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SUMMARY  

Standard economic indicators provide an incomplete picture of what we value both as individuals and 

as a society. Furthermore, canonical macroeconomic measures, such as GDP, do not account for non-

market activities (e.g., cooking, childcare) that nevertheless impact well-being. Here, we introduce a 

computational tool that measures the affective value of experiences (e.g., playing a musical instrument 

without errors). We go on to validate this tool with neural data, using fMRI to measure neural activity in 

male and female human subjects performing a reinforcement learning task that incorporated periodic 

ratings of subjective affective state. Learning performance determined level of payment (i.e., extrinsic 

reward). Crucially, the task also incorporated a skilled performance component (i.e., intrinsic reward) 

which did not influence payment. Both extrinsic and intrinsic rewards influenced affective dynamics, and 

their relative influence could be captured in our computational model. Individuals for whom intrinsic 

rewards had a greater influence on affective state than extrinsic rewards had greater ventromedial 

prefrontal cortex (vmPFC) activity for intrinsic than extrinsic rewards. Thus, we show that computational 

modelling of affective dynamics can index the subjective value of intrinsic relative to extrinsic rewards, 

a ‘computational hedonometer’ that reflects both behavior and neural activity that quantifies the affective 

value of experience.  

   

SIGNIFICANCE STATEMENT  

Traditional economic indicators are increasingly recognized to provide an incomplete picture of what we 

value as a society. Standard economic approaches struggle to accurately assign values to non-market 
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activities that nevertheless may be intrinsically rewarding, prompting a need for new tools to measure 

what really matters to individuals. Using a combination of neuroimaging and computational modeling, 

we show that despite their lack of instrumental value, intrinsic rewards influence subjective affective 

state and ventromedial prefrontal cortex activity. The relative degree to which extrinsic and intrinsic 

rewards influence affective state is predictive of their relative impacts on neural activity, confirming the 

utility of our approach for measuring the affective value of experiences and other non-market activities 

in individuals.   

INTRODUCTION  

A key index of quality of life is subjective well-being which reflects “how people experience and evaluate 

their lives and specific domains and activities in their lives” (Oswald and Wu, 2010). Individuals with 

higher subjective well-being display lower mortality rates (Chida and Steptoe, 2008; Steptoe et al., 2015) 

and have a lower risk of disease (Davidson et al., 2010). In the workplace, employees who report higher 

subjective well-being have higher productivity without loss of output quality (Oswald et al., 2015), 

reduced rates of absenteeism (Pelled and Xin, 1999), and are rated more positively by their supervisors 

(Peterson et al., 2011). On this basis, maximizing subjective well-being should be of prime interest not 

only to individuals but also to companies and governments, as well as a target for health and economic 

policies (Dolan and White, 2007).   

A problem arises when it comes to designing effective measures likely to increase well-being. When 

contemplating the future, people exhibit biases in affective forecasting when making predictions about 

what it would feel like to experience specific events, consistently misjudging how future events will 

impact their affective state and leading them to perform actions that may be detrimental to maximization 

of their subjective well-being (Wilson and Gilbert, 2005; Meyvis et al., 2010). In particular, people 

overestimate both the intensities and durations of their hedonic responses to future events, and this is 

referred to as an impact bias (Gilbert and Wilson, 2007; Morewedge and Buechel, 2013). Furthermore, 

the value of tangible goods can be quantified by prices or willingness-to-pay (Plassmann et al., 2007), 

but the value of intangible goods and experiences that are intrinsically rewarding (e.g., hobbies, 

recreational sports) are often more difficult to define or elicit accurately due to biases (Van de Mortel, 

2008; Nisbet and Zelenski, 2011), while the predictive validity of implicit measures is unclear (Levesque 

et al., 2008; Keatley et al., 2013).  
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Neuroscience-informed methods can provide a means to evaluate the subjective value of an intrinsic 

reward (e.g., the experience of mastering a musical composition for its own sake), allowing extrinsic 

and intrinsic rewards to be compared using a common scale of objectively measured neural activity 

(FitzGerald et al., 2009). We hypothesized that extrinsic and intrinsic rewards would both influence 

affective states, and the extent of their relative influences should be reflected in regional brain activity. 

Recent studies (Rutledge et al., 2014, 2015; Vinckier et al., 2018) demonstrate that experience sampling 

during reward-based tasks can link affective and motivational responses to extrinsic reward. Here we 

extend this approach to investigate how affective state is influenced by the history of intrinsic rewards.   

