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A Neuromorphic aVLSI Model of Global Motion
Processing in the Fly

Shih-Chii Liu

Abstract—Flies orientate themselves quickly in an unstruc-
tured environment through motion information computed from
their low-resolution compound eyes. The fly visual system is
an example of a robust motion system that works in a natural
environment. In this paper, we describe a low-power analog very
large scale integration chip that models motion computation in
the fly. The architecture of this motion chip closely follows the
anatomical layout of of the fly visual layers. The output of the chip
corresponds to the responses of the wide-field direction-selective
cells in the final layer of the visual system. The silicon chip has a
one-dimensional array of 37 elementary motion detectors (EMDs)
each of which provides local motion information. The EMD
outputs are aggregated in a nonlinear way to produce a motion
output that is independent of the stimulus size and contrast. We
employed various circuit techniques to ensure robust motion
computation in each processing stage. Results from the circuit
fabricated in a 1.2- m CMOS technology are compared with the
responses of the direction-selective cells.

Index Terms—analog integrated circuits, biological cells, biolog-
ical system modeling, motion analysis, neural network hardware,
very-large-scale integration.

I. INTRODUCTION

CONVENTIONAL motion sensors usually work well only
under predefined conditions. Computer vision techniques

use serially-scanned high-resolution charge coupled device
(CCD) imagers and frame-based processing, and require a fast
computational engine. Neuromorphic chips offer a variety of
low-power, single-chip solutions for computing the motion of
stimuli with a wide range of contrasts and speeds, under a large
dynamic range of lighting conditions [1], [2], [9], [5], [12],
[17], [21], [23], [24]. These solutions are based on algorithms
that model the motion computation in biological systems.

In this work, we describe a low-power, analog very-large-
scale-integrated (aVLSI) motion sensor that models the motion
computation believed to be performed in the fly visual system
[14]. We use the fly visual system as our model since flies are
capable of navigating rapidly in an unstructured environment
with low-resolution visual information. The resolution of their
compound eyes approximates that of a low-resolution 6060
pixel imager. By modeling the motion system of the fly on sil-
icon and ultimately mounting these motion sensors on a robotic
platform, we can also investigate continuous-time visual-guided
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behaviors on a robot without being hampered by CCD imagers
that require a high scanout rate for real-time interaction.

The architecture of this chip closely follows the anatomical
layout of the processing layers in the fly visual system. The de-
tails of the anatomy and physiology of the fly visual system is
described in Section II. The global motion output is generated
from the nonlinear aggregation of 37 elementary motion detec-
tors (EMDs). The circuits of the different layers in the architec-
ture are described in Sections III and IV. We employed different
circuit techniques to reduce the effects of background intensity
and mismatches between layers of processing within each pixel.
These techniques are described in Section V. Measured results
from a chip fabricated in a 1.2-m CMOS technology are pre-
sented in Sections VI and VII. We compare the chip results with
the responses of the wide-field direction-selective cells in the
fly.

II. BIOLOGICAL BACKGROUND

Each of the two compound eyes of the fly consists of
3000–4000 ommatidia (or “little eyes”), each with its own
lens. The compound eye has a resolution of about 1.5and is
equivalent to a imager (depending on the species).
Thus, the fly does not need high spatial resolution information
to compute optical flow information needed for navigation. The
visual system of the fly consists of four layers: the retina, the
lamina, the medulla, and the lobula complex. The retinotopic
arrangement of the pixels in the first three layers of the visual
system makes it easy to map the structure of the system to
silicon.

The photoreceptors in the retina transduce the incoming light
into a voltage signal. Each photoreceptor employs local gain
control by adapting to the background intensity, thus ensuring
that the receptor has a high transient gain to changes in intensity
and a low dc gain. The receptor primarily codes contrast infor-
mation. The laminar monopolar cells (LMCs) perform a tem-
poral bandpass filtering of the receptor signals without retaining
any information about the background intensity [16], [18]. The
LMC output is an amplified and inverted version of the receptor
signal. Very little is known about the functionality of the cells in
the medulla since the small size of the cells make them difficult
to record.

There are 50–60 wide-field direction-selective cells in the
lobula plate. Most of them respond to moving stimuli with
graded responses. The remaining cells in the lobula plate
respond with spikes. The outputs of all the direction-selective
cells provide information about the translational motion along
and rotational motion about different axes in the visual field.
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Fig. 1. Block diagram of Hassenstein–Reichardt’s correlation model of motion computation in insects. (a) Model of a single EMD. (b) Model of a wide-field
cell. Output is integrated from all EMDs. This is also the model of the motion sensor in this work.

