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Abstract

Although attention plays a ubiquitous role in perception and cognition, researchers lack a simple 

way to measure a person’s overall attentional abilities. Because behavioral measures are diverse 

and difficult to standardize, we pursued a neuromarker of an important aspect of attention, 

sustained attention, using functional magnetic resonance imaging. To this end, we identified 

functional brain networks whose strength during a sustained attention task predicted individual 

differences in performance. Models based on these networks generalized to previously unseen 

individuals, even predicting performance from resting-state connectivity alone. Furthermore, these 

same models predicted a clinical measure of attention—symptoms of attention deficit 

hyperactivity disorder—from resting-state connectivity in an independent sample of children and 

adolescents. These results demonstrate that whole-brain functional network strength provides a 

broadly applicable neuromarker of sustained attention.

Introduction

Attention is integral to cognition and perception, underlying performance on almost every 

task in daily life. However, despite—or maybe because of—attention’s pervasiveness, 
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attention research is increasingly specialized and fragmented, and investigators lack a 

simple, standardized way to summarize a person’s attentional abilities. Although reducing 

any complex mental process to a single measure risks oversimplification, summary indices 

are theoretically and practically valuable. For example, intelligence research and education 

practice depend heavily on the ability to measure gF, an index of fluid intelligence
1–3

, and 

working memory research relates numerous behaviors to a fundamental measure of 

capacity
4–6

. Comparable measures of attention have been elusive because behavioral tasks 

are diverse and not broadly standardized.

These challenges can be addressed with a brain-based measure of attention, which would 

summarize global attentional function and help researchers improve comparisons across 

individuals and track changes in attention longitudinally. As an initial step, we developed a 

neuromarker of sustained attention, or the ability to maintain focus and performance on a 

task at hand
7–9

. This neuromarker is based on intrinsic whole-brain functional connectivity, 

the degree to which brain activity in distinct neural regions is correlated over time. 

Synchronous fluctuations in the blood oxygenation level-dependent (BOLD) signal, 

measured with functional magnetic resonance imaging (fMRI), are thought to reflect 

functional connectivity in that they reveal regions engaging in common or related 

processing; these can be observed either during task performance or at rest, in the absence of 

an explicit task. Because sustained attention encompasses a variety of functions, including 

information selection, enhancement of selected information
10

, and inhibition of unselected 

information
7
, it is unsurprising that it involves a wide variety of brain regions, including the 

frontal and parietal cortices, thalamus, basal ganglia, ventral perceptual areas, and 

cerebellum
11–14

. Accordingly, whole-brain measures should provide a more holistic measure 

of attentional abilities than performance on a single task or activity in a single brain region. 

Practically, an attentional index based on whole-brain networks measured at rest is well-

suited to use in both research and clinical contexts given that resting-state data is relatively 

straightforward to collect and share across acquisition sites and language and cultural 

barriers.

Here, with a fully cross-validated, data-driven analysis, we demonstrate that the strength of 

functional brain networks predicts sustained attention in novel individuals. We first model 

the relationship between connectivity strength and task performance in a subset of 

individuals as they perform the gradual-onset continuous performance task (gradCPT), a test 

of sustained attention and inhibition, during fMRI
15–19

. We demonstrate that our network 

model derived from these data, which we call the Sustained Attention Network model 

(SAN), predicts the behavioral performance of new individuals from their task-based 

connectivity. The model also generalizes to the resting state, predicting novel individuals’ 

performance from connectivity observed during rest alone. As a final test of generalizability, 

we show that the SAN can also predict symptoms of attention deficit hyperactivity disorder 

(ADHD), which is characterized by deficits in sustained attention and inhibition
20

, in 

children and adolescents collected at an independent research site. These results suggest that 

whole-brain functional connectivity is a robust neuromarker of sustained attentional abilities.
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Results

Network definition

To test whether functional connectivity predicts attentional performance, we scanned 25 

individuals as they performed the gradCPT, a test of sustained attention and inhibition that 

produces a range of behavior across healthy participants
17,18

. Performance was assessed 

with sensitivity (d′). Given that head motion confounds analyses of functional connectivity, 

we confirmed that d′ was not correlated with average frame-to-frame motion during task 

performance (r = 0.005, p = 0.98; see online Methods for additional analyses ruling out 

motion confounds). We also collected resting-state data from each participant.

Network nodes were defined with a 268-node functional brain atlas designed to maximize 

the similarity of the voxel-wise timeseries within each node
21,22

. This atlas, which 

comprises nodes with more coherent timecourses than those defined by the automatic 

anatomic labeling atlas
22

, represents an improvement over anatomical parcellation schemes 

because anatomical boundaries do not necessarily match functional ones. Whole-brain 

coverage, including the cerebellum and brainstem, is another advantage of the current atlas. 

Although defining nodes based on a subset of regions of interest reduces the number of 

statistical comparisons and thus false positives, it may preclude discovery of informative 

connections and reduce the network’s overall predictive power. Importantly, the problem of 

false positives can be addressed with cross-validation.

For each participant, a timecourse was calculated for each node by averaging the BOLD 

signal of all of its constituent voxels at each time point during task performance. Pairwise 

Pearson correlation coefficients were computed between the timecourses of each possible 

pair of nodes and were Fisher-normalized. The resulting 268 × 268 symmetric correlation 

matrices represented the set of connections or edges in each participant’s task-based 

connectivity profile.

To assess the relevance of functional connections to behavior we performed the following 

analysis pipeline. First, robust regression between each edge in the connectivity matrices and 

d′ was performed across subjects. The resulting r-values were statistically thresholded at p < 

0.01 and separated into a positive tail (edges whose strength indexed higher d′ across 

subjects) and a negative tail (edges whose strength indexed lower d′ across subjects). Mean 

r-value was r = 0.59 in the positive tail and r = −0.58 in the negative tail. When networks 

were defined on all subjects, the positive tail comprised 1,496 edges and the negative tail, 

1,299 edges. Together these represent less than 8 percent of the brain’s 35,778 total edges as 

defined by this atlas.