We developed a reinforcement learning task incorporating both an explicit reward component and a 

skilled performance component, where the latter did not affect payment (Figure 1A). On each trial, 

subjects selected one of two options, one of which was on average more rewarding than the other, and 

then navigated a cursor past a series of barriers (see Experimental Procedures). We hypothesized that 

the experience of successful skilled performance, a source of intrinsic reward, would influence the 

momentary happiness of subjects in a manner that is quantitatively akin to the impacts of extrinsic 

rewards and that this would also be evident at the level of neural activity.  

  

  

INSERT FIGURE 1 

   

  

EXPERIMENTAL PROCEDURES  

Participants  

37 healthy young adults (age: 25.8 ± 4.7, mean ± SD; 8 males, 29 females) were recruited through the 

University College London (UCL) Psychology Subject Database. Subjects were screened to ensure no 

history of neurological or psychiatric disorders. Four subjects were excluded due to excessive head 

movement during scanning, leaving a total of 33 subjects (age: 26.1 ± 4.9; 8 males, 25 females). The 

study was approved by the UCL research ethics committee, and all subjects gave written informed 

consent.   
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Study Design  

Subjects completed the experiment at the Wellcome Centre for Human Neuroimaging at UCL in an 

appointment that lasted approximately 90 minutes. Stimuli were presented in MATLAB (MathWorks, 

Inc.) using Cogent 2000. The layout of each trial resembled a T-Maze (Howe et al., 2013). On each trial, 

subjects selected a blue or magenta box, one of which resulted in 50 points on average and the other 

which resulted in 25 points on average. The standard deviation of points received for each box was 10. 

Points assigned based on draws from Gaussian distributions. Every 19-23 trials, a reversal occurred 

where the box that previously contained the higher number of points on average now contained a lower 

number of points and vice versa. On half of the trials, subjects were afforded a free choice. For the 

remaining half, subjects were only presented with a single option. After a choice was made, the chosen 

option was indicated and four barriers appeared on the screen along with a small cursor at the bottom 

of the screen. Following a 1s delay, the cursor automatically advanced along the path to the outcome. 

Subjects were able to control the horizontal position of the cursor to avoid colliding with barriers. If they 

passed a barrier without colliding with it, the barrier turned green. Contact with a barrier turned it red 

and provided immediate feedback about performance. Subjects then had to press the appropriate 

directional key to navigate around the barrier for the cursor to continue advancing on its course. Crucially, 

the subjects’ final payment depended only on the number of points accumulated across the experiment 

and not their ability to quickly navigate past barriers. After the cursor had entered the chosen box, the 

outcome was displayed for 800ms after a 1.5s delay. Total cumulative points were displayed on the top 

right of the screen throughout the experiment. Subjects were presented with the question, “How happy 

are you at this moment?” after every 2-3 trials. After a 1s delay period, a rating line appeared with a 

cursor at the midpoint and subjects had 4s to move a cursor along the scale with button presses. The 

left end of the line was labelled “very unhappy” and the right end of the line was labelled “very happy”.   

Staircase Procedure  

To ensure that differences in affective responses were not due to skill-related differences in how often 

each subject collided with barriers, we used a standard staircase procedure called the Parametric 

Estimation by Sequential Testing (PEST) (Taylor and Creelman, 1967). This procedure calibrated the 

speed at which the cursor moved for every subject such that they did not contact the barriers on 

approximately 70% of trials. This calibration was carried out over 60 trials prior to the start of the task in 
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the scanner. Continuation of the procedure during the task allowed small adjustments (e.g., to 

compensate for any fatigue) to maintain consistent successful skill performance.  

Questionnaire Measures  

Subjects were administered the Beck Depression Inventory (BDI-II) (Beck et al., 1996), Apathy 

Evaluation Scale (AES) (Marin et al., 1991), and Apathy Motivation Index (AMI) (Ang et al., 2017).   

Image Acquisition  

MRI scanning took place at the Wellcome Centre for Human Neuroimaging at UCL using a Siemens 

Prisma 3-Tesla scanner equipped with a 64-channel head coil. Functional images were acquired with a 

gradient echo T2*-weighted echo-planar sequence with whole-brain coverage. Each volume consisted 

of 48 slices with 3mm isotropic voxels [repetition time (TR): 3.36s; echo time (TE): 30ms; slice tilt: 0°] in 

ascending order. A field map [double-echo FLASH, TE1 = 10ms, TE2 = 12.46ms] with 3mm isotropic 

voxels (whole-brain coverage) was also acquired for each subject to correct the functional images for 

any inhomogeneity in magnetic field strength. Subsequently, the first 6 volumes of each run were 

discarded to allow for T1 saturation effects. Structural images were T1-weighted (1 x 1 x 1 mm resolution) 

images acquired using a MPRAGE sequence.  