This information controls the fly’s motor reflexes during
flight. The responses of these cells can be modeled by the
spatial integration of the outputs of local (EMDs). The first
EMD model, Fig. 1(a), was first proposed by Hassenstein and
Reichardt in 1956 [14] and the spatial integration of the outputs
of the EMDs by a wide-field direction-selective cell is shown
in Fig. 1(b). Hassenstein and Reichardt’s model was based
on the optomotor response of the weevilChlorophanus, but it
also reproduces the responses of the wide-field cells. An EMD
receives inputs from two neighboring pixels (or photorecep-
tors). One of the inputs is delayed through a lowpass filter.
This delayed signal is multiplied with the input at the adjacent
pixel. The output of the left multiplier of the EMD is sensitive
to stimuli moving from left to right, while the output of the
right multiplier is sensitive to stimuli moving from right to left.
The two outputs are subtracted to remove the common-mode
or flicker dependence on the input.

To compute the EMD output, in Fig. 1(a), we assume that
the input to a receptor is a sine wave and
the input to the neighboring receptor is

. Here is the mean intensity level, is the temporal
frequency, is the spatial wavelength,is the spatial phase of
the sinewave, and is the pixel spacing. The output can then
be expressed as

(1)

where is for the preferred direction and is for the null
direction. Notice that the output is dependent on the input tem-
poral frequency and the time constantof the lowpass filter.
The dependence of on the square of only holds true in
the responses of the biological cells for contrasts below 0.3. For
higher contrasts, the response saturates.

III. aVLSI ELEMENTARY MOTION DETECTOR

The architecture of one of the silicon EMDs is shown in
Fig. 2. The circuitry comprising the layers in this architecture is
described in this section. Unless otherwise mentioned, the cir-
cuits are operated in the subthreshold domain.

A. Photoreceptor

The adaptive photoreceptor circuit first described by Del-
brück [6] and modified by Liu [19] in Fig. 3 transduces via a
photodiode, the incoming light into a voltage signal . The
output codes the logarithm of the light intensity if
is in subthreshold. Changes in the local intensityare ampli-
fied by the transient gain of the circuit, which is determined
by the ratio of the capacitors, that is, .
The circuit adapts to the background intensity at a time constant
that depends on the capacitors and , and the conductance
of the adaptive element . The conductance of is set by
its gate voltage , which is derived from the source follower
circuit on the right of Fig. 3. The details of the circuit are dis-
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Fig. 2. Block diagram of the architecture of the silicon EMD for computing motion. The light input goes into a photoreceptor circuit with local gain control. The
receptor output is then bandpass filtered by the LMC circuit. The output of the LMC circuit splits into two pathways. In one pathway, the signal is delayed through
a low-pass filter.ON andOFF transient signals are generated from the delayed and undelayed signals. Subsequently, theON andOFF delayed signals in each pixel
are correlated (or multiplied) with the undelayed signals from the adjacent pixel. The two outputs in the figure are sensitive to a stimulus moving from left to right.

Fig. 3. Circuit diagram of photoreceptor circuit. The feedback consists of a
resistor implemented by a pFET transistorM . The conductance of the resistor
is controlled by the external biasV .

cussed in [19]. By changing the value of , we can change
the conductance of . Hence, also the receptor’s adaptation
time constant. The transient change in in response to a step
change in the intensity, can be described by

(2)

where is the thermal voltage and is the gate efficiency
in driving the transistor. The output of the circuit responds pri-
marily to the signal contrast and has a dc operating point that
adapts to the background intensity.

B. Lamina

The circuitry in the second layer of the chip models the re-
sponses of the cells in the laminar layer. The response of the
LMC cell is an amplified and inverted version of the input from
the receptor. The dc dependence of the LMC output on the back-
ground intensity is zero. To implement this function, we use an
inverting differentiator with an adaptive element between
the output and the input as shown in Fig. 4(a). The transient gain
in this circuit is set by the ratio of capacitors ,
i.e.,

(3)

The output returns to its dc level that is set by the current in the
bias transistor . The time constant that the circuit takes to
return to steady state is set by the capacitances and the conduc-
tance of . The conductance of is set by a source follower
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Fig. 4. Inverting differentiator and low-pass filter. (a) Inverting differentiator
with active resistor implemented via a pass transistorM . The bias circuit that
generates the bias voltage toM is shown on the right. (b) Follower integrator
used to implement the delay element with the input fromV . The linear
range of the integrator was extended by using diode-connected transistors at
the sources of the differential-pair input transistors.

circuit (as in the photoreceptor circuit). By highpass filtering the
receptor output signal, we prevent dc mismatches in the photore-
ceptor output from affecting the operation of the LMC circuit.
The step response of this circuit is shown in Fig. 5. The figure
also shows how increasing decreases the conductance of
the adaptive element .