A single summary statistic, network strength, was used to characterize each participant’s 

degree of connectivity in the positive and negative tails. Positive network strength was 

calculated by summing the edge strengths (Fisher-normalized r-values) from a participant’s 

connectivity matrix in the edges of the positive tail, and negative network strength was 

calculated by summing the r-values of the edges in the negative tail. Network strength 

correlated with d′ across subjects, validating its use as a summary statistic (positive network 

strength: r = 0.95, p = 1.30e−13; negative network strength: r = −0.97, p = 2.44e−15). In 
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graph-theoretic terms, this statistic is equivalent to a weighted degree measure for each the 

networks (positive and negative)
23

.

To confirm that d′ was more closely related to strength of the whole network than strength of 

individual edges, we compared the relationship between d′ and network strength to the 

relationship between d′ and every edge that appeared in the positive or negative tail across 

subjects. The correlation between d′ and positive network strength (r = 0.95) was 

numerically but not statistically higher than the strongest correlation between d′ and an 

individual edge in the positive tail (r = 0.92), Steiger’s z
24

 = 1.25, p = 0.2. It was, however, 

significantly higher than the second strongest d′-edge correlation in the positive tail (r = 

0.85), Steiger’s z = 3.29, p = 0.001. The correlation between d′ and negative network 

strength (r = −0.97) was more strongly negative than the strongest correlation between d′ 

and an individual edge in the negative tail (r = −0.82), Steiger’s z = 4.72, p = 2.39e−6. Thus, 

network strength as a whole better captures individual variability in d′ than any single edge.

Internal validation: Prediction from task connectivity

To determine if network strength predicted task performance in novel individuals, a leave-

one-out cross-validation procedure was employed. In each set of n–1 participants, predictive 

networks were defined and used to calculate positive and negative network strengths as 

described above. Networks ranged in size from 1,099 to 1,540 edges. Next, simple linear 

models were constructed relating network strength during task performance to d′ in these 

individuals. Finally, these models were used to predict the left-out individual’s d′ based on 

the strength of his or her positive and negative network during task performance. Pearson 

correlations between observed and predicted d′ scores were used to assess predictive power. 

All statistical tests were two-tailed.

Demonstrating that functional connectivity can be used to predict attentional performance in 

novel individuals, observed and predicted d′ values were significantly correlated (positive 

network: r = 0.86, p = 3.4e−8; negative network: r = 0.87, p = 1.6e−8; Fig. 1). A general 

linear model (GLM) constructed using strength in both networks also generated significant d

′ predictions (r = 0.84, p = 1.3e−7). However, GLM predictions were not more accurate than 

the positive (Steiger’s z = 0.51, p = 0.61) and negative (Steiger’s z = 1.78, p = 0.08) 

networks’ predictions, suggesting that these two tails provide some degree of redundant 

information. Positive and negative networks did not differ in their predictive power 

(Steiger’s z = 0.45, p = 0.65).

Internal validation: Prediction from rest connectivity

We next demonstrate that predictive networks generalize to resting-state data from novel 

individuals. To this end, we used the positive and negative network models described in the 

section labeled above as Internal validation: Prediction from task connectivity. However, 

these models are now applied to data collected at rest to predict the left-out individual’s d′; 

in other words, the summary statistic of network strength is calculated based on the left-out 

individual’s resting-state connectivity matrix rather than their task-based matrix.

Models trained on task data significantly predicted a previously unseen individual’s task 

performance based on his or her resting-state data (correlation between predicted and 
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observed d′ values, positive network: positive network: r = 0.49, p = 0.014; negative 

network: r = 0.49, p = 0.012; GLM: r = 0.43, p = 0.031; Fig. 1). The positive and negative 

network models and the GLM did not differ in their predictive power (Steiger’s |z| values < 

1.30, p values > 0.19). Although network models did not predict d’ scores from resting-state 

connectivity as well as they did from task-based connectivity (Steiger’s z values > 3.34, p 

values < 0.0009), significant predictions from rest data suggest that attentional abilities are 

reflected in intrinsic connectivity. This effect cannot be explained by head motion, as 

average frame-to-frame motion during resting runs was not correlated with d′ (r = −0.17, p = 

0.42).

External validation: ADHD symptom prediction

As an even stronger test of generalizability, we applied these gradCPT network models to a 

completely independent validation dataset consisting of resting-state fMRI scans from 113 

children and adolescents (age range 8 to 16) with and without ADHD diagnoses. These data 

were collected at Peking University and provided by the ADHD-200 Consortium
25

. In this 

dataset, attentional ability was assessed using the ADHD Rating Scale IV
26

 (ADHD-RS), a 

clinical measure of ADHD on which a higher score indicates more frequent symptoms 

and/or a more severe attention deficit. In order to generalize our network model to this new 

dataset, we defined a high-attention network as the set of edges that appeared in the positive 

network of every iteration of the leave-one-out cross-validation described above in the 

section titled Internal validation: Prediction from task connectivity. A low-attention network 

was defined in an analogous way with edges whose strength was inversely correlated with d′ 

(Fig. 2). The high-attention network comprised 757 edges, and the low-attention network, 

630 edges. In the full gradCPT sample, we constructed linear models relating high- and low-

attention network strength (Sustained Attention Network, or SAN, models) to d′.

We then calculated the strength of the high- and low-attention networks during rest in each 

of the 113 individuals in the Peking University dataset, and submitted these strengths to the 

SAN models to make predictions about their attentional abilities. The high-attention network 

model inversely predicted ADHD-RS score (r = −0.30, p = 0.001; Fig. 3), indicating that 

individuals with more connectivity in the high-attention network showed less severe 

symptoms of an attention deficit. The low-attention network model also negatively predicted 

ADHD-RS score (r = −0.34, p = 2.2e−4), such that individuals with more connectivity in the 

low-attention network showed higher symptom severity. Predictions of a GLM defined in the 

gradCPT dataset were also significantly correlated with ADHD-RS scores (r = −0.34, p = 

2.2e−4). Note that model predictions are inversely correlated with ADHD-RS scores because 

they were trained to predict d′; thus, higher predictions correspond to better attentional 

abilities and lower ADHD-RS scores. There was no correlation between average frame-to-

frame head motion and observed ADHD-RS score (r = 0.03, p = 0.78), ruling out this 

potential confound.

