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Abstract

Neuroimaging studies have uncovered the neural roots of individual differences in human general fluid intelligence

(Gf). Gf is characterized by the function of specific neural circuits in brain gray-matter; however, the association

between Gf and neural function in brain white-matter (WM) remains unclear. Given reliable detection of blood-

oxygen-level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals in WM, we used a functional,

rather than an anatomical, neuromarker in WM to identify individual Gf. We collected longitudinal BOLD-fMRI data (in

total three times, ~11 months between time 1 and time 2, and ~29 months between time 1 and time 3) in normal

volunteers at rest, and identified WM functional connectomes that predicted the individual Gf at time 1 (n= 326).

From internal validation analyses, we demonstrated that the constructed predictive model at time 1 predicted an

individual’s Gf from WM functional connectomes at time 2 (time 1 ∩ time 2: n= 105) and further at time 3 (time 1 ∩

time 3: n= 83). From external validation analyses, we demonstrated that the predictive model from time 1 was

generalized to unseen individuals from another center (n= 53). From anatomical aspects, WM functional connectivity

showing high predictive power predominantly included the superior longitudinal fasciculus system, deep frontal

WM, and ventral frontoparietal tracts. These results thus demonstrated that WM functional connectomes offer a novel

applicable neuromarker of Gf and supplement the gray-matter connectomes to explore brain–behavior relationships.

Introduction

Neuroimaging and psychological studies have investi-

gated the neural basis of the cognitive processes that

motivate novel insights about brain–behavior relation-

ships1. An enduring aim of brain and cognitive sciences is

to understand individual differences in human intelli-

gence2. Human general fluid intelligence (Gf) refers to an

ability to think logically and to solve novel problems that

do not rely on previously acquired knowledge3,4. Gf has

been broadly quantified using a series psychometric test,

which further provides a foundation to process

brain–behavior associations5,6. Given that individual dif-

ferences are inherent to Gf, it is crucial to identify neural

correlates of Gf and corresponding variations in brain

structure and function.

The neural correlates of individual differences in Gfmay

be associated with variations in brain size and connec-

tions2. A larger brain size (volume) consistently indicates

higher intelligence7; this concept of “the bigger brain, the

better intelligence” may result from the efficiency of

information flow among neurons5,8. Recently, the infor-

mation flow among certain areas associated with Gf have

been quantified by functional connectivity studies. These

results showed that the variational relationships of regions

engaging in common or related performance (even at rest)

may be the basis of individual differences in Gf 9–11, and
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measurements of the activity of the resting-state human

brain might carry information about intelligence12. Fur-

thermore, the rate of information flow among the dis-

tributed parietal and frontal areas composing the parieto-

frontal integration theory (P-FIT) network are likely to

play key roles in intelligence13. It is not surprising that a

large number of these brain regions and brain functional

networks are related to individual Gf12,14,15, due to the

diverse abilities associated with Gf, including under-

standing of daily tasks and problem solving. Accordingly,

whole-brain functional connectivity measures may pro-

vide more holistic insight to determine an individual’s Gf,

rather than global brain size.

Gf is mainly rooted in the functional connectivity of

specific neural circuits within gray-matter (GM); however,

little is known regarding the neurofunctional substrates of

individual differences in Gf in white-matter (WM)16–18.

Recently, a small but increasing number of investigations

have demonstrated a reliable detection of blood-oxygen-

level-dependent functional magnetic resonance imaging

(BOLD-fMRI) signals in WM. These studies indicate that

neural activation elicits temporal and spectral profiles of

hemodynamic responses in WM that are similar to those

measured in GM during different functional tasks19–24. In

parallel with the detection of task-related activations,

BOLD-fMRI can also reflect the neural activity in WM at

rest (i.e., absence of task requirement)25,26. Specifically, we

found that, during the resting state, the power of low-

frequency BOLD-fMRI fluctuations in WM exhibited a

specific rather than a random distribution of noise26, and

the WM functional connectome exhibited reliable and

stable small-worldness and nonrandom modularity27.

Abnormal small-worldness in the WM functional con-

nectome was reported in patients with Parkinson’s dis-

ease28. Furthermore, the specific functional connectivity

organization of the anatomical bundles was able to be

identified by resting-state fMRI20,21,25,29. These investi-

gations not only provided evidence of neural activity and

connectivity, using fMRI, but also established cognitive

biomarkers (i.e., for memory function) in WM30.