Model-based Analyses 

Models were fit to happiness ratings in individual subjects by minimizing the residual sum of squares 

between actual and predicted happiness ratings, and this also served as the objective function for the 

optimizer. Model fitting was performed using the fmincon optimizer in MATLAB (MathWorks, Inc). The 

significance for individual parameters was determined using likelihood ratio tests comparing the full 

model with a model that had only a reward or performance parameter but not both. The significance of 

those tests is indicated by filled circles in Figure 4. Note that models were first fit to the raw happiness 

ratings in order to test the relationship between the happiness baseline mood parameter (denoted w0 in 

the equations below) and questionnaire measures to replicate findings in the literature. Models were 

then fit to standardized ratings. Normalizing ratings prevents individuals with greater variance in their 

ratings from having a disproportionate effect on model comparisons. The standard deviation of ratings 

differs widely across participants although rating variance is known to be stable in time (Rutledge et al., 

2015) and across tasks (Blain and Rutledge, 2020). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 13, 2021. ; https://doi.org/10.1101/2019.12.19.882589doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882589


  7  

Recovery Analysis 

To ensure that the model parameters were recoverable, we performed model recovery and parameter 

recovery analyses following established procedures (Wilson & Collins). To test for parameter recovery, 

we first estimated the parameters for each participant. Then, we simulated data with each of the four 

generative models using parameters estimated for each participant. We added Gaussian noise in the 

simulations based on individual-level noise estimates. We then estimated parameters from the 

generated data using the same procedure as applied to the actual mood dynamics data (n = 33). 

RESULTS  

Subjects completed two trial blocks while in the MRI scanner. We first asked whether subjects could 

learn the reward contingencies (Figure 1B) and found that they could, making 85.8 ± 1.0%% (mean ± 

SEM, z = 5.0, p < 10-6) of choices to the current high-reward option. Subjects were not penalized for 

contact with barriers, and thus actual performance was non-instrumental to the receipt of eventual 

monetary reward. We observed no correlation between earnings and how often subjects successfully 

avoided barriers (ρ(31) = 0.21, p = 0.24). During debriefing, all 33 subjects reported that they believed 

there was no association between successful skilled performance and earnings.  

Reports of affective state for example subjects are included in Figure 1C. On average, subjects reported 

being happier after receiving outcomes from the high- compared to low-reward option (high-reward:63.8 

± 1.9, low-reward: 59.5 ± 2.1,  z = 4.7, p < 10-5), consistent with previous research (Rutledge et al., 2014, 

2015). On average, subjects reported also being happier when they navigated through the barriers 

without collisions compared to when they contacted at least one barrier (without collisions: 63.5 ± 1.9; 

collision: 60.0 ± 2.1, z = 4.6, p < 10-5), suggesting that intrinsic rewards related to performance influence 

subjective affective state.  

Because participants vary in how they use the scale, we next z-scored happiness ratings. Consistent 

with analyses using non-normalized ratings, subjects reported greater average happiness after 

receiving high compared to low rewards (high-reward: 0.08 ± 0.01, low-reward: -0.18 ± 0.02, z = 4.8, p 

< 10-5, Figure 2A). Subjects also reported being happier after navigating through the maze without 

contacting any barriers compared to when they collided with at least one barrier (without collisions: 0.08 

± 0.01; collision: -0.17 ± 0.03, z = 4.7, p < 10-5, Figure 2A), consistent with an impact of intrinsic rewards. 

There was considerable variation across subjects in terms of how much extrinsic rewards and skilled 
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performance contributed to momentary happiness (Figure 2B), but there was no relationship between 

happiness for reward outcomes and happiness for skilled performance (ρ(31) = -0.20, p = 0.26).  

 

INSERT FIGURE 2 

INSERT TABLE 1 

  

Computational model of affective dynamics  

We next employed a previously established methodology (Rutledge et al., 2014, 2015; Blain and 

Rutledge, 2020) to quantify the extent to which rewards impacted on the affective state of our 

participants. In particular, we aim to replicate that (1) the recent history of reward influences happiness 

and (2) that the baseline happiness parameter correlates with depressive symptoms. To that end, we 

fit the raw happiness ratings.  We considered influences that decay exponentially in time:  

Happiness(𝑡) = w0 + w𝑟𝑒𝑤𝑎𝑟𝑑  ∑ γt−j𝑡𝑗=1  𝑅𝑒𝑤𝑎𝑟𝑑𝑗  + 𝜖   (1) 

where t and j are trial numbers, w0 is a baseline mood parameter, wreward captures the influence of reward 

which is the z-scored reward outcome of the selected option on each trial, and 0 ≤ ɣ ≤ 1 represents a 

forgetting factor that reduces the impact of distal relative to recent events. If this parameter is equal to 