C. Low-Pass Filter

In the third layer of the chip architecture, we split the output
of the LMC circuit into two pathways. In one pathway, the
signal is delayed through a low-pass filter. This filter is
implemented by using a follower–integrator circuit [shown in
Fig. 4(b)]. The follower circuit consists of a transconductance
amplifier. Since the circuit is operated in subthreshold, the
linear range of a normal five-transistor transconductance am-
plifier is limited to 100 mV. This limited input range causes the
delayed output to slew-rate limit when the input signal
changes by more than 100 mV, as it does with high contrast
signals. The input range of the follower is extended by adding
source-degeneration diodes in series with the input transistors
of the transconductance amplifier to extend the linear range to
about 300 mV.

D. Transient Current Generation

The fourth layer models possible properties of cells in the
medulla and lobula complex of the fly visual system. Each pixel
has two hysteretic differentiator circuits [17] (see Fig. 6), whose
inputs come from and , respectively. In this circuit,
we generate both anON transient current and anOFF tran-
sient current from temporal changes in and . The
currents and are given by

(4)

Only one current is on at a time, while the other is es-
sentially zero. Using (2) and (3), and assuming that

, we get

(5)

(6)

The voltages and from the differentiator circuit in
one pixel are correlated with the voltages and from
the differentiator circuit in the adjacent pixel using current cor-
relators [4] (see Fig. 7). The current correlator, which is anal-
ogous to the multiplier in the Reichardt model, consists of two
transistors in series. The output of the correlator consisting of

and is

(7)

The currents from two of the correlators are summed together to
create , the output current for the preferred direction. The
currents from the other two correlators are summed together
to create , the output current for the null direction. These
currents feed into the aggregating circuit, which is described in
the following section.

IV. NONLINEAR INTEGRATION OFEMDS

The wide-field cells produce a global motion output from the
aggregation of the outputs of the EMDs. A major concern in ag-
gregating the outputs is that we have to ensure that the global
motion measure is not confounded with the number of EMDS
that are stimulated by the external environment. Images of the
natural environment have roughly a distribution in their spa-
tial power spectra with most of the power concentrated in the
low spatial frequencies (that is, natural images have very few
high contrast edges). Hence, many of the EMDs will not be stim-
ulated when a fly is in a natural environment. If we simply sum
the EMD outputs, then the motion output will increase as more
EMDs are stimulated by the environment.

Both physiological recordings [11] and optomotor experi-
ments [22] have shown that the outputs of the wide-field cells are
independent of the stimulus size except for small-sized stimuli.
This gain control property can be modeled by the biophysical
properties of the cell and its dendrites as shown by Borst [3]
(see Fig. 8). The membrane potential of the cell is deter-
mined by the excitatory, inhibitory, and leak conductances

, and , and the corresponding reversal potentials are
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Fig. 5. Response of inverting differentiator to a 30-mV p–p square wave for different values ofV andV . Response ofV andV to different values of
V .

Fig. 6. Hysteretic differentiator circuit. This circuit generates transient
currentsI andI from changes in the output voltageV , from the LMC
circuit.

, and . The conductances and depend on the pre-
ferred and null motion outputs of an EMD, respectively. If the
motion of the stimulus is in the preferred direction, then both

and increase but . The membrane potential can be
written as

(8)

where is the number of activated EMDs. For large and
assuming , we get

(9)

In the equation above, we assume that . So for large
, the membrane potential only codes the motion independent

of the number of activated EMDs.
We can map this model to the current-mode aggregator circuit

shown in Fig. 9. Here, the outputs of the EMDs map to input
currents (rather than conductances) and the reversal potential

Fig. 7. Pairs of the output currents of the four current correlators are summed
together to createI andI . Each correlator consists of two transistors in
series, e.g.,M andM . The voltagesV andV from the differentiator
circuit in one pixel are correlated with the voltagesV andV from the
differentiator circuit in the adjacent pixel.