In the current study, using a cross-validation, data-driven

analysis, we present novel findings that the whole-brain

WM functional network predicted individual Gf and shed

light on the possible neurofunctional correlates of Gf in

WM. We first built a network-predicted model between

connectivity strength and Gf scores of normal individuals

following an initial examination (time 1, n= 326 partici-

pants). We demonstrated that the network-predicted

model derived from these data could predict an indivi-

dual’s Gf from his/her WM functional connectivity. This

predictive model constructed at time 1 can be generalized

to both the second (time 2, n= 105 participants) and the

third examinations (time 3, n= 83 participants) using the

overlapped individuals, thus, accurately predicting an

individual’s Gf score from WM functional connectivity

during the time 2 and time 3 scans for internal validation.

Finally, to further test the generalizability of the predicted

model, we showed that this model could also predict novel

independent performance Gf (n= 53 participants) for

external validation. These results suggested that the whole-

brain functional connectivity of WM was a neuromarker of

individual differences in Gf and would generalize to inde-

pendent data to predict individual Gf.

Materials and methods

Participants

An overview of this study is shown in Fig. S1. Two

independent cohorts were enrolled, namely, the internal

and external validation groups. The interval validation

group was further divided into the three subgroups.

Internal validation I (time 1) was trained on time 1 data

and also tested on time 1 data. Internal validation II

(time 1 ∩ time 2) was trained on time 1 data (n− 1

participants) and tested on both time 1 and time 2 data

(~11 months after time 1). Internal validation III (time

1 ∩ time 3) was trained on time 1 data (n− 1 partici-

pants) and tested on both time 1 and time 3 data

(~29 months after time 1). All participants were normal

college students from Southwest University of China,

Chongqing, China. This study was approved by the

Institutional Human Participants Review Board of the

Southwest University Imaging Center. Written informed

consent was obtained from all subjects. The data are

available for research purposes through the Interna-

tional Data-sharing Initiative (http://fcon.1000.projects.

nitrc.org/indi/retro/southwestuni/qiu/index.html). For

detailed description about the participant information

and data acquisition parameters, please see Liu et al.31.

For the external validation group, completely indepen-

dent normal controls were recruited (see SI Materials and

Methods for detailed information).

Assessment of fluid intelligence

For the internal validation group, the participants’

intellectual ability was assessed by the Combined Raven’s

Test (CRT) (Chinese revised version) at time 132, which

demonstrates a high degree of reliability and validity for

intelligence testing32,33. This test gives an indication of the

level of analogical thinking and abstract thought that a

person has achieved; therefore, this test is known to be a

good indicator of Gf5,11,34. The CRT scores (the number

of correct answers given in 40min) were used as a psy-

chometric index of individual intelligence. In line with

standard practice, the current study focused on the total

score of the test4,34,35.

For the external validation group, the participants’ Gf

abilities were assessed with performance general intelli-

gence using the Chinese version of the Wechsler Adult
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Intelligence Scale (WAIS-RC). The Raven’s Test and

WAIS-RC are clearly dominant in terms of interest, and

are highly correlated between them in college students36.

Neuroimaging data acquisition

For the internal validation group, structural and func-

tional MRI images were collected using a Siemens Trio

3.0T scanner (Siemens Medical, Erlangen, Germany) at

the Southwest University China Center for Brain ima-

ging31. The T1-weighted structural images (repetition

time= 1900ms, echo time= 2.52 ms, flip angle= 9°, field

of view= 256 × 256 mm2, matrix size= 256 × 256, voxel

size= 1 × 1 × 1mm3, and slices= 176) were acquired.

Subsequently, resting-state fMRI were acquired using a

single-shot, gradient-recalled echo planar imaging

sequence (repetition time= 2000 ms, echo time= 30 ms,

flip angle= 90°, field of view= 220 × 220mm2, matrix

size= 64 × 64, voxel size= 3.4 × 3.4 × 3mm3, and slices=

32). For each participant, a total of 242 functional volumes

(484 s) were acquired. All participants were instructed to

simply rest with their eyes closed, and not to think of

anything in particular. For the external validation group,

the parameters of data acquisition are list in “Materials

and methods.”

Neuroimaging data preprocessing

Neuroimaging data were analyzed using the DPARSF

(v4.3, www.restfmri.net) and SPM12 toolkits (www.fil.ion.

ucl.ac.uk/spm/software/spm12). Slice-timing correction

and realignment were applied to the remaining 235

functional images after excluding the first seven images.

Structural images were then co-registered to the pre-

processed functional images, and then segmented into GM,

WM, and cerebrospinal fluid (CSF) by using DARTEL37.

