
2548 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

A Neuromorphic Cortical-Layer Microchip for
Spike-Based Event Processing Vision Systems

Rafael Serrano-Gotarredona, Teresa Serrano-Gotarredona, Antonio Acosta-Jiménez, and Bernabé Linares-Barranco

Abstract—We present a neuromorphic cortical-layer processing
microchip for address event representation (AER) spike-based
processing systems. The microchip computes 2-D convolutions of
video information represented in AER format in real time. AER,
as opposed to conventional frame-based video representation,
describes visual information as a sequence of events or spikes
in a way similar to biological brains. This format allows for fast
information identification and processing, without waiting to
process complete image frames. The neuromorphic cortical-layer
processing microchip presented in this paper computes con-
volutions of programmable kernels over the AER visual input
information flow. It not only computes convolutions but also
allows for a programmable forgetting rate, which in turn allows
for a bio-inspired coincidence detection processing. Kernels are
programmable and can be of arbitrary shape and arbitrary size
of up to 32 32 pixels. The convolution processor operates on a
pixel array of size 32 32, but can process an input space of up to
128 128 pixels. Larger pixel arrays can be directly processed by
tiling arrays of chips. The chip receives and generates data in AER
format, which is asynchronous and digital. However, its internal
operation is based on analog low-current circuit techniques. The
paper describes the architecture of the chip and circuits used
for the pixels, including calibration techniques to overcome mis-
match. Extensive experimental results are provided, describing
pixel operation and calibration, convolution processing with and
without forgetting, and high-speed recognition experiments like
discriminating rotating propellers of different shape rotating at
speeds of up to 5000 revolutions per second.

Index Terms—2-D convolutions, address-event representation
(AER), bio-inspired systems, digitally calibrated analog cir-
cuits, high-speed signal processing, MOS transistor mismatch,
spike-based processing, subthreshold circuits, vision, VLSI
mixed-circuit design.

I. INTRODUCTION

A
RTIFICIAL man-made machine vision systems operate in
a quite different way than do biological brains. Machine

vision systems usually operate by capturing and processing
sequences of frames. For example, a video camera captures
images at about 25–30 frames per second, which are then
processed frame by frame to extract, enhance, and combine
features and perform operations in feature spaces until a desired
recognition is achieved. Biological brains do not operate on

Manuscript received April 5, 2006. This work was supported by Spanish
Research under Grant TIC2003-08164-C03-01 (SAMANTA) and by the
European Union under EU Grant IST-2001-34124 (CAVIAR). The work of
R. Serrano-Gotarredona was supported by the Spanish Ministry of Education
and Science. This paper was recommended by Associate Editor A. van Schaik.

The authors are with the Instituto de Microelectrónica de Sevilla (IMSE),
Centro Nacional de Microelectrónica (CNM), Consejo Superior de Investiga-
ciones Cientificas (CSIC) and Universidad de Sevilla, 41012 Sevilla, Spain
(e-mail: bernabe@imse.cnm.es).

Digital Object Identifier 10.1109/TCSI.2006.883843

Fig. 1. Example of high-speed projection-field spike-based image processing
for detecting a moving ball of a specific radius.

a frame-by-frame basis. In the retina, each pixel sends spikes
(also called events) to the cortex when its activity level reaches
a threshold. This activity level may respond to different image
properties like intensity, contrast, color, and motion—prop-
erties that have been precomputed within the retina before
generating the spikes to be sent to the visual cortex. Very active
pixels will send more spikes than less active pixels. When the
retina responds to a stimulus, for example, a moving profile,
then those pixels sensing the profile will elicit a simultaneous
collection of spikes that are strongly space-time correlated. The
visual cortex receiving these spikes is sensitive to the space
location where the spikes were originated and to the relative
timing between them. This way, it can recognize and follow
this moving profile. All of these spikes are transmitted as they
are being produced and do not wait for an artificial “frame
time” before sending them to the next processing layer. This
way, in biological brains, strong features are propagated and
processed from layer to layer as soon as they are produced,
without waiting to finish collecting and processing data of
whole image frames.