0, only the most recent reward outcome influences happiness. The model includes a Gaussian noise 

term, ϵ ~ N(0, σ). The parameters of this model are recoverable (see Figure 3A and Table 1 for details 

about parameter recovery). Parameters were first fit to non-normalized happiness ratings in each 

individual subject. The mean r2 was 0.26 ± 0.03 and the mean forgetting factor was 0.40 ± 0.06 (mean 

± SEM, Figure 1C for example subjects). Consistent with previous findings (Rutledge et al., 2014, 2015), 

happiness was significantly associated with the history of reward (wreward = 0.06 ± 0.01; Wilcoxon signed 

rank test: z = 4.7, p < 10-5). Sigma was estimated to be on average 0.13 ± 0.01.  

Likewise, consistent with previous findings during risky decision making (Rutledge et al., 2017), we 

found that baseline mood parameters, estimated using raw happiness ratings while accounting for mood 

dynamics due to reward history, were negatively correlated with symptom severity assessed using the 

Beck Depression Inventory (BDI-II; Beck et al., 1996; Spearman ρ(31) = -0.35, p = 0.046). This result 
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shows that depressive symptoms relate to happiness ratings during a novel task including a 

performance component consistent with previous findings during risky decision making (Rutledge et al., 

2017) and  learning in volatile environments (Blain and Rutledge, 2020). This relationship is consistent 

with an affective set point, which happiness returns to over time, that is lower in individuals with a greater 

symptom load.  

We also found baseline mood parameters tended to be negatively related apathy as measured by Apathy 

Evaluation Scale (AES) (Marin et al., 1991) (ρ(31) = -0.32, p = 0.07) and behavioral apathy as assessed 

by the Apathy Motivation Index (AMI) (27) (ρ(31) = -0.33, p = 0.06; see Table 2). The first happiness 

rating before the start of the first trial was positively correlated with baseline mood parameter (ρ(31) = 

0.46, p = 0.007). In contrast to baseline mood parameters, first happiness ratings were not significantly 

correlated with BDI-II (ρ(31) = -0.21, p = 0.25) or AES (ρ(31) = -0.17, p = 0.35), but was correlated with 

behavioral AMI (ρ(31) = -0.39, p = 0.027). We found no correlation between baseline mood parameter 

and the average staircased cursor speed (ρ(31) = -0.01, p = 0.95), suggesting that the speed of the 

cursor was not associated with persistent affective state. 

We next z-scored happiness ratings to better evaluate the relative contributions of extrinsic and intrinsic 

reward to affective state. To that end, we z-scored the happiness ratings, thereby preventing individuals 

with greater rating variance from disproportionally affecting analyses. With happiness ratings centered 

on zero, as well as Rewards and Performance vectors, any constant term would be expected to be near 

zero and we omitted the w0 from analyses with z-scored ratings. We expanded the model to include an 

additional term that accounts also for influences pertaining to skilled performance:  

Happiness(𝑡) = w𝑟𝑒𝑤𝑎𝑟𝑑  ∑ γt−j𝑡𝑗=1  𝑅𝑒𝑤𝑎𝑟𝑑𝑗 +  wperformance  ∑ γt−j𝑡𝑗=1  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑗 + 𝜖  (2) 

where t and j are trial numbers, wreward and wperformance capture the influence of task events related to 

reward and performance, respectively, and 0 ≤ ɣ ≤ 1 represents a forgetting factor that reduces the 

impact of distal relative to recent events. The model includes a Gaussian noise term, ϵ ~ N(0, σ). The 

model parameters were indeed recoverable (see Figure 2C  and table 2 and methods for details). 

Reward is the z-scored outcome of the selected option on each trial, and performance is the z-scored 

result of whether a barrier was contacted on each trial, assigning a 1 when no barriers were contacted 

and 0 if at least one barrier was contacted. This simple model explained a substantial amount of variance 
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in happiness with r2 = 0.26 ± 0.03 (mean ± SEM, Figure 2C). Weights for both performance (wperformance 

= 0.18 ± 0.03; z = 4.4, p < 10-4, Figure 2D) and reward (wreward = 0.39 ± 0.04, z = 4.9, p < 10-5, Figure 

2D) were positive on average. The forgetting factor ɣ was 0.48 ± 0.05 (mean ± SEM), indicating that 

happiness depended on the past 4-5 trials on average. Sigma was estimated to be on average 0.85 ± 

0.02. 

