260 

consistent with an affective set point, which happiness returns to over time, that is lower in individuals 261 

with a greater symptom load.  262 

We also found baseline mood parameters tended to be negatively related apathy as measured by 263 

Apathy Evaluation Scale (AES) (Marin et al., 1991) (ρ(31) = -0.32, p = 0.07) and behavioral apathy as 264 

assessed by the Apathy Motivation Index (AMI) (27) (ρ(31) = -0.33, p = 0.06; see Table 2). The first 265 

happiness rating before the start of the first trial was positively correlated with baseline mood 266 

parameter (ρ(31) = 0.46, p = 0.007). In contrast to baseline mood parameters, first happiness ratings 267 

were not significantly correlated with BDI-II (ρ(31) = -0.21, p = 0.25) or AES (ρ(31) = -0.17, p = 0.35), 268 

but was correlated with behavioral AMI (ρ(31) = -0.39, p = 0.027). We found no correlation between 269 

baseline mood parameter and the average staircased cursor speed (ρ(31) = -0.01, p = 0.95), 270 

suggesting that the speed of the cursor was not associated with persistent affective state. 271 

We next z-scored happiness ratings to better evaluate the relative contributions of extrinsic and 272 

intrinsic reward to affective state. To that end, we z-scored the happiness ratings, thereby preventing 273 

individuals with greater rating variance from disproportionally affecting analyses. With happiness 274 

ratings centered on zero, as well as Rewards and Performance vectors, any constant term would be 275 
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expected to be near zero and we omitted the w0 from analyses with z-scored ratings. We expanded 276 

the model to include an additional term that accounts also for influences pertaining to skilled 277 

performance:  278 

Happiness( ) = w  ∑ γ  +  w  ∑ γ  +   (2) 279 

where t and j are trial numbers, wreward and wperformance capture the influence of task events related to 280 

reward and performance, respectively, and 0 ≤ ɣ ≤ 1 represents a forgetting factor that reduces the 281 

impact of distal relative to recent events. The model includes a Gaussian noise term, ϵ ~ N(0, σ). The 282 

model parameters were indeed recoverable (see Figure 2C  and table 2 and methods for details). 283 

Reward is the z-scored outcome of the selected option on each trial, and performance is the z-scored 284 

result of whether a barrier was contacted on each trial, assigning a 1 when no barriers were contacted 285 

and 0 if at least one barrier was contacted. This simple model explained a substantial amount of 286 

variance in happiness with r
2
 = 0.26 ± 0.03 (mean ± SEM, Figure 2C). Weights for both performance 287 

(wperformance = 0.18 ± 0.03; z = 4.4, p < 10
-4

, Figure 2D) and reward (wreward = 0.39 ± 0.04, z = 4.9, p < 288 

10
-5

, Figure 2D) were positive on average. The forgetting factor ɣ was 0.48 ± 0.05 (mean ± SEM), 289 

indicating that happiness depended on the past 4-5 trials on average. Sigma was estimated to be on 290 

average 0.85 ± 0.02. 291 

In previous studies we found expectations of reward exerted a substantial influence on happiness 292 

(Rutledge et al., 2014, 2015; Blain and Rutledge, 2020). In the current study, we used high- and low-293 

reward distributions with minimal overlap to maximize learning accuracy. We also employed a 294 

staircase to keep skilled performance stable and at a similar level across individuals. These features 295 

render the current design unsuitable for quantifying the impact of expectations on happiness. We 296 

chose a design that maximized our power for quantifying individual differences in the relative 297 

subjective values of extrinsic and intrinsic rewards.  298 

 299 

INSERT FIGURE 3 300 

   301 

Model comparison (Table 2) shows that a model with parameters for past rewards and performance 302 

(mean r
2
 = 0.26) outperformed models containing individual terms for reward (mean r