The mean signals from CSF (95% thresholded), 24 head

motion parameters (six motion parameters, six temporal

derivatives, and their respective squares) were regressed

out from the data. To avoid elimination of important

neural signals, we did not remove WM and brain global

signals, as previous studies have suggested19,26,29.

To minimize mixing GM signals with WM signals,

subsequent preprocessing for functional images was per-

formed for WM alone. First, individual masks were

obtained using a rigorous 90% threshold on the prob-

ability map of WM, which was produced by structural

segmentation. Second, functional images were then spa-

tially restricted into WM images using dot products

between functional images and individual masks. Third,

the WM functional images were then spatially normalized

into the Montreal Neurologic Institute space by structural

segmentation and were resampled into 3 × 3 × 3mm3.

Then, only voxels identified as WM across 80% of the

participants were included into the group-level WM mask

production. To exclude the impact of deep brain

structures, the probability (25% threshold) Harvard-

Oxford Atlas was used to remove subcortical nuclei (i.e.,

the bilateral thalamus, putamen, caudate, pallidum, and

accumbens) from the group-level WM28,29,38. To mini-

mize spurious local spatial correlations between voxels,

spatial smoothing was not applied39,40. Subsequently, a

band-pass filtering (0.01–0.10 Hz) was performed to

minimize high-frequency physiological noise sources

including the respiration rate. Finally, as functional con-

nectivity is sensitive to the confounding factor of head

motion, scrubbing was performed to reduce the negative

influence41. If the framewise displacement (FD) exceeded

0.5 mm, the value of the signal at the point, as well as one

forward point and two points previous to the signal point,

were removed. Participants with 80% of their volumes

remaining were included in further analyses.

Quality control

Exclusion criteria in selecting research participants are

shown in Fig. S2. As head motion deteriorates the quality

of fMRI data, we defined a set of standards to control for

head motion. Specifically, if there was translational or

rotational head movement > 2mm or 2°, respectively, or

head micromovements (mean FD) were >0.15 mm during

resting-state fMRI scanning, these data were excluded. In

addition, following scrubbing analyses, if a participant’s

points on an image were <80%, their data were excluded.

The quality of functional images (e.g., whether most of the

temporal lobe was not visible) were then checked from

the remaining participants. Quality control was applied to

participants at time 1, time 2, and time 3. Finally, for each

validation group, a prior outlier was defined as greater

than mean+ 2 standard deviation (SD) or less than mean

− 2 SD for Gf scores, and were excluded. Finally, 326

participants (142 females, mean age for males and

females= 20.03 years, SD= 0.072 years) were included in

the internal validation I group (time 1); 105 participants

were included in the internal validation II group (time 1 ∩

time 2); and 83 participants were included in the internal

validation III group (time 1 ∩ time 3). The demographics

for each time point/sample are shown in Table S1.

Construction of WM functional connectome

Nodes in WM functional networks were defined using

group-wise voxel-based parcellation algorithms that pro-

duce roughly equal sizes within each node42. To obtain

the 128 nodes used in this study, the parcellation algo-

rithm was applied to the group-level WM mask from the

remaining 326 participants at time 1. This parcellation

scheme, which does not rely on a prior anatomical

structure, may be better than the anatomical-based par-

cellation scheme, because of the uncertain match qualities

between anatomical and functional images27, and is fre-

quently used in GM mask parcellation40,43. In addition,
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the parcellation in the WM functional mask has been

reported to have stable and reliable small-worldness27.

For each participant, the WM functional connectivity

matrix (128 × 128) was calculated by Pearson’s correlation

between averaged BOLD signals of paired nodes. For the

connectivity matrix, each cell represented the connection

(i.e., edge) strength (Fisher’s r-to-Z normalized value) of

each pair of nodes (step 1 in Fig. 1)44,45. Connectivity

matrices were not thresholded or binarized46.

Predictive model for internal validation

To investigate whether the strength of WM functional

connectivity predicted individual Gf, we employed a

leave-one-out cross-validation (LOOCV) method, which

avoided overfitting by testing the strength of the rela-

tionship in an unseen participant1. Importantly, because

head micromovements may cause spurious connectivity

patterns, we first identified and excluded edges sensitive

to head motion47. In each LOOCV, we randomly selected

one participant as a testing set, and the remaining n− 1

participants were used as a training set (step 3 in Fig. 1)48.

The predictive features were defined as the relevant edges

to Gf scores at a significant threshold of P < 0.01 in the

training set (n− 1 participants) (steps 4 and 5 in Fig. 1).