Fig. 8. Biophysical model of Borst [3] that models the aggregation property
of wide-field cells. The membrane voltageV is determined by the excitatory,
inhibitory, and leak conductances (g ; g , and g ) and their respective
reversal potentialsE ; E , andE .

sets the global bias current. Each module consists of the
transistors to , which implement a Gilbert normalizer
[10]. However, , and are shared amongst all the
modules so there are only four transistors in each module. The
preferred and null outputs of each silicon EMD
are normalized with respect to the global bias current. The
input current acts as the leak conductance and determines
the number of inputs at which the output saturates. The output
current of the left leg of each module is given by

(10)
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Fig. 9. Current-mode implementation of the aggregator model shown in Fig. 8. Each module of the aggregator circuit, represented by the transistorsM toM ,
implements a Gilbert normalizer circuit. The transistorsM ; M , andM are shared amongst all the modules. The conductances in the biophysical model are
represented by input currentsI ; I , andI .

If EMDs are activated and assuming that the preferred and
null outputs are the same for all the EMDs, then is
now

(11)

The global preferred current, , is the sum of all s, i.e.,

(12)

assuming that . Similarly, the global
null current, is given by

(13)

We obtain the final motion output by subtracting
from , so

(14)

This equation is similar to the biophysical equation (9).
Harrison and Koch [13] recently demonstrated a

voltage-mode implementation of the biophysical model in
Fig. 8 where they used the preferred and null outputs of the
EMD to control the bias currents of individual follower integra-
tors. The inputs to the follower integrators come from and

. The outputs of the integrators are shorted together. Since
this implementation is in voltage mode, the authors have to
ensure that the excitatory and inhibitory reversal potentials are
close to each other so that the inputs to the followersand
one of the reversal potentials are within the limited input linear
range of the followers. The current-mode implementation here
does not suffer from the limited input linear range problem and
uses only four transistors per module.

A nice property of spatially aggregating the outputs of the
EMDs is that the temporal variation of the response of one
EMD in response to a spatial grating input is removed in the
final wide-field cell output. The reduction in the variation of
the response occurs because the response of the EMDs to the
moving pattern are spatially out of phase with each other. This
phenomena has been demonstrated in the HS cell by Single,et
al.using calcium imaging [25].

V. MISMATCHES

Silicon hardware, like biological neural hardware, has mis-
matches between pixels or cells on the same substrate. The co-
efficient of variation (CV)—defined as the standard deviation
over the mean—of the mismatches from the biological LMC
neurons is in the order of five percent between recorded cells
[16]. The CV as measured from a silicon imager fabricated in a
2- m CMOS ORBIT process is about 6%–10% [19]. The mean
and standard deviation for the CV measure is obtained from the
peak-to-peak responses of the photoreceptor output of the indi-
vidual imager pixels in response to an LED that was modulated
by a 10-Hz square wave. The pixels’ mismatches need to be
handled if comparisons or correlations between pixels are part
of the motion computation algorithm.

We employed various circuit techniques to reduce the ef-
fects of mismatches and common-mode input factor in each pro-
cessing stage. The ways we used to increase the robustness of
the computation are as follows.

• We bandpass filtered the signal from the photore-
ceptor going into the LMC circuit so that there is no
common-mode dependence on the LMC output.

• The dc level of the input from the LMC circuit to the hys-
teretic differentiator circuit affects the transient dynamics
of the generation of theON andOFFcurrents. Since the dc
voltage of the LMC input to the hysteretic differentiator
circuit is constant, the dynamics are not affected by the
background light intensity.

• We have chosen to use transient current inputs instead
of voltage inputs to a correlator circuit so that we would
not have to deal with mismatches in the DC input levels
at the multiplier. A previous hardware implementation
of the correlation model, where voltage outputs from
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neighboring pixels are fed into a multiplier circuit, failed
to provide a robust direction-sensitive output. The signal
was not robust because the input dc mismatches between
the pixels creates different outputs at the multiplier. The
use of transient currents ensures that there will be no
output current (that is, zero motion signal) if there is no
input change at the receptor output. The mismatches in the
voltage multiplier could be reduced by layout and sizing
techniques or nulled using tunnelling-injection structures
[7] or UV techniques. Additional circuitry complexity
and area would have been required to implement these
features.