2
 = 0.19) or 303 
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performance (mean r
2
 = 0.09) alone. These results show that the happiness of subjects in this task is, 304 

on average, dependent on both receipt of explicit rewards (e.g., money) and the non-instrumental 305 

experience of skilled performance.  306 

 307 

INSERT TABLE 2 308 

 309 

We found considerable variation across individuals in how much reward outcomes contributed to 310 

affective dynamics, even though subjects on average learned reward contingencies to a similar 311 

degree (Figure 4A). Despite performance being held constant due to staircasing of cursor speed 312 

(successful performance: 69.1 ± 2.4%, mean ± SD, Figure 4B), there was considerable variation also 313 

across individuals in how much non-instrumental performance influenced affective state. Many 314 

subjects showed a negligible impact of successful performance on affective state, despite a similar 315 

level of successful performance. Furthermore, learning choice accuracy was not correlated with either 316 

happiness reward parameters (ρ(31) = 0.12, p = 0.49) or successful skilled performance (ρ(31) = -0.05, 317 

p = 0.78).  318 

Intrinsic rewards can be associated with an increased motivation or metacognitive strategy to improve 319 

performance over time (Son and Metcalfe, 2005). Prior to scanning, participants completed 60 practice 320 

trials to determine an appropriate starting speed for the experiment. Wperformance was positively 321 

correlated with the starting cursor speed (ρ(31) = 0.38, p = 0.03). There was no correlation between 322 

percent successful skilled performance and wperformance derived from the happiness model (ρ(31) = 323 

0.056, p = 0.76). Intrinsic rewards are often thought as resulting from uncertainty reduction, or from 324 

learning progress (Gottlieb and Oudeyer, 2018). However, we did not find any significant difference in 325 

the median cursor speed between blocks (z = 0.63, p = 0.53), suggesting that participants were at a 326 

stable level of performance from the start that did not improve over time. Similarly, wperformance was not 327 

significantly different between blocks (z = 1.47, p = 0.14). These results together suggest that 328 

performing this task accurately was intrinsically rewarding with a stable relationship between 329 

performance and happiness despite no signs of learning progress during the experiment. 330 

 331 
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We then checked whether we can extend the link between the baseline mood parameter from the 332 

reward model (see above) and apathy and depression scores to the baseline mood parameter of 333 

models including a performance term. Results indicate a trend towards the same relationship as for the 334 

reward model (see Table 3).  335 

 336 

 337 

 338 

INSERT FIGURE 4 339 

 340 

INSERT TABLE 3 341 

 342 

  343 

Neural correlates of extrinsic and intrinsic rewards  344 

Having established inter-individual variability in the impact of outcomes and performance on reported 345 

happiness, we next asked whether this variability was also predictive of neural responses to both 346 

rewards and performance. The experiment was separated into two scans and we first evaluated 347 

whether happiness model parameters were stable across scans. We found that both extrinsic (ρ(33) = 348 

0.35, p = 0.044) and intrinsic (ρ(33) = 0.35, p = 0.044) reward computational parameters were 349 

positively correlated across the two scans.  350 

We regressed event-related activity on parametrically modulated task events to assess brain activity 351 

related to receipt of extrinsic and intrinsic rewards. We found an effect of reward magnitude at time of 352 

outcome in vmPFC (Figure 4A, top: -3, 38, -1; t32 = 5.92, p < 0.05 Family-Wise-Error (FWE) cluster-353 

corrected at the whole brain level), as well as an effect of successful skilled performance in an 354 

overlapping region of the vmPFC (Figure 4A, bottom: -3, 50, -1; t32 = 4.24, p < 0.05 FWE cluster-355 

corrected).  356 

The vmPFC is widely implicated in representation of subjective reward value. On this basis, we used 357 

an independent vmPFC mask from a meta-analysis of subjective value studies of extrinsic reward for 358 

further analysis (Bartra et al., 2013). Within this region-of-interest (ROI), we extracted weights for 359 
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reward magnitude and skilled performance from each individual subject. We found that within this 360 

independent ROI, BOLD activity was significantly associated with both reward magnitude (0.26 ± 0.08, 361 