As an illustration, consider the setup in Fig. 1. On the left,
a circular solid object (a ball) is observed by a motion-sensing
retina in the center. The pixels in this retina are sensitive to mo-
tion (changes in intensity). Consequently, at a given instant in
time, only the pixels on a circumference will become active.
This means that the pixels on the same circumference will si-
multaneously fire spikes. Let us assume that each pixel fires
just one single spike. We may state that, at a given instant (or
short time interval), the spikes produced by the retina are highly
space-time correlated: in time because they are simultaneous
and in space because they form a circumference of a certain ra-
dius. In Fig. 1, the output spikes of the retina are sent, through
projection fields, onto the next processing layer. Suppose that

1057-7122/$20.00 © 2006 IEEE

SERRANO-GOTARREDONA et al.: NEUROMORPHIC CORTICAL-LAYER MICROCHIP 2549

the projection fields are tuned to detect circumferences of a

given radius range . Then, each spike produced by a pixel in

the retina will be sent to a circumference (of radius) of pixels

in the projection-field layer in Fig. 1. This way, pixel “1” in the

retina sends a spike to all pixels in circumference “1” of the

projection-field layer. The same is true for pixels “2,” “3,” “4,”
and all others in the retina circumference. If the circumference

sensed in the retina is of the same radius than the projection

fields, as is the case in Fig. 1, then the pixel in the projection

field layer that has the same coordinates as the central pixel of

the retina circumference (pixel “A”), will receive spikes from all

active projection fields. Consequently, this pixel will receive the

strongest stimulus. The pixels in the projection-field layer can be

made to fire a spike if their stimulus reaches a certain threshold.

If this threshold is sufficiently high, only the central pixel “A”
in the projection field layer will generate an output, signaling

that this is the center of the moving ball of radius sensed

by the retina. In general, projection fields in biological neuro-

cortical layers perform feature extraction operations, which are

dependent on the “shape” (weights) of the projection-field con-

nections. Note that projection-field processing is equivalent to

convolution processing, where the kernel of the convolution is

the projection-field shape. In the case of Fig. 1, the feature to

be detected is a circumference of radius . In biological neu-

rocortical structures there are several (8–10) sequential projec-

tion-field layers that extract features [1]–[4], group them, extract

more elaborate features, and so on, until in the end they per-

form complicated recognition tasks, such as handwritten char-

acter recognition [5]–[8] or face recognition [9]–[13].

A very interesting and powerful property of the projection-

field processing illustrated in Fig. 1 is its high speed. Note that

the spikes produced at the retina are sent simultaneously to the

projection field layer. The central pixel A produces its output

spike almost instantly. Consequently, this spike-based projec-

tion-field processing approach is structurally much faster than

a conventional frame-based processing approach. In a frame-

based approach, all pixels in a retina (or camera) are sensed

and transmitted to the next layer (or processing stage), where all

pixels of the frame are processed, usually with convolution op-

erations, and so on. This frame convolution processing is slow,

especially if several convolutions need to be computed in se-

quence for each input image frame.

The cortical layer microchip presented in this paper exploits

the spiking projection-field computation principles of biolog-

ical neurocortical structures, as illustrated in Fig. 1. For this

microchip, the delay between consecutive layers is in the order

of nano to micro seconds. Each pixel in the projection field

layer includes an integrate-and-fire neuron (i&f) [20]–[23],

[28]–[31], [42]–[47], [51], [56], [59]: the neuron integrates all

incoming spikes and, when the integral reaches a threshold,

the neuron fires its own output spike and resets itself. A circuit

performing this conceptual operation is illustrated in Fig. 2(a).

Every time a pixel receives a spike, a current pulse is integrated

onto capacitor , increasing its voltage . When this voltage

reaches threshold , the capacitor is reset and an output

spike is produced.

However, remember that, for the system in Fig. 1, we want

to detect highly space-time-correlated features, like the moving

Fig. 2. Integrate-and-fire neuron conceptual circuit diagrams. (a) For unsigned
processing. (b) For signed processing.

circumference. For example, the central pixel A in the projec-

tion-field layer detecting the center of the moving circumference

has to detect this circumference if the incoming spikes are re-

ceived within a very short time interval. Consequently, the i&f

circuit of Fig. 2(a) should include some loss mechanism, so that,

if the incoming spikes do not come in sufficiently fast, no output

spike should be produced. Otherwise, two half circumferences

separated in time could be recognized as a single circumference.

This forgetting mechanism can be implemented by connecting

a loss resistor in parallel with capacitor or a leak-discharging

current source. Whatever loss mechanism is used, it is essen-

tial for correct space-time-correlation feature detection. In the

cortical-layer microchip presented in this paper, a precise loss

mechanism has been implemented with programmable loss rate.

For generic convolution processing, signed input events have

to be processed with signed convolution weights. Consequently,

the current pulses to be integrated on capacitor in Fig. 2

may be either positive or negative, as shown in Fig. 2(b) for a

signed i&f neuron. Also, for signed integration, there will now

be two limiting thresholds, a positive one and a nega-

tive one . Depending on which one is reached, the i&f

neuron will provide a positive event (visible at) or a neg-

ative one (visible at). Both events will reset the voltage of

capacitor to an intermediate reset value

. For the signed i&f neuron of Fig. 2(b), a loss mech-

anism could be implemented by including a resistor between

nodes and . However, since the required resistance

value would be extremely large, this would not be practical. We

will use a signed discharging current mechanism, which is ex-

plained in Section III.