In previous studies we found expectations of reward exerted a substantial influence on happiness 

(Rutledge et al., 2014, 2015; Blain and Rutledge, 2020). In the current study, we used high- and low-

reward distributions with minimal overlap to maximize learning accuracy. We also employed a staircase 

to keep skilled performance stable and at a similar level across individuals. These features render the 

current design unsuitable for quantifying the impact of expectations on happiness. We chose a design 

that maximized our power for quantifying individual differences in the relative subjective values of 

extrinsic and intrinsic rewards.  

 

INSERT FIGURE 3 

   

Model comparison (Table 2) shows that a model with parameters for past rewards and performance 

(mean r2 = 0.26) outperformed models containing individual terms for reward (mean r2 = 0.19) or 

performance (mean r2 = 0.09) alone. These results show that the happiness of subjects in this task is, 

on average, dependent on both receipt of explicit rewards (e.g., money) and the non-instrumental 

experience of skilled performance.  

 

INSERT TABLE 2 

 

We found considerable variation across individuals in how much reward outcomes contributed to 

affective dynamics, even though subjects on average learned reward contingencies to a similar degree 

(Figure 4A). Despite performance being held constant due to staircasing of cursor speed (successful 

performance: 69.1 ± 2.4%, mean ± SD, Figure 4B), there was considerable variation also across 

individuals in how much non-instrumental performance influenced affective state. Many subjects 
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showed a negligible impact of successful performance on affective state, despite a similar level of 

successful performance. Furthermore, learning choice accuracy was not correlated with either 

happiness reward parameters (ρ(31) = 0.12, p = 0.49) or successful skilled performance (ρ(31) = -0.05, 

p = 0.78).  

Intrinsic rewards can be associated with an increased motivation or metacognitive strategy to improve 

performance over time (Son and Metcalfe, 2005). Prior to scanning, participants completed 60 practice 

trials to determine an appropriate starting speed for the experiment. Wperformance was positively correlated 

with the starting cursor speed (ρ(31) = 0.38, p = 0.03). There was no correlation between percent 

successful skilled performance and wperformance derived from the happiness model (ρ(31) = 0.056, p = 

0.76). Intrinsic rewards are often thought as resulting from uncertainty reduction, or from learning 

progress (Gottlieb and Oudeyer, 2018). However, we did not find any significant difference in the median 

cursor speed between blocks (z = 0.63, p = 0.53), suggesting that participants were at a stable level of 

performance from the start that did not improve over time. Similarly, wperformance was not significantly 

different between blocks (z = 1.47, p = 0.14). These results together suggest that performing this task 

accurately was intrinsically rewarding with a stable relationship between performance and happiness 

despite no signs of learning progress during the experiment. 

 

We then checked whether we can extend the link between the baseline mood parameter from the reward 

model (see above) and apathy and depression scores to the baseline mood parameter of models 

including a performance term. Results indicate a trend towards the same relationship as for the reward 

model (see Table 3).  

 

 

 

INSERT FIGURE 4 

 

INSERT TABLE 3 
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Neural correlates of extrinsic and intrinsic rewards  

Having established inter-individual variability in the impact of outcomes and performance on reported 

happiness, we next asked whether this variability was also predictive of neural responses to both 

rewards and performance. The experiment was separated into two scans and we first evaluated whether 

happiness model parameters were stable across scans. We found that both extrinsic (ρ(33) = 0.35, p = 

0.044) and intrinsic (ρ(33) = 0.35, p = 0.044) reward computational parameters were positively 

correlated across the two scans.  

We regressed event-related activity on parametrically modulated task events to assess brain activity 

related to receipt of extrinsic and intrinsic rewards. We found an effect of reward magnitude at time of 

outcome in vmPFC (Figure 4A, top: -3, 38, -1; t32 = 5.92, p < 0.05 Family-Wise-Error (FWE) cluster-

corrected at the whole brain level), as well as an effect of successful skilled performance in an 

overlapping region of the vmPFC (Figure 4A, bottom: -3, 50, -1; t32 = 4.24, p < 0.05 FWE cluster-

corrected).  

The vmPFC is widely implicated in representation of subjective reward value. On this basis, we used an 

independent vmPFC mask from a meta-analysis of subjective value studies of extrinsic reward for 

further analysis (Bartra et al., 2013). Within this region-of-interest (ROI), we extracted weights for reward 

magnitude and skilled performance from each individual subject. We found that within this independent 

ROI, BOLD activity was significantly associated with both reward magnitude (0.26 ± 0.08, Z = 3.0, p = 

0.0029) and skilled performance (0.38 ± 0.13, Z = 2.8, p = 0.0052, Figure 5B).  