Z = 3.0, p = 0.0029) and skilled performance (0.38 ± 0.13, Z = 2.8, p = 0.0052, Figure 5B).  362 

Having established that neural responses in vmPFC are associated with both extrinsic and intrinsic 363 

rewards, we next examined whether neural responses were predicted by computational parameters 364 

estimated from individual affective dynamics. Across subjects, we found a positive relationship (ρ(31) 365 

= 0.50, p = 0.003, Figure 5D) between the relative weights for extrinsic and intrinsic rewards in our 366 

happiness computational model and the relative effect sizes for neural responses in the vmPFC. Initial 367 

happiness ratings deviate from model predictions on average (Figure 2C). The relationship between 368 

relative happiness weights and relative neural effect sizes was still present after removing the initial 10% 369 

of ratings (ρ(31) = 0.54, p = 0.0015). The relationship was also present after removing the initial 10% 370 

and detrending the remaining ratings before estimating model parameters (ρ(31) = 0.49, p = 0.0038). 371 

We also subdivided subjects into two groups comprising a group with higher Wperformance than reward 372 

parameters and a group with the opposite pattern. The group with higher performance than reward 373 

parameters showed greater vmPFC responses for skilled performance compared to the group with 374 

larger reward than performance parameters (Z = 2.8, p = 0.0047, Figure 5C). These findings suggest 375 

that the pattern of momentary affective dynamics reflects the impact of both extrinsic and intrinsic 376 

rewards and is mirrored at the level of vmPFC activity.  377 

  378 

  379 

INSERT FIGURE 5 380 

 381 

DISCUSSION  382 

Using experience sampling (Reis and Gable, 2000; Kahneman et al., 2004) combined with functional 383 

neuroimaging, we show that extrinsic and intrinsic rewards contribute to affective dynamics (i.e., 384 

happiness). Recent studies demonstrate that computational approaches can quantify consistent 385 

relationships between subjective feelings and value-based decision making (Rutledge et al., 2014; 386 

Eldar et al., 2016, 2018; Vinckier et al., 2018; Blain and Rutledge, 2020), including in relation to 387 
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individual social preferences (Rutledge et al., 2016). Here, using the same computational approach 388 

applied during reinforcement learning, we show that momentary happiness is influenced by both 389 

extrinsic and intrinsic rewards. The computational parameters we extract from affective dynamics 390 

enabled us to quantify, within a common value scale, the relative affective value of intrinsic relative to 391 

extrinsic rewards. Our key finding here is that the relative weight of intrinsic and extrinsic reward 392 

extracted from affective dynamics predicts neural activity in the vmPFC, a region proposed to 393 

represent rewards in a common neural currency (Chib et al., 2009; Levy and Glimcher, 2011, 2012), 394 

validating our computational approach.  395 

While improvements in skilled performance can be enhanced by rewarding individuals for 396 

performance (Sugawara et al., 2012), holding performance constant across subjects allowed us to 397 

investigate how happiness varied independently of the level of skill individuals manifest in the task. 398 

We show that individuals, whose happiness was substantially influenced by intrinsic rewards, had 399 

increased vmPFC BOLD responses for successful versus unsuccessful skilled performance, relative 400 

to individuals whose happiness was influenced more by extrinsic rewards.  401 

The vmPFC is known to represent the value of different types of goods, including food and juice 402 

(Padoa-Schioppa, 2007; Hare et al., 2011), money (De Martino et al., 2006), aesthetic judgments 403 