To further confirm that SAN model predictions were specific to attentional abilities, we 

examined the relationship between predicted ADHD-RS scores and age and IQ, as measured 

by the Wechsler Intelligence Scale for Chinese Children-Revised
27

. After controlling for age 

and IQ, SAN model predictions remained significantly correlated with ADHD-RS score. 
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However, predictions were not correlated with age or IQ after controlling for the other two 

measures (Table 1). Thus, the model is capturing variance in functional connectivity that is 

closely related to attention rather than general cognitive ability.

Demonstrating that results were not driven by individual differences in general arousal, SAN 

model predictions were also anticorrelated with scores on the hyperactivity-impulsivity 

subscale of the ADHD Rating Scale-IV (positive: r = −0.26, p = 0.006; negative: r = −0.32, p 

= 5.75e−4; GLM: r = −0.32, p = 4.96e−4). That is, if the SAN model were predicting high 

arousal rather than vigilant attention, it is likely that predictions would correlate positively 

with hyperactivity scores. Instead, models predicted that hyperactive individuals had worse 

attention, suggesting that the results are not driven by individual differences in arousal.

With this further validation of the SAN model, we demonstrate that predictive networks not 

only generalize across cognitive states (task vs. rest), they also generalize across data 

acquisition site (New Haven vs. Beijing), age group (adults vs. children and adolescents), 

and—critically, given that we are pursuing a generalizable measure of sustained attention—

behavioral measures of attention (gradCPT d′ vs. ADHD symptom scores).

Functional anatomy of attention networks

The high- and low-attention networks spanned numerous cortical, subcortical, and cerebellar 

nodes. To facilitate characterization of the biological substrates underlying these two 

networks, we summarized connectivity patterns in two ways. First, we grouped the 268 

nodes into macroscale brain regions that were anatomically defined (e.g., cortical lobes) and 

examined relative numbers of connections between each pair of regions in each network. 

Second, we grouped nodes into eight canonical networks similar to those previously 

reported in resting-state literature (e.g., default mode); these networks were defined 

functionally using the same data used to create the original parcellation
28

. We then examined 

relative levels of within- and between-network connectivity represented in the high- and 

low-attention networks. Despite the complexity of the high- and low-attention networks that 

emerged from our data-driven model construction (see Fig. 2A), several anatomical trends 

emerged to distinguish them.

In the first analysis, we found that connections between motor cortex, occipital lobes, and 

the cerebellum were primarily predictors of better sustained attention, whereas connections 

between temporal and parietal regions, as well as intratemporal and intracerebellar 

connections, predicted worse attention across subjects (Fig. 2B). The involvement of the 

cerebellum in both networks provides evidence for a significant role of the cerebellum in 

attention and cognition
29,30

. In addition, although these findings may be unexpected given 

the traditional view of ADHD as primarily involving executive control regions and networks, 

recent work has emphasized the involvement of a variety of brain regions, including motor, 

occipital and parietal cortex and the cerebellum, in the disorder
31

.

In the second analysis based on canonical functional networks, connections within the 

subcortical-cerebellum network, and connections between the subcortical-cerebellum 

network and the frontoparietal network appeared more frequently in the low- than the high-

attention network (Fig. 2C). Connections between the subcortical-cerebellum network and 
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the medial frontal, motor, visual I, and visual association networks, on the other hand, 

appeared more frequently in the high-attention network (Fig. 2C). The involvement of the 

subcortical-cerebellum and medial frontal networks in the high-attention network mirrors 

observations of frontal-striatal-cerebellar circuit dysfunction in ADHD
32

, and suggests that 

the connections that are disrupted in ADHD also characterize healthy individuals with poor 

attentional abilities.

To assess the importance of individual canonical networks to the SAN models, we 

computationally “lesioned” the high- and low-attention networks to exclude edges from 

each. That is, in an iterative analysis, we masked connectivity matrices to exclude edges that 

appeared in one of the eight canonical networks included in Fig. 2C. We then defined 

network models and predicted attention as described in the manuscript. For example, after 

excluding edges in the subcortical-cerebellum network, which contained 90 nodes, we 

submitted 178 × 178 matrices rather than 268 × 268 matrices to our analysis pipeline. We 

found that, in all cases, models missing one of the eight functional networks were still able 

to predict sustained attention from gradCPT and ADHD data (Supplementary Table 1).

Predictions of a lesioned matrix were significantly worse than predictions of the whole-brain 

matrix in only one case: when models were trained on a matrix that excluded the 

frontoparietal network and tested on gradCPT rest data (Steiger’s z = 2.11, p = 0.04), 

although this did not survive Bonferroni correction for 24 comparisons. There was a trend 

such that ADHD predictions were worse when models were trained on matrices that 

excluded the default mode network (Steiger’s z = 1.85, p = 0.06). When models were trained 

on matrices that excluded the visual I network, predictions from gradCPT task data were 

more successful than those made by the whole brain (Steiger’s z = 2.63, p = 0.01), but again 

this did not survive Bonferroni correction. These results further emphasize the fact that 

models do not rely on strength in a single canonical network, but rather incorporate 

attention-relevant information from hundreds of diverse within- and between-network 

connections across the brain.

In addition to these analyses, we measured the importance of individual nodes by ranking 

them according to their sum of connections in the high- and low-attention networks; the 

most important nodes are presented in Supplementary Table 2. All of the top 10 most highly 

connected nodes were located in the cerebellum, temporal or occipital cortices, underscoring 

the importance of these regions for attentional function. Crucially, though, for most of these 

nodes the difference between the high- and low-attention networks was not in their overall 

degree of connectivity, but rather in their specific functional partners (note in Supplementary 

Table 2 that most of the top nodes had similar numbers of connections in both the high- and 

low-attention networks). This finding cautions against oversimplifying predictive networks 

to a handful of regions, instead emphasizing the need to consider specific pairwise 

connections across the entire brain to best characterize individuals’ attentional ability.