• We used current-mode circuits whenever possible (for
example, in the nonlinear aggregator circuit) so that
we would not have to deal with the limited input linear
range of a transconductance amplifier. In addition, cur-
rent-mode circuits are also usually more compact than the
voltage-mode counterparts.

VI. EXPERIMENTAL RESULTS FROM ANaVLSI EMD

In these experiments, we measured the output of a single fab-
ricated aVLSI EMD. We used the output current of the EMD
to charge or discharge a capacitor on a node , which also
has a leak conductance to a reference voltage of 2.5 V.
If the input to the chip moves in the preferred direction
increases above 2.5 V. If the input moves in the null direc-
tion decreases below 2.5 V. The temporal responses of an
EMD to a sinewave grating of contrast 0.2 moving in the pre-
ferred direction are shown in Fig. 10(a) and in the null direction
in Fig. 10(b). The contrast described in the experiment results
is the Michelson contrast , where

and are the maximum and minimum intensities re-
spectively of the stimulus. Notice the frequency doubling of the
output in these figures.

We plotted the dependence of the aVLSI EMD on the tem-
poral frequency of the input by presenting to the chip a fixed
spatial frequency sinewave moving at different velocities. We
measured the temporal frequency of the input as seen by the
photoreceptor circuit and the average EMD output for each ve-
locity. The results are shown in Fig. 11(a). The upper curve cor-
responds to the stimulus moving in the preferred direction and
and the lower curve is obtained from a stimulus moving in the
null direction. The shape of the response is similar to that mea-
sured in the HS cell of the fly as shown in Fig. 11(b). This figure
was adapted from the work of Hausen [15]. The output of this
wide-field cell can be predicted by the EMD model as shown
by Egelhaaf and Borst [8]. The range of frequencies for which
there is a response extends from about 1 Hz to about 25 Hz.

We also measured the direction selectivity of the output to
a square-wave grating moving at different orientations. The re-
sponse of the chip can be approximated by a cosince function
as shown in Fig. 12.

VII. EXPERIMENTAL RESULTS FROM ANaVLSI HS CELL

The figures described in this section are taken from the output
of an aVLSI HS cell, which aggregates the outputs of 37 EMDs

(a)

(b)

Fig. 10. Responses of the silicon EMD to a sinewave grating of contrast 0.2
moving at a temporal frequency of 10 Hz. Notice the frequency doubling in
output of the EMD. (a) Response of EMD to sinewave moving in the preferred
direction. The photoreceptor output has been shifted down by 0.1 V. (b) Output
of EMD to the sinewave grating moving in the null direction. The photoreceptor
output has been shifted down by 0.6 V.

(a) (b)

Fig. 11. Temporal frequency response of silicon EMD and HSE cell. (a)
Frequency response of the silicon EMD circuit to a fixed spatial frequency
sinewave of contrast 0.92 moving at different velocities. The temporal
frequency of the input as seen by the photoreceptor circuit is measured
for each velocity. The contrast here is defined as the Michelson contrast,
(I � I )=(I + I ) The upper curve is obtained for a stimulus
moving in the preferred direction and the lower curve is obtained for a stimulus
moving in the null direction. (b) Data from HSE cell replotted from Fig. 5(c)
in [15]. Again, the upper and lower curves are obtained for stimuli moving in
the preferred and null directions, respectively.
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Fig. 12. Response of the silicon EMD to a sinewave grating moving at 10 Hz
in the preferred direction (dashed line) and null direction (solid line) at different
orientations plotted in polar coordinates. The radius of the plot is 1.608 V and
the Michelson contrast of the grating is 0.7. The plot shows the cosine tuning of
the EMD response to the stimulus orientation.

Fig. 13. Global motion output as computed from the linear summation of the
outputs from six EMDs in response to a sinewave grating that moves from rest
to alternating between moving at a frequency of 2 Hz in the preferred direction
and the null direction. The photoreceptor signal has been shifted down by 3 V.

using the circuit shown in Fig. 9. For experimental measure-
ments, the outputs of the aggregator circuit and are
used to charge and discharge a capacitor, respectively, on a node

, which also has a leak conductance to a reference voltage
. These currents could also be read individually.