(Kawabata and Zeki, 2004; Jacobsen et al., 2006), and even perceived pleasantness (Plassmann et 404 

al., 2008). This suggests that vmPFC plays a central role in representing qualitatively different types of 405 

goods on a common scale, an operation that can facilitate making decisions between otherwise 406 

incommensurable goods (Chib et al., 2009; Levy and Glimcher, 2011, 2012). Our study builds on 407 

these prior results by now identifying an association between vmPFC BOLD activity and intrinsic 408 

rewards, here the experience of performing a skilled task without error. Whole-brain analysis showed 409 

that the representation of subjective intrinsic reward values involved an adjacent region in the vmPFC, 410 

anterior to the representation for extrinsic rewards but still residing within a central vmPFC cluster 411 

(Clithero and Rangel, 2014), a finding that parallels a distinction between experienced and decision 412 

values previously mapped to anterior and posterior vmPFC, respectively (Smith et al., 2010).  413 

The vmPFC has been demonstrated to play a role in affect with subjective emotional experiences 414 

elicited by images and pleasurable music leading to changes in both vmPFC BOLD activity and 415 

regional cerebral blood flow (Blood and Zatorre, 2001; Zald et al., 2002; Winecoff et al., 2013). 416 
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Damage to the vmPFC can lead to aberrant emotional responses (Koenigs et al., 2007; Zald and 417 

Andreotti, 2010; Hiser and Koenigs, 2018) and maladaptive decision making in environments where 418 

emotional regulation may be useful (Grossman et al., 2010; Spaniol et al., 2019). Numerous studies 419 

suggest that subjective reward values are represented by vmPFC neural activity. Unfortunately, the 420 

constraints and expense of neuroimaging makes it impractical as an every-day tool for assessing 421 

individual values for non-market activities. The strong association between neural responses for 422 

intrinsic and extrinsic rewards and computational parameters extracted from affective dynamics 423 

suggests that computational models combined with experience sampling can provide a valid measure 424 

for the subjective reward value of experience. 425 

A limitation of the current study is that the staircase procedure we used does not allow us to address 426 

questions related to the intrinsic motivation for learning of our subjects. The staircase procedure can 427 

be useful for study of interindividual variation either by keeping performance constant across 428 

individuals despite differences in abilities (Fleming et al., 2010) or for tailoring choice options to 429 

individuals (Klein-Flügge et al., 2015). Using the staircase procedure meant that subjects quickly 430 

reached the limit by which they could improve performance. Our design is thus unsuitable for studying 431 

intrinsic motivation pertaining to learning. However, such a framework for measuring affective value 432 

could be valuable for other features related to intrinsic rewards (Blain and Sharot, 2021), like 433 

metacognitive control and learning (Son and Sethi, 2006), resource allocation under external 434 

pressures (Son and Metcalfe, 2005), as well as curiosity-driven exploration of the environment where 435 

rewards may be more dependent on the learning progress of an individual (Gottlieb and Oudeyer, 436 

2018).  437 

Humans exhibit biases when it comes to predicting how future events are likely to impact on their 438 

affective states, and are prone to making sub-optimal decisions by misjudging the hedonic 439 

consequences of options  (Wilson and Gilbert, 2005; Meyvis et al., 2010; Nisbet and Zelenski, 2011). 440 

Increasing subjective well-being is widely believed to be an appropriate societal goal (OECD, 2020), 441 

but these biases pose a difficulty for enacting policies that are likely to be successful. Additional 442 

factors such as social desirability bias (Van de Mortel, 2008) can decrease the reliability of self-443 

reported values when an individual’s assessment of a hypothetical experience or good, such as the 444 

availability of public parks, differs from prevailing social norms. An advantage of our method (i.e., 445 

repeated mood sampling combined with computational modelling) is that it can be in principle applied 446 
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not only to any cognitive task but also to any repeatable experience (e.g., commuting, walking in a 447 

park, exercising, doing yoga, etc.) without a need to probe people explicitly about the content of those 448 

experiences (e.g., how do you feel after having done yoga?). Mood measurements make no reference 449 

to recent events but allow the relative influence of multiple factors to be simultaneously estimated, 450 

reducing biases associated with social desirability (e.g., following social norms about how one should 451 

feel after doing yoga). For example, affective dynamics reflect depressive symptoms (Rutledge et al., 452 