ADHD and SAN network overlap

To identify edges that consistently predicted attentional function across datasets, we defined 

high- and low-ADHD networks in the full Peking University sample. These networks were 

constructed using the analysis pipeline described in the Network definition section above, 
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except that ADHD-RS score was used as the measure of attention instead of gradCPT d′. In 

addition, 236 nodes of the original 268 were used due to a lack of whole-brain coverage in 

some individuals (see online Methods for more information). Strength in the resulting high-

ADHD network, containing 595 edges, was correlated with more severe symptoms scores (r 

= 0.75, p = 2.04e−21); and strength in the low-ADHD network, 477 edges, was correlated 

with less severe symptoms (r = −0.76, p = 1.20e−22). Note that this analysis is not cross-

validated within the Peking University sample; rather, it validates network strength as a 

summary statistic in this dataset. Demonstrating that ADHD networks generalize to unseen 

subjects, models based on strength in the high- and low-ADHD networks during task and at 

rest predicted d′ in the gradCPT sample (Fig. 4); this is the reverse of the analysis described 

in the External validation: ADHD symptom prediction section above, indicating that this 

method achieves significant predictive power even after exchanging the roles of training and 

testing datasets.

Networks predicting better or worse sustained attention in both datasets had more common 

edges than those predicting opposite patterns of attentional function. While the high-

attention network and the low-ADHD had 31 edges in common (edges in bold, Fig. 2A), the 

high-attention and high-ADHD networks had only two. In addition, the low-attention and 

high-ADHD networks shared 36 edges, while the low-attention and low-ADHD shared 

none. In a permutation test in which we compared 100 randomly generated positive and 

negative gradCPT and ADHD networks, overlap did not exceed 10 edges in any case (mean 

number of overlapping edges = 0.21, standard deviation = 0.53). Thus, the p-value 

associated with 31 and 36 common edges is 1/10,001 (see Network overlap in the online 

Methods for details).

BOLD variance does not predict attention

An important strength of SAN models is that they predict sustained attentional abilities from 

resting-state data. The use of resting-state data motivated us to use functional connectivity 

rather than overall activity as a predictor because connectivity can be calculated from data 

acquired at rest, while overall activity cannot (because there is no absolute measure of 

activity in resting runs).

To address whether a measure other than connectivity predicted attentional abilities, we 

tested models defined on BOLD variance. BOLD variance, a measure of the variability in 

the BOLD signal that can be calculated from resting-state data, is likely influenced by both 

metabolic function and anatomic factors such as partial volume effects introduced by the 

gray/white-matter segmentation and/or differing numbers of gray-matter voxels per node due 

to underlying variation in regional tissue volumes and gyral folding patterns.

BOLD variance models were defined in the same way as functional connectivity models, 

except that features consisted of 1 × 268 vectors of BOLD variance (one value per node) 

rather than 268 × 268 matrices of functional connections. In a cross-validated analysis 

analogous to that used to generate SAN models, BOLD variance models were defined on 

gradCPT task data and used to make predictions from gradCPT task, gradCPT rest, and 

ADHD data (see online Methods for details). Demonstrating that functional connectivity is a 
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better predictor of attention than BOLD variance, these models did not successfully predict 

sustained attentional abilities (Supplementary Table 3).

Discussion

In a group of adults performing a sustained attention task, we identified functional brain 

networks whose strength predicted individual differences in task success. These whole-brain 

network models predicted novel individuals’ task performance from resting-state data alone, 

providing evidence for meaningful attention-related signal in patterns of intrinsic 

connectivity. Demonstrating that models are robust and generalizable, networks defined on 

sustained-attention task data predicted a clinical measure of ADHD in children and 

adolescents from a completely independent sample. That is, connections that predicted better 

task performance in the Yale dataset predicted less severe ADHD symptoms in the Peking 

University dataset, and connections that predicted worse performance predicted more severe 

ADHD symptoms. This result—that complex brain network models predict different 

measures of attention in disparate populations—demonstrates that functional brain networks 

can serve as a holistic neural index of sustained attention.

The current models, which generalize across two datasets and two measures of sustained 

attention, make significant progress towards identifying a neuromarker of sustained 

attention. However, they do not imply that sustained attention is a unitary process. Rather, 

the overall sustained attention factor measured here likely recruits many cognitive and 

attentional processes (such as inhibition), which are captured by the data-driven functional 

connectivity analyses. Future behavioral work with a wider range of tasks is needed to 

determine whether a single attention factor is feasible
33

, such as g in intelligence research.

The current result also suggests that models based on functional brain networks are 

powerful, generalizable predictors of cognitive abilities. Although previous studies have 

demonstrated that pre-task functional connectivity is correlated with perceptual task 

performance
34

, and that resting-state functional connectivity predicts fluid intelligence 

within a single data set
28,35

, we are not aware of any study to date that has demonstrated the 

use of functional network models for successful across-dataset prediction of a cognitive 

ability.

The proposed neuromarker of sustained attention, the Sustained Attention Network (SAN) 

model, complements existing work on individual differences in attention and offers several 

advantages. Importantly, SAN models are predictive rather than descriptive in nature and 

thus contribute to one of the primary goals of human neuroimaging: to identify 

neuromarkers that can predict a person’s educational or health outcomes
36,37

. Here, 

predictions can be made from resting-state data collected over a short period of time (in the 

ADHD sample, only eight minutes), which facilitates data sharing and further tests of 

generalizability. The use of resting-state data is especially advantageous in populations that 

have difficulty performing tasks, and allows an unbiased way for researchers and clinicians 

to track and compare attentional function longitudinally across development or training, 

unconfounded by changes in task performance.
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In addition to demonstrating that functional connectivity is a powerful predictor of 

attentional abilities, our results support recent characterizations of sustained attention as 

emerging from coordinated activity across wide swaths of cortex as well as subcortical 

regions and the cerebellum
14,38,39

, and demonstrate that attentional mechanisms extend 

beyond traditional attention regions and networks. For example, although nodes in prefrontal 

and parietal cortex, which are implicated in numerous tasks requiring the deployment and 

maintenance of attention
7,12,39

, factored into the predictive network models, only 27% of 

edges in the high-attention and 34% of edges in the low-attention network involved nodes in 

these regions. Instead, the current results highlight the importance of data-driven analyses 

that do not constrain features to a priori nodes or edges of interest
40

.