Having established that neural responses in vmPFC are associated with both extrinsic and intrinsic 

rewards, we next examined whether neural responses were predicted by computational parameters 

estimated from individual affective dynamics. Across subjects, we found a positive relationship (ρ(31) = 

0.50, p = 0.003, Figure 5D) between the relative weights for extrinsic and intrinsic rewards in our 

happiness computational model and the relative effect sizes for neural responses in the vmPFC. Initial 

happiness ratings deviate from model predictions on average (Figure 2C). The relationship between 

relative happiness weights and relative neural effect sizes was still present after removing the initial 10% 

of ratings (ρ(31) = 0.54, p = 0.0015). The relationship was also present after removing the initial 10% 

and detrending the remaining ratings before estimating model parameters (ρ(31) = 0.49, p = 0.0038). 
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We also subdivided subjects into two groups comprising a group with higher Wperformance than reward 

parameters and a group with the opposite pattern. The group with higher performance than reward 

parameters showed greater vmPFC responses for skilled performance compared to the group with 

larger reward than performance parameters (Z = 2.8, p = 0.0047, Figure 5C). These findings suggest 

that the pattern of momentary affective dynamics reflects the impact of both extrinsic and intrinsic 

rewards and is mirrored at the level of vmPFC activity.  

  

  

INSERT FIGURE 5 

 

DISCUSSION  

Using experience sampling (Reis and Gable, 2000; Kahneman et al., 2004) combined with functional 

neuroimaging, we show that extrinsic and intrinsic rewards contribute to affective dynamics (i.e., 

happiness). Recent studies demonstrate that computational approaches can quantify consistent 

relationships between subjective feelings and value-based decision making (Rutledge et al., 2014; Eldar 

et al., 2016, 2018; Vinckier et al., 2018; Blain and Rutledge, 2020), including in relation to individual 

social preferences (Rutledge et al., 2016). Here, using the same computational approach applied during 

reinforcement learning, we show that momentary happiness is influenced by both extrinsic and intrinsic 

rewards. The computational parameters we extract from affective dynamics enabled us to quantify, 

within a common value scale, the relative affective value of intrinsic relative to extrinsic rewards. Our 

key finding here is that the relative weight of intrinsic and extrinsic reward extracted from affective 

dynamics predicts neural activity in the vmPFC, a region proposed to represent rewards in a common 

neural currency (Chib et al., 2009; Levy and Glimcher, 2011, 2012), validating our computational 

approach.  

While improvements in skilled performance can be enhanced by rewarding individuals for performance 

(Sugawara et al., 2012), holding performance constant across subjects allowed us to investigate how 

happiness varied independently of the level of skill individuals manifest in the task. We show that 

individuals, whose happiness was substantially influenced by intrinsic rewards, had increased vmPFC 
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BOLD responses for successful versus unsuccessful skilled performance, relative to individuals whose 

happiness was influenced more by extrinsic rewards.  

The vmPFC is known to represent the value of different types of goods, including food and juice (Padoa-

Schioppa, 2007; Hare et al., 2011), money (De Martino et al., 2006), aesthetic judgments (Kawabata 

and Zeki, 2004; Jacobsen et al., 2006), and even perceived pleasantness (Plassmann et al., 2008). 

This suggests that vmPFC plays a central role in representing qualitatively different types of goods on 

a common scale, an operation that can facilitate making decisions between otherwise incommensurable 

goods (Chib et al., 2009; Levy and Glimcher, 2011, 2012). Our study builds on these prior results by 

now identifying an association between vmPFC BOLD activity and intrinsic rewards, here the experience 

of performing a skilled task without error. Whole-brain analysis showed that the representation of 

subjective intrinsic reward values involved an adjacent region in the vmPFC, anterior to the 

representation for extrinsic rewards but still residing within a central vmPFC cluster (Clithero and Rangel, 

2014), a finding that parallels a distinction between experienced and decision values previously mapped 

to anterior and posterior vmPFC, respectively (Smith et al., 2010).  

The vmPFC has been demonstrated to play a role in affect with subjective emotional experiences 

elicited by images and pleasurable music leading to changes in both vmPFC BOLD activity and regional 

cerebral blood flow (Blood and Zatorre, 2001; Zald et al., 2002; Winecoff et al., 2013). Damage to the 

vmPFC can lead to aberrant emotional responses (Koenigs et al., 2007; Zald and Andreotti, 2010; Hiser 

and Koenigs, 2018) and maladaptive decision making in environments where emotional regulation may 

be useful (Grossman et al., 2010; Spaniol et al., 2019). Numerous studies suggest that subjective 

reward values are represented by vmPFC neural activity. Unfortunately, the constraints and expense of 

neuroimaging makes it impractical as an every-day tool for assessing individual values for non-market 

activities. The strong association between neural responses for intrinsic and extrinsic rewards and 

computational parameters extracted from affective dynamics suggests that computational models 

combined with experience sampling can provide a valid measure for the subjective reward value of 

experience. 