The r values were then separated into a positive network

(where r values were positive) and a negative network

(where r values were negative)1,47,49. For each participant

in the LOOCV, we summed the strength of edges from

the WM functional connectivity matrix in the positive and

negative sets, separately (step 6 in Fig. 1). Positive and

negative sets have been reported to have different func-

tional roles and might separately contribute to predictive
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Fig. 1 Schematic diagram of the WM functional connectivity-based predictive model. Step 1: We first obtained BOLD-fMRI signals in WM and

then computed functional connectivity matrixes between each pair of nodes using Pearson’s correlation. Step 2: Each matrix values below or above

the diagonal was reorganized to a row. Step 3: In each iteration, all rows were combined into a new matrix (m × n, wherem represents the number of

participants, and n represents the number of edges) across n− 1 participants (n is the number of participants). Step 4: Obtaining the correlation

coefficients between each edge and an individual’s Gf abilities across n− 1 participants. Step 5: Significantly correlated edges (P < 0.01) with Gf was

selected to construct features mask. These correlated edges were separated into a positive network (correlation coefficients were positive) or a

negative network (correlation coefficients were negative). The dot product method was then applied between m × n matrix and feature masks. Step

6: Selected positive features and negative features were summed separately as two features into the predictive model (general linear model). Step 7:

A general linear model was employed to construct the predictive model. Step 8: Test data matrixes were also performed using the dot product

method with feature masks to obtain two features, which were added to the constructed predictive model to predict the Gf score. These steps were

repeated N times, and Gf scores were obtained in all participants. Finally, correlation was calculated between observed and predicted Gf scores.

BOLD-fMRI blood-oxygen-level-dependent functional magnetic resonance imaging, Gf general fluid intelligence.
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power1,11,46. Hence, a simplified general linear model

(GLM) protocol, which combined the positive and nega-

tive networks (step 7 in Fig. 1), was used to construct the

training model in each LOOCV (the positive and negative

models were also constructed for exploration). To predict

the left-out participant’s (defined as testing data) Gf score,

the training model was applied to the testing data, i.e., the

strength of functional positive and negative networks

(step 8 in Fig. 1). The flowchart of the predictive model is

shown in Fig. 1. After repeating the abovementioned

procedure n times, each participant’s Gf score was

obtained. Finally, we computed the correlation between

observed and predicted Gf scores using Pearson’s corre-

lation to evaluate the power of the predictive model. K-

fold cross-validation50 was also used to test the relation-

ship between observed and predicted Gf scores. Partici-

pants were separated into 20-fold in line with previous

work51, and ~16 participants were included in each fold.

Similar to the LOOCV procedure, onefold was left out as

a testing data, and the remaining 19-fold were used as

training data to construct the predictive model in each

cross-validation. After repeating this procedure 20 times,

we obtained Gf scores. To minimize the random error on

folds’ partition, we repeated the above predictive proce-

dure 50 times52.

Permutation test

We first used parametric statistical analysis to obtain P

values in the LOOCV procedure. However, the number of

degrees of freedom are overestimated when LOOCV is

performed within a single data set1,46. A permutation test

is a commonly used statistical tool offering a simple way

to compute the sampling distribution for any test statistic

under the null hypothesis. We kept our WM functional

connectivity matrices unchanged and randomly shuffled

observed Gf scores 5000 times. The prediction procedure

was then performed on each shuffled data. A distribution

of the test statistic was obtained. The Ppermutation value

was calculated by dividing shuffled times by the number

that was greater or equal to the true prediction correla-

tion. All P values estimated by the permutation test were

under 0.05.

Because of nonoverlapping participants in the internal

and external validation group, we evaluated the P value

between the observed and predictive Gf scores using

parametric statistical analysis only1.

Predictive model for external validation

To construct a predictive model of Gf to apply to a

completely independent group, 326 participants at time 1

data were used to define consensus features53. Consensus

features were defined as features that were selected in

each LOOCV and were used to construct a predictive

model of Gf. Next, the strength in the feature positions for

each participant was computed in the external validation

group. After performing LOOCV, we computed the cor-

relations between observed and predicted Gf scores using

Pearson’s correlation to evaluate the power of the

predictive model.

Validation analysis of confounding factors

Validation analysis was performed to estimate the

influence of confounding factors on predictive power. To

better understand the variables in internal and external

validation groups, the relationships between observed Gf

scores and head motion, age, and sex were evaluated post-

hoc using Pearson’s correlation analyses. To validate the

specificity of the Gf predictive model, Pearson’s correla-

tion analyses were also performed between age and head

motion and predictive scores. In addition, the other

influences of confounding factors on functional con-

nectivity analysis was also considered in the Gf predictive

model, including partial correlation analysis (controlling

for age and sex), GM signals effect in data preprocessing,

and group-level WM mask.