The fact that network models defined in healthy adults from the Yale-New Haven 

community predicted ADHD symptoms in children and adolescents from Beijing suggests 

meaningful overlap between the neural mechanisms important for sustained attention and 

the neural dysfunction that leads to an ADHD diagnosis. Although valuable research has 

identified differences in functional connectivity between individuals with ADHD and 

controls in frontal, parietal, temporal, and occipital cortices as well as in the cerebellum and 

striatum
41–48

, these comparisons do not address whether the connections that go awry in 

ADHD are disrupted, to a lesser degree, in individuals with subclinical attention problems. 

The current findings suggest that it may be useful to consider ADHD as a continuum of 

neural and behavioral dysfunction rather than an all-or-nothing disorder.

Our findings compel a large research program to further validate the proposed Sustained 

Attention Network model across different attentional operations and tasks. The model 

presented here is a highly promising starting point, given that it generalizes across 

acquisition sites and participant populations, relies on a version of the widely used 

continuous performance task
15–18

 and predicts task performance and clinical measures of 

ADHD. However, while these two measures are both related to attentional abilities, they do 

not capture the exact same construct, and this is likely why there is significant but not total 

overlap between edges in the models trained on the two datasets. Stronger claims about the 

specificity and generalizability of the current model will depend on future work in which 

models are trained and tested on data from a wide variety of attention tasks; the use of neural 

data in addition to behavioral measures may even help separate and cluster the many 

cognitive processes involved in attention. The sharing of resting-state data coupled with 

behavioral attention task data in public databases such as ADHD-200 will facilitate these 

efforts. To improve model generalizability and predictive power, researchers can collaborate 

to identify edges that most consistently predict attention (or another trait or cognitive 

ability). The analysis pipeline described here can be applied to any dataset that includes 

fMRI data—ideally, at least some of which is acquired at rest—and a measure of attention, 

and labs can share the resulting predictive networks. Defining a neuromarker of attention 

based on edges that appear commonly across tasks may reduce the risk of overfitting and 

improve generalizability.

In sum, we demonstrate that intrinsic brain connectivity is a powerful predictor of sustained 

attention. Beyond this finding, the current whole-brain, data-driven functional connectivity 
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approach can be useful in predicting a wide range of other cognitive abilities and clinical 

symptoms.

online Methods

gradCPT dataset

Participants—Thirty-one individuals from Yale University and the surrounding 

community performed a sustained attention task, the gradCPT
17,18

, during fMRI data 

acquisition. Six were excluded for excessive head motion, defined a priori as > 2 mm 

translation or > 3 degrees rotation, in all runs or for a lack of whole-brain coverage, leaving 

25 for analysis (13 females, ages 18–32 years, mean age = 22.7 years). All were right 

handed and had normal or corrected-to-normal vision. Participants gave written informed 

consent in accordance with the Yale University Human Subjects Committee and were paid 

for their participation.

A post-hoc power analysis revealed that the statistical power of the gradCPT task analysis 

(train on n–1 participants’ task matrices and test on the left-out participant’s task matrix) 

was greater than 0.99. The power of the gradCPT rest analysis (train on n–1 participants’ 

task matrices and test on the left-out participant’s rest matrix) was greater than 0.62.

Paradigm and stimuli—Participants performed the gradCPT
17,18

 during fMRI scanning. 

Stimuli were grayscale images of city and mountain scenes with a diameter of 256 pixels. 

Presented at the center of the screen, they subtended a diameter of approximately 7° of 

visual angle.

On each trial, an image gradually transitioned from one to the next using linear pixel-by-

pixel interpolation. Each transition took 800 ms. For 800 ms the current scene transitioned 

from the previous scene and for the next 800 ms it transitioned to the next. Participants were 

instructed to respond via button press to city scenes, which occurred randomly 90% of the 

time, and to withhold response to mountains. Accuracy was emphasized without reference to 

speed.

Task runs consisted of four 3-min blocks of the gradCPT interleaved with three 30-sec 

blocks of rest (breaks). Breaks were indicated with a fixation circle in the center of the 

screen. To warn participants of the upcoming task, a dot replaced the circle for 2 seconds at 

the end of each break. Eight seconds of fixation, excluded from analyses, were included at 

the start of each run. During breaks and resting-state runs, participants were instructed to 

attend to the fixation circle in the center of the screen.

Procedure—Following acquisition of an anatomical magnetization prepared rapid gradient 

echo (MPRAGE), a 6 min resting scan and three 13:44 min runs of the gradCPT were 

collected. An additional 6 min resting scan was collected after task runs.

Behavioral analysis—Sensitivity (d′) was used to measure task performance. For each 

task block, d′ was calculated as z(hit rate)–z(false alarm rate) (in Matlab, norminv(hit rate)–

Rosenberg et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2016 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



norminv(false alarm rate)). For each participant, overall d′ values were calculated by 

averaging d′ across blocks.

Because stimuli were constantly in transition, an iterative algorithm was used to assign key 

presses to individual trials and determine accuracy
17,18

. First, the algorithm assigned 

unambiguous key presses. Unambiguous presses to image n were those that occurred after 

image n was 80% cohered and before image n + 1 was 40% cohered. Next, any ambiguous 

presses were assigned to an adjacent trial if one of the two had no response, or to the closest 

trial if both had no response (unless one was a mountain, in which case participants were 

given the benefit of the doubt that they had correctly withheld a response). If multiple 

presses could be assigned to a trial, the fastest response was selected. Slight variations to this 

algorithm yielded highly similar results.

D′ reliability was calculated with a Spearman-Brown-corrected split-half correlation 

comparing average performance of odd-numbered task blocks to average performance of 

even-numbered task blocks. D′ reliability was 0.975, which is considered excellent.