2017; Blain and Rutledge, 2020), show consistent relationships to reward in the lab and outside the 453 

lab in anonymous participants who did not interact with an experimenter (Rutledge et al., 2014), and 454 

allow quantification of the extent of guilt and envy in response to social inequality (Rutledge et al., 455 

2016). A potential application of our approach, yet to be tested, would be to combine our 456 

computational approach with experience sampling in different naturalistic settings such as a corporate 457 

workplace, in order to identify factors important for employee well-being. Thus, the approach we use in 458 

this study demonstrates a novel tool for understanding preferences and well-being. 459 

 460 

Over a century ago, Francis Edgeworth described an idealized instrument, which he called a 461 

hedonometer, for ‘continually registering the height of pleasure experienced by an individual’ 462 

(Edgeworth, 1881). Here, we introduce a ‘computational hedonometer’ that has a distinct advantage 463 

over Edgeworth’s hypothetical hedonometer in that it mathematically quantifies the relative 464 

contributions of different factors to an affective state, including the relative values of intrinsic and 465 

extrinsic rewards. We validate our computational tool using objective neural measurements, 466 

suggesting that computational parameters can capture the affective values for abstract goods and 467 

experiences that may be otherwise challenging to accurately quantify. 468 

  469 

    470 
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Figure 1. Extrinsic and intrinsic reward paradigm  644 

(A) Subjects (n = 33) experienced both extrinsic and intrinsic rewards on each trial. A trial starts with 645 

subjects selecting from one or two available options each associated with an implicit extrinsic reward. 646 

One option on average leads to the larger reward (mean 50, SD 10) whereas the other leads to a 647 

lower reward (mean 25, SD 10) with a reversal every 19-23 trials. Four barriers then appear along the 648 

path to the outcome and a cursor appears at the bottom of the screen which automatically advances 649 

after a 1s delay. Subjects press left and right keys to navigate around barriers, constituting a form of 650 

skilled performance that can be intrinsically rewarding. Successfully avoiding a barrier turns it green 651 

whereas contact with a barrier turns it red. There is no financial penalty for contact with barriers nor 652 

financial benefit for avoiding them. Earnings depend only on the outcome delivered at the end of the 653 

trial. After every 2-3 trials, subjects report their current happiness by moving a cursor on a rating line.  654 

(B) Probability of choice to the initial high-reward option averaged across subjects (n = 33) in black. 655 

Shaded areas correspond to SEM. Grey vertical bands represent intervals where probability reversals 656 

could occur.  657 

(C, D) Happiness trajectories and model fits for a computational model with both reward and 658 

performance parameters are displayed for two example subjects (C: r
2
 = 0.45, D: r

2
 = 0.42). Also see 659 

Figure 2, Figure 3, Table 1 and Table 2.  660 

 661 

Figure 2. Computational modelling of affective dynamics  662 

(A) Subjects were happier when they received a reward from high- compared to low-reward 663 

options (Z = 4.7, p < 10
-5

, in blue). Subjects were happier on average when they navigated through 664 

the barriers without contacting them, compared to when they contacted at least one barrier (Z = 4.6, p 665 

< 10
-5

, in orange). *** p < 0.001.  666 

(B) The majority of subjects (29 of 33) were happier after receiving a reward from a high- 667 

compared to low-reward option. The majority of subjects (29 of 33) were happier after successful 668 

compared to unsuccessful performance. There was no relationship between happiness for reward 669 

outcomes and happiness for skilled performance (ρ(31) = -0.20, p = 0.26). 670 
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(C) Average happiness across all subjects and model fit is displayed for the computational model 671 