The microchip described is based on a previously reported

convolution chip, the address-event-representation (AER) pro-

cessor [14], [76], which now includes a loss mechanism for

proper cortical spike-based feature-detection operations.

AER is a spike-based representation hardware technique for

communicating spikes between layers of neurons in different

chips. AER was first proposed in 1991 in one of the Caltech

research labs [15]–[19] and has been used since then by a wide

community of neuromorphic hardware engineers. Unarbitrated

and less sophisticated event read-out has been used [20], [21],

and more elaborate and efficient arbitrated versions have also

been proposed, based on Winner-Takes-All [22] or the use of

arbiter trees [23], which have evolved to row parallel [24] and

burst-mode word-serial [25]–[27] read-out schemes. AER has

been used fundamentally in image sensors, for simple light

intensity to frequency transformations [28], time-to-first-spike

codings [29]–[32], foveated sensors [33],[55], [77], [78], and

2550 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

Fig. 3. Schematic architecture of convolution chip prototype.

more elaborate transient detectors [34]–[36] and motion sensing

and computation systems [37]–[41]. However, AER has also

been used for auditory systems [18], [42]–[44], competition

and winner-takes-all networks [45]–[47], and even for systems

distributed over wireless networks [48].

In this paper, we are concerned with the exploitation of

the AER benefits for higher level artificial vision based on

the processing found in biological cortical cerebral structures,

specifically those based on projection fields (or convolutional

operators). In this respect, some prior work is available in

literature. Some works focus on creating projection fields with

inter-chip digital machines like micro-controllers with lookup

tables (LUTs) [50]–[56]. This technique is quite versatile but

results in slower systems, since for each spike generated at

the emitter end a “bubble” of sequential events is generated

for the receiver. Other researchers directly implement the

projection field inside the receiver chip without slowing down

the single spike inter-chip communication speed, at the cost of

introducing severe constraints on the shape of the projection

fields. For example, Vernier et al. [57] restrict this to diffusive

elliptical kernels, Choi et al. [59], [60] to Gabor-type kernels,

and Serrano et al. [58] to decomposable kernels. The

projection field (or convolution) processor chip presented in

this paper is an improvement of a prior system [14], [76], which

does not impose any restrictions either on the shape or size of

the kernel, does not slow down the AER inter-chip communi-

cation (except for very large kernels), and allows precise leaky

integration for high-speed feature-detection operations. Thanks

to this absence of kernel shape restrictions, this chip can be used

as a module in complex hierarchical multilayer cortical-like

vision architectures, like the BCS-FCS system [61]–[63],

Fukushima’s Neocognitron [5]–[8], or the Convolution Neural

Networks [9]–[13] used for handwritten character recognition

and face recognition. It has already been used in a sophisticated

multilayer AER hierarchy for detecting moving balls [64].

This paper is structured as follows. In Section II, the architec-

ture of the chip is briefly described. Section III provides design

details of the circuitry of the i&f pixel with forgetting capability.

Section IV shows extensive experimental results. Finally, the

conclusions of the presented work are summarized in Section V.

II. ARCHITECTURE OF PROGRAMMABLE-KERNEL

AER CONVOLUTION CHIP

The chip reported in this paper is an AER transceiver chip that

performs arbitrary kernel convolutions. It receives input AER

signals representing dynamic 2-D visual flow, computes convo-

lutions on it, and generates the output as AER signals. The con-

volution processing is performed for each incoming event [14]:

every time an input event is received, if is its coordinate,

spikes of modulated amplitudes will be sent to a projection field

of pixels around this coordinate. The procedure can be explained

with the help of Fig. 3, where the system-level architecture of

the chip is illustrated. The chip contains the following elements:

• high-speed clock for the synchronous blocks;

• input I/O block for handling and receiving the incoming

input events;

• synchronous controller for sequencing all operations to be

performed for each incoming event;

• monostable that generates an integration pulse of fixed

width;

• row decoder for selecting active rows;

• left/right column shift element;

SERRANO-GOTARREDONA et al.: NEUROMORPHIC CORTICAL-LAYER MICROCHIP 2551

• static RAM that holds the stored kernel;

• array of i&f neuron pixels;

• asynchronous circuitry for arbitrating and sending out

the output address events generated by the array of i&f

neurons;

• configuration register that stores configuration parameters

loaded at startup, through a serial port.