Results

Internal validation I: prediction from WM functional

connectivity at time 1

We first verified that the observed Gf scores did not

correlate with head micromovements (mean FD) during

scanning (internal validation group, time 1: r(324)=

−0.051, P= 0.358; time 2: r(103)= 0.095, P= 0.468; time 3:

r(81)= 0.027, P= 0.812; external validation group: r(51)=

−0.028, P= 0.841) and age (internal validation group,

time 1: r(324)=−0.026, P= 0.635; time 2: r(103)= 0.126,

P= 0.200; time 3: r(81)= 0.315, P= 0.112; external vali-

dation group: r(51)= 0.025, P= 0.861) (Fig. S3). We also

confirmed no differences in the observed Gf scores

between females and males using two tailed t-tests

(internal validation group, time 1: t(324)= 1.337, P=

0.182; time 2: t(103)= 1.661, P= 0.100; time 3: t(81)=

1.004, P= 0.318; external validation group: t(51)= 1.124,

P= 0.266) (Fig. S4).

After performing the predictive model analyses, we

found that WM functional connectivity could be used as a

feature to predict individual Gf (r(324)= 0.238, P= 1.44 ×

10−5) (Fig. 2a). In addition, the Ppermutation was 0.004,

reliably suggesting the significant correlation. The power

of the predictive model was not affected by head motion,

as the features sensitive to head motion were excluded

and the predicted Gf scores were not correlated with

mean FD values (r(324)=−0.082, P= 0.141) (Fig. S5A). As

an observation of the predictive power of negative and

positive networks, we also performed the correlation

analysis between predicted and observed Gf values for the

positive-feature and negative-feature models. The

negative-feature model also generated significant
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prediction (r(324)= 0.160, Ppermutation= 0.009, Fig. 2b), and

the positive-feature model exhibited marginal prediction

(r(324)= 0.100, P= 0.071,, Fig. 2c). The predictions of

positive-feature and negative-feature models were not

significantly different (Steiger’s z value= 0.681, P= 0.516;

Steiger’s z value was obtained from https://www.

psychometrica.de/correlation.html), whereas the com-

bined negative and positive features (GLM model)

were more accurate than the prediction of the positive-

feature model (Steiger’s z value= 2.84, P= 0.004), and

marginally more accurate than the prediction of the

negative-feature model (Steiger’s z value= 1.38, P=

0.084), suggesting, to some extent, that the negative and

positive networks provided some complementary infor-

mation. Thus, the GLM model was applied to further

internal validations and external validation.

Furthermore, the correlation coefficient between

observed and predicted Gf scores was 0.204 ± 0.013

(mean ± SD) in k-fold cross-validation. The significant

correlation in the 20-fold cross-validation protocol indi-

cated the rigorous presence of WM functional con-

nectivity in an individual’s Gf abilities.

Internal validation II: prediction from WM functional

connectivity at time 2

We next demonstrated that the constructed predictive

model of Gf at time 1 data were generalized to time 2. To

this end, we selected the participants who participated

both in time 1 and time 2 scans (n= 105). We recon-

structed the predictive model of Gf described in the above

section “Internal validation I: prediction from WM func-

tional connectivity at time 1” at time 1 (n= 105). As

expected, models trained on 105 participants’ data also

significantly predicted Gf values at time 1 (r(103)= 0.385,

Ppermutation= 0.004) (Fig. 3a). To determine the general-

ization performance of the predictive model of Gf in the

same group, we constructed the WM functional con-

nectivity at time 2. We used the same procedure to pre-

dict an individual’s Gf scores as was done at time 1, except

that the test data was from the WM functional con-

nectivity matrix at time 2.

We demonstrated that the training model, based on

WM functional connectivity at time 1, predicted an

individual’s Gf scores from the WM connectivity matrix at

time 2. The significant correlation parameters between

the observed Gf scores and predicted Gf scores were

r(103)= 0.204, Ppermutation= 0.018 (Fig. 3b). Although the

correlation coefficient was numerically attenuated at time

2, the powers of the predictive model, from WM con-

nectivity matrices at time 1 and time 2, showed no dif-

ference (Steiger’s z value= 1.773, P= 0.077). These

results indicated, within WM functional connectivity, that

there was a basis for neural correlates of individual Gf

abilities and also suggested reliability of the overall model.