A limitation of the current study is that the staircase procedure we used does not allow us to address 

questions related to the intrinsic motivation for learning of our subjects. The staircase procedure can be 

useful for study of interindividual variation either by keeping performance constant across individuals 
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despite differences in abilities (Fleming et al., 2010) or for tailoring choice options to individuals (Klein-

Flügge et al., 2015). Using the staircase procedure meant that subjects quickly reached the limit by 

which they could improve performance. Our design is thus unsuitable for studying intrinsic motivation 

pertaining to learning. However, such a framework for measuring affective value could be valuable for 

other features related to intrinsic rewards (Blain and Sharot, 2021), like metacognitive control and 

learning (Son and Sethi, 2006), resource allocation under external pressures (Son and Metcalfe, 2005), 

as well as curiosity-driven exploration of the environment where rewards may be more dependent on 

the learning progress of an individual (Gottlieb and Oudeyer, 2018).  

Humans exhibit biases when it comes to predicting how future events are likely to impact on their 

affective states, and are prone to making sub-optimal decisions by misjudging the hedonic 

consequences of options  (Wilson and Gilbert, 2005; Meyvis et al., 2010; Nisbet and Zelenski, 2011). 

Increasing subjective well-being is widely believed to be an appropriate societal goal (OECD, 2020), but 

these biases pose a difficulty for enacting policies that are likely to be successful. Additional factors 

such as social desirability bias (Van de Mortel, 2008) can decrease the reliability of self-reported values 

when an individual’s assessment of a hypothetical experience or good, such as the availability of public 

parks, differs from prevailing social norms. An advantage of our method is that it can be in principle 

applied to any repeatable experience without a need to probe people explicitly about the content of 

those experiences, reducing biases associated with social desirability. For example, affective dynamics 

reflect depressive symptoms (Rutledge et al., 2017; Blain and Rutledge, 2020), show consistent 

relationships to reward in the lab and outside the lab in anonymous participants who did not interact 

with an experimenter (Rutledge et al., 2014), and allow quantification of the extent of guilt and envy in 

response to social inequality (Rutledge et al., 2016). A potential application of our approach, yet to be 

tested, would be to combine our computational approach with experience sampling in different 

naturalistic settings such as a corporate workplace, in order to identify factors important for employee 

well-being. Thus, the approach we use in this study demonstrates a novel tool for understanding 

preferences and well-being. 

 

Over a century ago, Francis Edgeworth described an idealized instrument, which he called a 

hedonometer, for ‘continually registering the height of pleasure experienced by an individual’ 

(Edgeworth, 1881). Here, we introduce a ‘computational hedonometer’ that has a distinct advantage 
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over Edgeworth’s hypothetical hedonometer in that it mathematically quantifies the relative contributions 

of different factors to an affective state, including the relative values of intrinsic and extrinsic rewards. 

We validate our computational tool using objective neural measurements, suggesting that 

computational parameters can capture the affective values for abstract goods and experiences that may 

be otherwise challenging to accurately quantify. 
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Figure 1. Extrinsic and intrinsic reward paradigm  

(A) Subjects (n = 33) experienced both extrinsic and intrinsic rewards on each trial. A trial starts with 

subjects selecting from one or two available options each associated with an implicit extrinsic reward. 

One option on average leads to the larger reward (mean 50, SD 10) whereas the other leads to a lower 

reward (mean 25, SD 10) with a reversal every 19-23 trials. Four barriers then appear along the path to 

the outcome and a cursor appears at the bottom of the screen which automatically advances after a 1s 

delay. Subjects press left and right keys to navigate around barriers, constituting a form of skilled 

performance that can be intrinsically rewarding. Successfully avoiding a barrier turns it green whereas 

contact with a barrier turns it red. There is no financial penalty for contact with barriers nor financial 

benefit for avoiding them. Earnings depend only on the outcome delivered at the end of the trial. After 

every 2-3 trials, subjects report their current happiness by moving a cursor on a rating line.  

(B) Probability of choice to the initial high-reward option averaged across subjects (n = 33) in black. 

Shaded areas correspond to SEM. Grey vertical bands represent intervals where probability reversals 

could occur.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 13, 2021. ; https://doi.org/10.1101/2019.12.19.882589doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882589


  24  

(C, D) Happiness trajectories and model fits for a computational model with both reward and 

performance parameters are displayed for two example subjects (C: r2 = 0.45, D: r2 = 0.42). Also see 

Figure 2, Figure 3, Table 1 and Table 2.  