Imaging parameters and preprocessing—FMRI data were collected at the Yale 

Magnetic Resonance Research Center on a 3T Siemens Trio TIM system equipped with a 

32-channel head coil. Functional runs included 824 (task) or 363 (rest) whole-brain volumes 

acquired using a multiband echo-planar imaging (EPI) sequence with the following 

parameters: repetition time (TR) = 1000 ms, echo time (TE) = 30 ms, flip angle = 62°, 

acquisition matrix = 84 × 84, in-plane resolution = 2.5 mm2, 51 axial-oblique slices parallel 

to the ac-pc line, slice thickness = 2.5, multiband 3, acceleration factor = 2. MPRAGE 

parameters were as follows: TR = 2530 ms, TE = 3.32, flip angle = 7°, acquisition matrix = 

256 × 256, in-plane resolution = 1.0 mm2, slice thickness = 1.0 mm, 176 sagittal slices. A 

2D T1-weighted image with the same slice prescription as the EPI images was also collected 

for purposes of registration.

Data were analyzed using BioImage Suite
49

 and custom scripts in Matlab (Mathworks). 

Motion correction was performed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/

spm8/). Linear and quadratic drift, mean signal from cerebrospinal fluid, white matter, and 

gray matter and a 24-parameter motion model (6 motion parameters, 6 temporal derivatives, 

and their squares) were also regressed from the data. Finally, data were temporally smoothed 

with a zero mean unit variance Gaussian filter.

Due to excessive head motion, defined a priori as > 2 mm translation or > 3 degrees rotation 

during a single run, one task run from each of five participants was excluded from analysis, 

and one resting run was excluded from each of two. Head motion, calculated as mean frame-

to-frame displacement, did not correlate with d′ in any of the three task runs (first: r = 0.08, 

p = 0.71; second: r = −0.10, p = 0.62; third: r = −0.10, p = 0.65). Average d′ across the three 

task runs was not significantly correlated with average head motion during task runs (r = 

0.005, p = 0.98) or rest runs (r = −0.17, p = 0.42).

Additional motion controls—As an additional control for motion, we confirmed that 

predictions of the leave-one-subject-out models described in the Internal validation: 
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Prediction from task connectivity section of the main text did not correlate with mean frame-

to-frame head motion. In other words, having established that observed performance was not 

correlated with head motion, we also verified that predicted performance was not correlated 

with head motion. Indeed, predictions based on gradCPT subjects’ task data were 

uncorrelated with motion during task (positive network: r = 0.03; p = 0.88; negative 

network: r = 0.04, p = 0.84; GLM: r = 0.05, p = 0.80), and predictions based on gradCPT 

subjects’ resting-state data were uncorrelated with motion during rest (positive network: r = 

−0.05; p = 0.80; negative network: r = 0.06, p = 0.77; GLM: r = 0.12, p = 0.58).

We were also unable to predict motion with network models explicitly trained on this 

variable. That is, “motion prediction models” were defined identically to those described in 

the Internal validation: Prediction from task connectivity section of the main text, except 

with average frame-to-frame head motion in place of d′. Predictions of these “motion 

models” based on gradCPT subjects’ task data were not significantly correlated with motion 

during task (positive network: r = −0.25; p = 0.22; negative network: r = −0.07, p = 0.72; 

GLM: r = −0.18, p = 0.40), and predictions based on gradCPT subjects’ resting-state data 

were uncorrelated with motion during rest (positive network: r = 0.07; p = 0.73; negative 

network: r = −0.28, p = 0.18; GLM: r = −0.10, p = 0.65). Thus, despite the fact that head 

motion can pose a confound for functional connectivity analyses of fMRI data, the success 

of the SAN model appears to be unconfounded by artifacts related to head motion.

Network construction—Network nodes were defined using a groupwise graph-theory-

based parcellation algorithm that maximized the similarity of the timeseries of the voxels 

within each node
21,22

. To obtain the 268-node atlas used in the current study, the 

parcellation algorithm was applied to resting-state data from an independent sample of 45 

healthy adults scanned at the Yale Magnetic Resonance Research Center.

The 268-node atlas was warped from MNI space into single-subject space via concatenation 

of a series of linear and non-linear registrations between the functional images, 2D and 3D 

anatomical scans, and the MNI brain. All transformation pairs were calculated 

independently, combined into a single transform, and inverted, warping the functional atlas 

into single participant space. This single transformation reduces interpolation error because 

the functional atlas is warped to an individual with only one transformation. All 

transformations were estimated using the intensity-based registration algorithms in 

BioImage Suite.

For each participant, task matrices were calculated using data concatenated across task runs, 

excluding data collected during the intervening rest breaks (as well as the 6 seconds 

following them to account for hemodynamic delay). Rest matrices were calculated using 

data concatenated across rest runs.

ADHD-200 dataset

Participants—Data were provided by the ADHD-200 Consortium
25

, a publically available 

dataset of resting-state fMRI data of children with and without ADHD from eight sites 

across the globe. The current study includes data from the Peking University site, which had 

a large number of subjects with relatively low head motion. The Research Ethics Review 
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Board of Institute of Mental Health, Peking University, approved data collection; informed 

consent was obtained from each participant’s parent, and all children agreed to participate in 

the study. Detailed descriptions of inclusion criteria and imaging parameters and procedures 

are available online at fcon_1000.projects.nitrc.org/indi/adhd200.

ADHD diagnosis was established with the Schedule of Affective Disorders and 

Schizophrenia for Children—Present and Lifetime Version (K-SADS-PL)
50

, and the ADHD 

Rating Scale IV (ADHD-RS)
26

 was used to obtain dimensional measures of ADHD 

symptoms. The ADHD-RS is composed of 18 questions, nine of which assess inattention, or 

how children attend to tasks or play activities, such as the degree to which a child “fails to 

give close attention to details” or is “easily distracted by extraneous stimuli.” The remaining 

nine assess hyperactivity and impulsivity levels, such as the degree to which a child “fidgets 

with hands or feet or squirms in seat” or “interrupts or intrudes on others.” Questions are 

rated on a 4-point Likert scale (0 = rarely or never, 3 = always or very often); higher scores 

represent more severe and/or more frequent symptoms. Overall ADHD score is calculated as 

the sum of all responses. Raw scores are converted to percentiles based on each child’s age 

and gender. IQ was assessed with Wechsler Intelligence Scale for Chinese Children-Revised.