A simple summation of the EMDs outputs will lead to an HS
output that increases as more EMDs are stimulated. In Fig. 13,
we showed the effect of linearly adding the motion outputs of
the individual EMDS. The current outputs of the EMDs are used
to charge or discharge a capacitor on a common node. The tem-
poral variation in the output is not present but the output satu-
rates at the power rails if enough EMDs are stimulated. Under
this condition, it would not be possible to measure the motion
quantitatively from the output. Even if we summed the preferred
and null output currents of the EMDs to create a global preferred

Fig. 14. Transient response of motion output computed from the nonlinear
aggregation of 37 EMD outputs in response to a sinewave of contrast 0.58 that
starts moving from rest to a frequency of 14 Hz. The large transient response at
the start of the motion is not always present at every trial and depends on the
output states of the individual blocks in the EMD.

Fig. 15. Frequency response of silicon HS cell with aggregated output from 37
EMDs. The frequency response was measured at three contrasts, 0.34, 0.58, and
0.92. The curves for the contrasts 0.58 and 0.92 almost overlap showing that the
motion output was independent of the stimulus contrast for values above 0.58.

current and a global null current, these global currents increase
with the number of stimulated EMDs.

By using nonlinear aggregation of the EMD outputs, we can
prevent saturation of the output at the rails. The transient re-
sponse of the aggregator circuit to an input sinewave grating
that starts moving from rest to 14 Hz in the preferred direction
and in the null direction is shown in Fig. 14. The large transient
response at the start of the motion is not always present over dif-
ferent trials and depends on the output states of the individual
blocks of the EMD. These data also show that the steady-state
output does not saturate at the rails.

The temporal frequency response of the silicon HS cell was
measured for three different contrasts (Fig. 15). The curves for
the two higher contrasts, 0.58 and 0.92, almost overlap, thus
showing that aggregator output is independent of contrast at
least above 0.58. This contrast saturation property is necessary if
we do not want the motion output to depend on the signal con-
trast. Egelhaaf and Borst have shown physiologically that the
response of the biological HS cell saturates for contrasts above
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Fig. 16. Plots of the peak preferred and null responses of the silicon HS cell
versus contrast. The peak responses are measured for each of the contrast curves
in Fig. 15. The responses plotted were subtracted from the resting voltage of 2.5
V. The figure also shows the linear response of the LMC output against contrast;
while the motion output saturates for contrasts above approximately 0.45. The
same property is observed in biological cells.

Fig. 17. Frequency response of the HS output for two different time constants
of the lowpass filter. The time constant is set by a bias voltageV . A lower
V value means a smaller time constant of the filter. The curves show the
average response of the circuit to a stimulus moving in the preferred and null
directions at two different delay bias settings, i.e., 4.47 and 4.49 V.

0.3–0.4 [8]. This response saturation happens after the LMC cir-
cuit as shown in Fig. 16. The LMC output is linearly propor-
tional to the input contrast (Fig. 16) while the preferred and null
outputs (measured at the peak response of the curves in Fig. 15)
of the aggregator circuit saturate when the contrast exceeds 0.4.

The temporal frequency at which the silicon HS response
peaks in Fig. 15 is dependent on the time constant of the
low-pass filter . We can tune this temporal frequency by
changing the bias voltage of the low-pass filter in the
system. This shift in the temporal frequency at which the circuit
response peaks is shown in Fig. 17 for two different delay
settings of 4.47 and 4.49 V.

VIII. C ONCLUSION

The aVLSI motion sensor in this work models the motion
computation in the fly visual system. The sensor creates a global

motion output from the nonlinear aggregation of 37 elementary
motion detectors so that the motion output is independent of
stimulus area and contrast. We employed various circuit tech-
niques to generate a robust motion signal by reducing the ef-
fects of background intensity and mismatches on the motion
computation. This motion sensor differs from some of the other
motion circuits, for example, by Sarpeshkaret al. [24] and Eti-
enne–Cummingset al.[9], as the entire computation up the mo-
tion output stage is performed on analog signals. In the imple-
mentations mentioned above, a pulse which codes the presence
of an “edge” in the scene is first created before the motion of this
“edge” is computed. Our circuit implementation differs from
Harrison and Koch’s implementation in 1998 [12], and includes
the contrast normalization circuit, the laminar circuits, and the
nonlinear aggregation response of the wide-field cells.

We have used the outputs of these motion sensors as inputs
to a controller system on a robot [20]. The system exhibits two
behaviors similar to those of the fly; optomotor response and fix-
ation. This system allows us to evaluate models of visuo-motor
controllers in working systems. The interaction of these contin-
uous-time sensors with the motor system provides a powerful
method of exploring real-time interaction of the robot with its
environment.
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