 

Figure 2. Computational modelling of affective dynamics  

(A) Subjects were happier when they received a reward from high- compared to low-reward options 

(Z = 4.7, p < 10-5, in blue). Subjects were happier on average when they navigated through the barriers 

without contacting them, compared to when they contacted at least one barrier (Z = 4.6, p < 10-5, in 

orange). *** p < 0.001.  

(B) The majority of subjects (29 of 33) were happier after receiving a reward from a high- compared 

to low-reward option. The majority of subjects (29 of 33) were happier after successful compared to 

unsuccessful performance. There was no relationship between happiness for reward outcomes and 

happiness for skilled performance (ρ(31) = -0.20, p = 0.26). 

(C) Average happiness across all subjects and model fit is displayed for the computational model 

(n = 33, mean r2 = 0.26).  
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(D) According to the computational model, happiness was significantly related to the history of 

extrinsic rewards in the form of points converted to money (Z = 4.9, p < 10-5) and also to the history of 

skilled performance, a proxy for intrinsic rewards (Z = 4.4, p < 10-4).  

*** p < 0.001. 

 

Figure 3. Parameter recovery analysis for the reward model (A), the performance model (B), and 

the reward and performance model (C). The X-axis represents the parameter values used to generate 

the data and the Y-axis corresponds to the estimated parameters. The parameters are recoverable with 

no bias. See Experimental Procedures for details. *** P < 10-7 
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Figure 4. Computational model parameters and task behavior  

(A, B) The contribution of reward to happiness varied across subjects despite a similar high choice 

accuracy across subjects. Despite titrating difficulty at the individual level to match performance across 

subjects at 70%, subjects displayed considerable variation in the degree to which performance impacted 

affective state as captured by the computational model. Filled circles indicate betas that are significant 

at the individual level. 
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Figure 5. Relative affective impacts of reward and performance predict vmPFC activity  

(A) Top. BOLD activity in vmPFC was parametrically modulated by reward magnitude (Peak: -3, 

38, -1). Bottom. Bold activity in an overlapping region of vmPFC was modulated by trial-by-trial 

successful skilled performance (Peak: -3, 50, -1).   

(B) An independent vmPFC ROI shows modulation by both reward magnitude and skilled 

performance (both p < 0.01).   
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(C) In the independent vmPFC ROI, subjects with higher performance than reward weights in the 

computational analysis of affective dynamics displayed stronger neural responses in the vmPFC for 

performance than subjects with higher reward than performance weights (p = 0.003).  

(D) The difference between performance and reward weights in the happiness computational 

model predicted the difference in vmPFC neural responses for successful skilled performance relative 

to reward magnitude (ρ(31) = 0.50, p = 0.003).  

* p < 0.05, ** p < 0.01.  
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Model Spearman ρ between generated and estimated parameters 

W0 Wreward Wperformance γ1 γ2 

Reward 0.99*** 0.94 *** - 0.55** - 

Performance  0.99*** - 0.88*** 0.4* - 

Reward and performance 0.98*** 0.86 *** 0.86*** 0.84*** - 

Reward and performance (separate γ) 0.99*** 0.68*** 0.88*** 0.50** 0.73*** 

 

Table 1. Model parameter recovery results  

The values correspond to the Spearman correlation between the generated parameters and the 

estimated parameters of 33 agents. See Experimental Procedures for details. * p < 0.05, ** p < 0.01, *** 

p < 0.001 
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Model  Parameters  Mean r2  BIC  ∆BIC  

Reward  2  0.19  -326  145 

Performance  2  0.09   -26  445 

Reward and Performance  3  0.26  -471  0  

Reward and Performance (separate ɣ)   4  0.27  -351  120 

Table 2. Model comparison results  

Bayesian Information Criterion (BIC) scores are summed across 33 subjects. The winning model (lowest 

BIC) was the model with both reward and performance having the same forgetting factor ɣ rather than 

a model where the influence of past reward and performance differs in their forgetting factor. ∆BIC refers 

to the difference in BIC between each model and the winning model. Ratings are z-scored to prevent 

individuals with greater rating variance from disproportionally influencing model comparison.  
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W0 reward W0 performance W0 reward & 

performance 

    BDI     -0.35* -0.31 ⴕ -0.34ⴕ 

    AES      -0.32 ⴕ -0.32 ⴕ -0.30 ⴕ 

    bAMI -0.33 ⴕ -0.32 ⴕ -0.29 ⴕ 

Table 3. Correlation between baseline mood parameter and questionnaire score. Values 

correspond to the Spearman coefficient ρ. *p < 0.05, ⴕ < 0.1 
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