The original Peking University dataset consisted of one 8-min run of resting state data 

collected from 245 subjects (102 patients with an ADHD diagnosis and 143 typically 

developing controls; 71 females; mean age = 11.7 years; mean ADHD-RS score = 38.3). 

Data were concatenated across three datasets with slightly different scanning parameters. 

Subjects were excluded for missing ADHD-RS scores (23 subjects), missing fMRI data in 

one or more nodes of a 236-node functional atlas (see Network Construction below for more 

details; 7 subjects), or quality control flags provided by the acquisition site (3 subjects). In 

the remaining 212 subjects, mean frame-to-frame head displacement was correlated with 

ADHD-RS score, r = 0.22, p = 0.001. To eliminate this relationship, we incrementally 

lowered a motion threshold before performing prediction analyses. A threshold of 0.06 mm 

was selected to minimize the correlation between motion and ADHD-RS score, so 99 

subjects with mean frame-to-frame displacement >0.06 mm were excluded from further 

analysis.

The final set of subjects consisted of 113 individuals (38 patients; 35 females; mean age = 

11.8 years; range = 8–16 years; mean ADHD-RS score = 35.5). Of these patients, 25 were 

medication-naïve; the others’ psychostimulant medication was withheld starting at least 48 

hours before scanning. All 75 typically developing controls were medication-naïve. There 

were no correlations between mean frame-to-frame displacement or age and ADHD-RS 

score (motion and ADHD-RS score: r = 0.03, p = 0.78; age and ADHD-RS score: r = −0.06, 

p = 0.56). In the 112 subjects for whom an IQ score was provided, IQ was inversely related 

to ADHD-RS (r = −0.27, p = 0.004) and age (r = −0.17, p = 0.07).

Note that individuals in the ADHD-200 dataset were not randomly assigned to groups, but 

were labeled as “patients” (individuals with ADHD) or “controls” (individuals without 

ADHD). The information available at http://fcon_1000.projects.nitrc.org/indi/adhd200/ does 

not specify whether investigators involved in data collection knew each individual’s 
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diagnostic status, but these investigators were not involved in assessing the outcome of the 

current experiment.

Image preprocessing—Images were slice-time and motion corrected using SPM5 

(http://www.fil.ion.ucl.ac.uk) and then iteratively smoothed until the smoothness for any 

image had a full width half maximum of approximately 6 mm
51

. This iterative smoothing 

process minimizes motion confounds associated with resting-state fMRI
52

. All further 

analyses were performed using BioImage Suite
49

 unless otherwise specified. Several 

covariates of no interest were regressed from the data including linear and quadratic drift, six 

rigid-body motion parameters, mean cerebral-spinal fluid signal, mean white matter signal, 

and mean global signal. Finally, the data were temporally smoothed with a zero mean unit 

variance Gaussian filter (cutoff frequency = 0.12 Hz).

Network construction—Network nodes were defined using a subset of nodes of the 268-

node functional brain atlas used for the gradCPT network analysis
22

. As some scans did not 

include full cortex and cerebellum coverage, nodes missing in at least three subjects were 

removed. This process resulted in the removal of 32 nodes mainly in the inferior portions of 

the cerebellum, brainstem, temporal poles and orbital frontal cortex (Supplementary Fig. 1). 

All other steps taken to construct resting-state networks were identical to those described in 

the gradCPT dataset’s Network construction section above.

Of the 757 edges in the high-attention network, 115 (15.46%) involved nodes that were 

missing in the ADHD atlas. Of the 630 edges in the low-attention network, 128 (20.32%) 

involved nodes that were missing in the ADHD atlas. When nodes were sorted by the 

number of connections they had in the high- and low-attention networks (Supplementary 

Table 2), none of the top ten were missing in the ADHD atlas. Missing edges (importantly, 

these were same in all the ADHD-200 subjects analyzed here) were excluded from network 

strength calculations.

Network overlap

To determine the number of edges that would overlap across datasets by chance, we 

compared random gradCPT and ADHD networks. First, we shuffled d′ values and defined a 

positive and negative network exactly as described in the manuscript. That is, for every set of 

n–1 gradCPT subjects, we selected edges whose strength during task performance correlated 

with shuffled d′ values at p < 0.01. The positive network was defined as edges whose 

strength was positively related to d′ in each of these 25 iterations, and the negative network 

was defined as edges whose strength was inversely related to d′ in each of these iterations. 

By definition, positive and negative networks were mutually exclusive. We repeated this 

procedure 100 times, resulting in 100 positive networks (mean number of edges = 52.22, 

standard deviation = 22.60) and 100 random negative networks (M = 56.59, SD = 25.54).

We also shuffled ADHD-RS scores 100 times and defined 100 random positive and negative 

networks using ADHD data. As in the manuscript, positive and negative ADHD networks 

were defined on all 113 subjects rather than on the overlap of leave-one-out networks. 

Positive ADHD networks contained, on average, 133.54 edges (SD = 42.18); negative 

ADHD networks contained 136.11 edges on average (SD = 43.93).

Rosenberg et al. Page 15

Nat Neurosci. Author manuscript; available in PMC 2016 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fil.ion.ucl.ac.uk


To get overlap statistics, we calculated the number of overlapping edges between every 

random gradCPT network and every random ADHD network (10,000 comparisons in each 

of the four possible pairs in the 2 × 2 design with tail and dataset as factors). Overlap did not 

exceed 10 edges in any case (M = 0.21 edges, SD = 0.53 edges). Thus, the p-value 

associated with obtaining 31 and 36 common edges is 1/10,001.

BOLD variance

To address whether a measure other than functional connectivity predicted attentional 

abilities in the gradCPT and ADHD datasets, we trained and tested models on BOLD 

variance, a measure of the variability of the BOLD signal in each node that can be calculated 

from resting-state data. To this end, we first computed the mean BOLD signal in each frame. 

This yields an N × 268 matrix of node-wise mean BOLD intensities for each subject for 

each condition, where N is the number of frames. (This is identical to the first step in 

calculating connectivity matrices.) For each node, using its N × 1 timecourse vector, we then 

computed its variance as:

This results in a single 1×268 vector of node-wise BOLD variances for task and rest data for 

each gradCPT subject.