This effect also could not be explained by head motion, as

the predicted Gf scores from time 2 were not correlated

with mean FD values (r(103)=−0.009, P= 0.930) (Fig. S5B).

Internal validation III: prediction from WM functional

connectivity at time 3

To further explore whether the predictive model was

still stable after a longer fMRI scanning (~29 months

interval), we reconstructed the predictive model of Gf

based on 83 participants’ fMRI data at time 1 (time 1 ∩

time 3: n= 83). The strength of WM functional con-

nectivity also significantly predicted Gf values (r(81)=

Observed Gf value from time 1 data

r (324) = 0.238

Pperm = 0.004
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Fig. 2 Internal validation I: WM functional connectivity-based predictive models predicted an individual’s Gf abilities at time 1. Results from

a LOOCV comparing predicted and observed individuals’ Gf scores (n= 326). Scatter plots showed the predictions of the a GLM model (combined

the strength of negative and positive features), b negative-feature model, and c positive-feature model at feature selection of P < 0.01 thresholded.

Each dot represented each participant. The GLM model and negative-feature model showed significant predictions, and the positive-feature model

was in marginal prediction. The negative-feature and positive-feature may provide nonoverlapped information on predicting individuals’ Gf abilities.

WM white-matter, Gf general fluid intelligence, LOOCV leave-one-out cross-validation, GLM general linear model.
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0.363, Ppermutation= 0.012, Fig. 3c). This trained model

was applied to the WM connectivity matrix at time 3.

Significant correlations emerged between predicted and

observed Gf scores (r(81)= 0.217, Ppermutation= 0.020, Fig.

3d). Although the correlation coefficient between pre-

dicted and observed Gf values at time 3 was numerically

smaller than at time 1, the predictive power showed no

difference (Steiger’s z value= 1.163, P= 0.244). The pre-

dictions further indicated the reliable neuromarker of Gf

from WM functional connectivity. The power of this

predictive model was not affected by head motion, thus

excluding the head motion confounding factor (time 3:

r(81)=−0.019, P= 0.866) (Fig. S5C). In addition, we have

also constructed a full correlation matrix across times 1, 2,

and 3 for observed and predicted Gf scores. We also found

that the observed Gf score correlated with predicted Gf

scores in GLM (Table S2). Collectively, these results

suggested that although, to a certain degree, brain func-

tional connectivity patterns were metastable or unstable

during short or long-time development, the Gf predictive

model from WM functional connectivity was relatively

stable, and did not change across longitudinal scanning

times (time 1, time 2, and time 3).

External validation: prediction at an independent sample

from another center

In order to generalize the predictive model of Gf to a

completely independent data set, we entered positive and

negative values into the predictive model to predict

individual Gf scores. The observed Gf scores were mar-

ginally correlated with predicted Gf scores in the inde-

pendent sample group (r(51)= 0.276, P= 0.045, Fig. 4).

The correlation coefficient (r) was relatively small, but this

value was typically between 0.2 and 0.5, according to the

previous studies1,54. Prediction results will often have

lower within-sample effect sized than results generated

with simple correlation analysis1. Similarly, predicted Gf

scores were not correlated with mean FD values, ruling

out the head motion confounding factor (r(51)=−0.169,

P= 0.228, Fig. S5D).

Validations of the effects of confounding factors

To validate the specificity of the Gf predictive model, we

investigated the correlation between predicted Gf scores

and confounding factors. There were no significant cor-

relations between predicted Gf scores and age in internal

and external validation groups (time 1: r(324)=−0.008, P

r (103) = 0.385

Pperm = 0.004
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Li et al. Translational Psychiatry          (2020) 10:147 Page 7 of 12



= 0.884; time 2: r(103)= 0.086, P= 0.384; time 3: r(81)=

−0.086, P= 0.441; independent sample group:

r(51)=−0.116, P= 0.409) (Fig. S5E–H). Otherwise, we

performed partial correlation analyses controlling for age

and sex in the Gf predictive model1,46,54, which resulted in

significant correlations between observed and predicted

Gf scores at time 1 (r(324)= 0.211, P= 1 × 10−4, Fig. S6).

To further examine the GM signals effect on our results27,

we regressed out the global brain signals (including GM,

CSF, and WM signals) in the neuroimaging data pre-

processing and maintained all other processes. We

observed that the predicted Gf scores were also correlated

with the observed Gf scores (r(324)= 0.217, P < 1 × 10−4,

Fig. S7). Finally, we created a new WM mask across all

participants to validate the parcellation effect on our

results. We used time 1 data as the mask validation

sample, and found that the predictive power still remained

at time 1 data (r(324)= 0.207, P= 2 × 10−4, Fig. S8). The

two predictive models based on different masks showed

no difference on predictive power (Steiger’s z value=

0.581, P= 0.561). These results suggested that the Gf

predictive model based on WM functional connectivity

could identify relevant Gf attributes rather than other

confounding factors.