(n = 33, mean r
2
 = 0.26).  672 

(D) According to the computational model, happiness was significantly related to the history of 673 

extrinsic rewards in the form of points converted to money (Z = 4.9, p < 10
-5

) and also to the history of 674 

skilled performance, a proxy for intrinsic rewards (Z = 4.4, p < 10
-4

).  675 

*** p < 0.001. 676 

 677 

Figure 3. Parameter recovery analysis for reward model (A), performance model (B), and 678 

reward and performance model (C), plotting the parameter values used to generate the data 679 

against the estimated parameters for z-scored happiness ratings. The model parameters were 680 

recoverable with no bias. See Experimental Procedures for details. *** P < 10
-7

  681 

Figure 4. Computational model parameters and task behavior  682 

(A, B) The contribution of reward to happiness varied across subjects despite a similar high choice 683 

accuracy across subjects. Despite titrating difficulty at the individual level to match performance 684 

across subjects at 70%, subjects displayed considerable variation in the degree to which performance 685 

impacted affective state as captured by the computational model. Filled circles indicate betas that are 686 

significant at the individual level. 687 

 688 

Figure 5. Relative affective impacts of reward and performance predict vmPFC activity  689 

(A) Top. BOLD activity in vmPFC was parametrically modulated by reward magnitude (Peak: -3, 690 

38, -1). Bottom. Bold activity in an overlapping region of vmPFC was modulated by trial-by-trial 691 

successful skilled performance (Peak: -3, 50, -1).   692 

(B) An independent vmPFC ROI shows modulation by both reward magnitude and skilled 693 

performance (both p < 0.01).   694 
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(C) In the independent vmPFC ROI, subjects with higher performance than reward weights in the 695 

computational analysis of affective dynamics displayed stronger neural responses in the vmPFC for 696 

performance than subjects with higher reward than performance weights (p = 0.003).  697 

(D) The difference between performance and reward weights in the happiness computational 698 

model predicted the difference in vmPFC neural responses for successful skilled performance relative 699 

to reward magnitude (ρ(31) = 0.50, p = 0.003).  700 

* p < 0.05, ** p < 0.01.  701 

 702 

Table 1. Model parameter recovery results  703 

The values correspond to the Spearman correlation between the generated parameters and the 704 

estimated parameters of 33 agents using z-score happiness ratings. See Experimental Procedures 705 

for details. *** p < 0.001 706 

Table 2. Model comparison results  707 

Bayesian Information Criterion (BIC) scores are summed across 33 subjects. The winning model 708 

(lowest BIC) was the model with both reward and performance having the same forgetting factor ɣ 709 

rather than a model where the influence of past reward and performance differs in their forgetting 710 

factor. ∆BIC refers to the difference in BIC between each model and the winning model. Ratings are z-711 

scored to prevent individuals with greater rating variance from disproportionally influencing model 712 

comparison.  713 

 714 

Table 3. Correlation between baseline mood parameter and questionnaire score. Values 715 

correspond to the Spearman coefficient ρ. *p < 0.05, ⴕ < 0.1 716 

  717 
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Model Spearman ρ between generated and estimated 

parameters 

Wreward Wperformance γ1 γ2 

Reward 0.91 *** - 0.82*** - 

Performance  - 0.70*** 0.61*** - 

Reward and performance 0.89 *** 0.73*** 0.76*** - 

Reward and performance (separate γ) 0.86*** 0.90*** 0.81** 0.81*** 

 718 
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Model  Parameters  Mean r
2
  BIC  ∆BIC  

Reward  2  0.19  -326  145 

Performance  2  0.09   -26  445 

Reward and Performance  3  0.26  -471  0  

Reward and Performance (separate ɣ)   4  0.27  -351  120 

 720 
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 W0 reward W0 performance W0 reward & 

performance 

    BDI     -0.35* -0.31 ⴕ -0.34ⴕ 

    AES     -0.32 ⴕ -0.32 ⴕ -0.30 ⴕ 

    bAMI -0.33 ⴕ -0.32 ⴕ -0.29 ⴕ 
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