We submitted these vectors to the predictive pipeline described in the manuscript. That is, 

instead of defining models on 268 × 268 matrices (35,778 features), we defined them on 1 × 

268 vectors (268 features). A threshold of p < 0.20 (rather than p < 0.01, which was used for 

the functional connectivity models described in the main text) was used for the feature 

selection step to ensure that at least one node appeared in each predictive model. As with the 

functional connectivity models, BOLD variance models trained and tested on gradCPT data 

were trained on n–1 subjects and tested on data from the left-out individual. Models tested 

on ADHD data were trained on nodes that appeared in all rounds of leave-one-out cross-

validation with gradCPT task data.

Models defined on BOLD variance during gradCPT task performance did not predict d′ 

scores from gradCPT task or rest data (Supplementary Table 3). Although the positive 

BOLD variance model did predict ADHD-RS scores, predictions were in the unexpected 

direction (i.e., the model predicted better attentional abilities for subjects with high ADHD-

RS scores). This result demonstrates that functional connectivity is a better predictor of 

attention than BOLD variance, which is likely affected by both metabolic function and 

anatomic factors.

Prediction range

One thing to note about SAN model predictions is that the range of predicted values is 

smaller than the range of observed values. That is, models overestimate the abilities of the 

individuals with the worst attention and underestimate the abilities of the individuals with 

the best. To investigate whether this effect emerged as a function of the non-Gaussian 

distribution of observed d′ scores, we used use Spearman’s (rank) correlation rather than 
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robust regression at the edge selection step, and evaluated predictive power using 

Spearman’s correlation between predicted and observed scores. This approach yielded 

highly significant predictions from gradCPT task and rest data (Supplementary Fig. 2). 

However, models still overestimated the d′ rank of the worst subjects and underestimated the 

d′ rank of the best subjects. Thus, SAN model predictions are best considered relative rather 

than absolute.

Permutation testing

P values for the leave-one-subject-out analyses were calculated by converting r values using 

a standard parametric conversion with the assumption that the degrees of freedom was equal 

to two less than the number of subjects. However, analyses in the leave-one-out folds are not 

independent, so the number of degrees of freedom is overestimated.

To confirm that our leave-one-subject-out results are still highly significant, we randomly 

shuffled d′ values 1,000 times and ran them through our prediction pipeline, generating null 

distributions for the analyses presented in Supp. Fig. 2. We used Spearman’s correlation at 

the edge selection step and evaluated predictive power using Spearman’s correlation 

between predicted and observed (randomly shuffled) scores. Based on these null 

distributions, the P values for leave-one-out predictions from gradCPT task data (the top row 

of Supp. Fig. 2) are P < 0.001. The P values for prediction from gradCPT rest data (the 

bottom row of Supp. Fig. 2) are P < 0.006 (positive network), P < 0.008 (negative network), 

and P < 0.002 (GLM). Thus, our results remain highly significant based on non-parametric 

statistical testing.

We note here that the ADHD analyses presented in Fig. 3 of the main text were not 

generated with leave-one-out analyses, so P values can be calculated using standard 

parametric conversion.

Code availability

The 268-node functional parcellation is available online on the BioImage Suite NITRC page 

(https://www.nitrc.org/frs/?group_id=51). Matlab scripts were written to identify 

behaviorally relevant edges, model the relationship between edge strength and behavior, and 

make predictions from novel individual’s connectivity matrices. This code is available from 

the authors upon request.

A supplementary methods checklist is available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Functional connectivity models predict sustained attention performance. Scatter plots show 

correlations between observed gradCPT d′ values and predictions by positive and negative 

networks and general linear models (GLM) that take into account positive and negative 

network strength. Network models were iteratively trained on task data from n − 1 subjects 

in the gradCPT data set and tested on task data (top row) and resting-state data (bottom row) 

from the left-out individual.
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Fig. 2. 
Functional connections predicting gradCPT performance and ADHD-RS scores. (A) The 

757 edges in the high-attention network (predicting higher d′ values in the gradCPT sample 

and lower ADHD-RS scores in the ADHD-200 sample) are visualized in orange. The 630 

edges in the low-attention network (predicting lower d′ values in the gradCPT sample and 

higher ADHD-RS scores in the ADHD-200 sample) are visualized in blue. Edges that 

appear in both the gradCPT and ADHD networks appear in bold. Macroscale regions 

include prefrontal cortex (PFC), motor cortex (Mot), insula (Ins), parietal (Par), temporal 

(Tem), occipital (Occ), limbic (including the cingulate cortex, amygdala and hippocampus; 

Lim), cerebellum (Cer), subcortical (thalamus and striatum; Sub), brainstem (Bsm). (B) 

Differences in the number of edges between each pair of macroscale regions, calculated by 

subtracting the number of edges in the low-attention network from the number in the high-

attention network. (C) Differences in the number of edges between each pair of canonical 

networks, calculated by subtracting the number of edges in the low-attention network from 

the number in the high-attention network. Canonical networks
28

 include the subcortical-
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cerebellum (SubC), motor (MT), medial frontal (MF), visual I (VI), visual II (VII), visual 

association (VA), default mode (DM), and frontoparietal (FP).
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Fig. 3. 
Sustained Attention Network (SAN) models, defined with gradCPT subjects, significantly 

predict scores on the ADHD-Rating Scale (ADHD-RS) in an independent sample of 

children and adolescents from the ADHD-200 dataset. Predictions are negatively correlated 

with ADHD-RS scores because models were trained to predict d′; thus, higher predictions 

correspond to better attentional abilities and lower ADHD-RS scores. These individuals 

were diagnosed with ADHD (solid dots) or as typically developing controls (TDC, hollow 

dots).
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Fig. 4. 
Connectivity models defined on ADHD-200 data predict gradCPT performance in an 

independent group of participants. Scatter plots show predictions of models defined using 

edges negatively (orange) and positively (blue) related to ADHD-RS scores in ADHD-200 

resting state data. Predictions of a GLM, which incorporates low- and high-ADHD network 

strength, are shown in black. These models were applied to gradCPT task (top) and resting-

state data (bottom).
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