Functional locations of consensus features on WM

connectome

To illustrate the biological substrates underlying the

neural correlates of individual Gf and WM functional

connectivity, we described the most specific edges (i.e.,

consensus features) contributing to the predictive

model1,53. We first divided 128 nodes into 11 specific WM

networks (considered as mask) based on a previous study

on human WM functional networks (Fig. 5a). We then

examined the within- and between-WM functional

connectivity consensus features. Although these features

were generated from data-driven analyses that were not

dependent on prior acknowledge, the features exhibited

specific distributions, and were primarily located between

the superior longitudinal fasciculus and deep frontal WM

and ventral frontoparietal tracts; the number of connec-

tions is shown in Fig. 5b. The involvement of the superior

longitudinal fasciculus in WM functional networks sug-

gested that the connections did not provide structural

information but provided functional information corre-

sponding to Gf scores6,13.

Discussion

We showed that the supplementary neuromarker-WM

functional connectivity was both reliable and generalizable

to establish brain–behavior relationships. We demon-

strated that the WM functional profiles could be used as

features to predict the fundamental cognitive traits of

individuals’ Gf abilities. We used a cross-validation, data-

driven analysis to identify the connectivity strength of WM

functional networks in predicting Gf. This predictive

model was generalizable to predict individual Gf abilities in

the same group at the time of scanning (time 1),

11 months later (time 2), and 29 months later (time 3),

providing evidence for stable Gf features from WM

functional connectivity. To demonstrate more general-

ization and robustness of the predictive model, we used a

completely independent sample group as a test cohort.

The features that predicted individual Gf abilities at time 1

(n= 326 participants) also predicted Gf scores in an

independent sample. These results that the predictive

model from WM functional networks predicted an indi-

vidual’s Gf abilities in disparate groups and with difference

assessment scales, underscored the potential to investigate

the neuromarkers of cognitive trait from whole-brain WM

functional connectivity.

Our WM functional connectome-based predictive

model, which was generalized to a completely indepen-

dent cohort, provides a new insight into investigating

neuromarkers related to Gf abilities. It is noteworthy that

this predictive power accounts for ~7.62% of the

explained variance. According to previous protocols of

connectome-based predictive modeling1, this correlation

will typically be between 0.2 and 0.5; because, the pre-

dictive power will often have lower within-sample effect

sizes than results generated with simple correlation ana-

lysis. In addition, the cross independent data validation

could provide a more conservative estimate of the

strength of the brain–behavior relationship and is more

likely to generalize independent data1. The model showed

that human intelligence was unlikely supported by one

brain area or one system, but rather was related to several

cognitive components (such as the cognitive control

network)55. This powerful model was successfully applied
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to illustrate the relationships between functional con-

nectivity in GM and Gf scores11 and sustained attention46.

But these predictive models did not focus on WM func-

tional connectivity in part because of the longstanding

controversy regarding the functional role of WM BOLD-

fMRI signals.

The first debate relates to the way in which WM, relative

to GM, contains lower cerebral blood flow and volume.

Cerebral blood flow and volumes are the basis of the BOLD

signal in neural activity56–58. Another debate centers on

how BOLD signals recognize local field action potentials in

GM, but not in WM16,59. However, in comparison with

GM, and regardless of large discrepancies in respect to the

physiological factors observed between GM and WM, WM

maintains a higher ratio of glial cells to neurons60, and has

an approximately equal oxygen extraction fraction61. Many

studies identifying WM signals in resting-state fMRI have

been reported16,25,26,29, suggesting that there are no funda-

mental barriers or direct sources of evidence against the

possibility of detecting WM neural activities using BOLD-

fMRI16. Furthermore, our previous study has proven that

several confounding factors (i.e., CSF signals, global brain

signals, and physical distance) did not influence the small-

worldness property of WM functional networks27.
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frontoparietal tracts. The gray column in each node represented the degree of this node. b The differences in the number of edges in the WM
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In addition to showing that the WM connectivity-based

predictive model was able to predict Gf abilities, the

current results also suggested that the distributed net-

works relevant to Gf support partial classical P-FIT

characterizing human intelligence. P-FIT describes the

interactions of distributed networks in frontal and parietal

regions in order to predict the differences in an indivi-

dual’s Gf abilities13. The P-FIT model summarizes five

steps for information processing of Gf13. First, salient

information is mainly collected by auditory and visual

methods, thus, occipital and temporal regions are critical

to sensory information processing. Second, parietal

regions mainly in the supramarginal, angular, and super-

ior parietal gyrus extract perceptual information. Third,

the assumption of interactions between parietal and

frontal regions is used to test the hypotheses. Next, the

anterior cingulate cortex is used to select and inhibit

responses. Finally, the speedy and error-free information

processing from the parietal to frontal regions is depen-

dent on WM structures, such as the superior longitudinal

fasciculus6. Our results have added to the P-FIT model in

that functional information in the superior longitudinal

fasciculus system is a basis for neural correlates with Gf.

Other regions related to Gf mainly included the visual

superficial WM system; deep frontal WM (including the

cingulum); the ventral frontoparietal tracts; and the for-

ceps minor system29. Several of these WM functional

systems are correlated with GM networks, such as the

visual superficial WM system, which itself is highly cor-

related with visual GM networks. Our finding regarding a

direct relationship between these WM functional net-

works and Gf is in agreement with steps 1–4 in P-FIT

information processing. However, there were other WM

functional networks, including the sensorimotor and

ventral and dorsal attention GM networks, that showed

high correlation with Gf, which were not included in the

P-FIT model. Thus, our results demonstrated the

importance of whole-brain imaging to investigate an

individual’s Gf abilities.

The specific distributions of relevant edges associated

with Gf may indicated that BOLD-fMRI signals in WM

were nonartifactual and nonrandom noises. Otherwise,

the excluded possibility of observed WM functional

connectivity from random noise can be validated by the

fact that the predictive model is generalized to an inde-

pendent data set. In this study, we also applied several

methods to ensure that WM BOLD-fMRI signals were not

affected by GM signals, by strictly controlling the

boundary between WM and GM (i.e., we employed a 90%

threshold on the WM probability map); by separating

WM and GM functional images in preprocessing26,29; and

by identifying participants’ voxels only in WM to create

WM masks. Moreover, from the architecture of the brain

venous systems, the possibility that deoxygenated blood

was drained from cortical GM to deep WM was rather

small. In fact, there are two venous systems in normal

neuroanatomy: one is the superficial venous system,

which drains deoxygenated blood in GM and superficial

WM in the cortex into the pial veins; the other is deep

system draining deoxygenated blood in deep WM into the

subependymal veins19,62. The venous architecture does

not overlap in brain regions. Deoxygenated blood drai-

nage from GM cortex to the deep venous system through

the WM does exist, but the probability of draining is less

than 3%19,62. Collectively, these methods, and the brain

venous system architecture, ensured that BOLD-fMRI

signals analyzed herein were in fact from WM.

Although our findings provided a novel WM

connectivity-based predictive model to predict an indi-

vidual’s Gf abilities, several limitations in this study

remain. First, the sample in this study was comprised of

college students, limiting the application of WM func-

tional connectome-based predictive model for other

populations. Future studies should employ a wider

population base to investigate the relationship between

Gf and WM functional connectomes. Second, indivi-

duals’ Gf abilities were assessed by the CRT in this study.

Although the completely independent sample from

another center was assessed by WAIS-RC, given the

various types of psychometric tests for human intelli-

gence, future studies should further test the specificity

and generalization of the current predictive model using

a wide variety of intelligence measures to detect the

consensus neuromarker of intelligence in WM. Third,

the current work used WM functional connectivity as a

neuromarker, ignoring the causality connectivity (effec-

tive connectivity) among the brain regions. Future

effective connectivity studies on WM functions are

therefore needed. Finally, the physiological basis of

BOLD-fMRI signals in WM remains unknown. However,

a previous study suggested that the impact of artifacts

(such as physiological noise and head motion) in WM

activity is relatively small16,26. In this study, the possible

effects of artifacts were strictly controlled by exclusion of

excessive head motion, regression of CBF signals,

regression of global brain signals, and exclusive pre-

processing of WM. Future neurophysiological studies on

BOLD-fMRI signals in WM are needed to more accu-

rately interpret the current predictive model.

In conclusion, we demonstrated that functional con-

nectivity in WM was a neuromarker to predict an indi-

vidual’s Gf abilities and that the distributed networks

supported the P-FIT model. Beyond the current findings,

the predictive model from whole-brain functional con-

nectivity in WM can be used to investigate other cognitive

abilities and clinical symptoms in psychiatric diseases.
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