The I/O block continuously scans the input AER port until an

active Rqst is detected, in which case the corresponding event

address is latched and sent to the controller, and the asyn-

chronous handshaking cycle is properly handled and completed.

The controller1 reads the input address, and, depending on the

kernel size (stored in the configuration registers), it computes

the limit coordinates of the projection field, around , onto

which the convolution kernel stored in the static RAM needs

to be copied. The output of this computation is: 1) a column

left/right shift between the RAM columns holding the kernel

and the projection field columns in the array and 2) the row

address correspondence between kernel RAM rows and array

rows. Note that, depending on the kernel size and event coor-

dinate, the target projection field can fall fully inside the array

(as illustrated in Fig. 3), partially overlap the array, or fall com-

pletely outside the array.2 After this computation, the controller

will copy, line after line, all kernel rows from the kernel RAM

registers to registers in the pixels. These pixel registers will

modulate a current pulse amplitude that will be integrated onto

an integration capacitor in each pixel (in Fig. 2). Once all

of the pixel registers of the projection field are loaded with the

kernel values, the controller triggers the monostable, which pro-

vides a global pulse of fixed width to all pixels in the array.

When a pixel has integrated current pulses beyond its voltage

threshold (or in Fig. 2), it will reset itself and

generate an output event, which will be handled by the asyn-

chronous AER circuitry and sent off chip with its corresponding

handshaking signals.

The details of the peripheral circuits have been reported

previously [14], [65], [76], and we will not repeat them here.

The asynchronous AER circuit follows the row parallel event

read-out technique developed by Boahen [24], except that it

now handles signed events.

Handling signed events is important for computing convolu-

tions. In general, convolution kernel values can be positive or

negative. Therefore, the output values of convolutions can also

have positive or negative values. Consequently, output address

events must include a sign bit. Furthermore, since convolution

operations can be cascaded, a generic AER convolution pro-

cessor must be able to handle signed input events as well. In con-

clusion, the convolution chip processor described in this paper

includes sign bits for the input and output address events and for

the kernel values stored in the kernel RAM. Each integrator in

the array of i&f neurons is therefore able to handle signed input

events, signed output events, and signed kernel values and fol-

lows the scheme of Fig. 2(b).

1The controller operation was described algorithmically through vhdl code
and synthesized automatically.

2The input address space the chip needs to process is larger than the address
space of its own array of pixels: it is precisely its own address space expanded
by the largest kernel size. For a chip with 32� 32 pixels and 32� 32 maximum
kernel size, the input address space has to be at least (32+2�31) = 93�93.

Fig. 4. Source pulsed current source.

Note that larger image pixel arrays can be processed by as-

sembling 2-D arrays of convolution chips. Each chip would need

to know its own address space within the full pixel space (set

by configuration registers), and all chips would need to read in

parallel the same input AER port [14], [76]. This chip tiling is

possible because in the AER convolution operation (see Fig. 3)

there is no interaction between neighboring pixels.

III. CALIBRATED i&f NEURON PIXEL FOR SIGNED EVENT

PROCESSING WITH FORGETTING CAPABILITY

Event convolution computations are performed by inte-

grating signed and weighted current pulses in arrays of i&f

neurons. Transistors are pulsed through their sources [50] to

minimize charge injection and parasitic feedthrough charges.

Fig. 4 shows the basic idea behind this scheme. The transistors

form a current mirror. The input branch of the mirror is biased

with a constant current , and the gate is buffered with a

simple source-follower circuit to minimize transients at the

transistor gates. This mirror input is maintained at constant

values all the time (no dynamics). The mirror output transistor

switches its source between a voltage source of value and

the power supply. During a spike, the source is connected to the

power supply and the mirror output provides a current of value

. This very simple scheme allows for very fast switching

(pulses below 100-ns width) with very low currents (down

to the picoamps range), while the charge packets delivered

maintain very good linearity with bias current over a large

range [66]. Therefore, this circuit is very well suited for binary

weighted current pulse amplitude modulation, down to the

picoampere range. This is done in the following way.

Fig. 5 shows the schematic diagram of our i&f neuron with

signed events and weight processing capability and forgetting

functionality. Signals and control a set

of switches, which by default connect the sources of transis-

tors and to their off voltage (either

or). The monostable at the periphery will send a

pulse to all pixels in the array through either global line

or , depending on the sign of the incoming event. De-

pending on this sign and the sign of the convolution weight for

this pixel (stored in a dynamic register inside the block labeled

Logic in Fig. 5), either lines or will be ac-

tivated during the time of this pulse and according to the value

of the weight. The weights have a resolution of 4 bits, including

a sign bit. Transistors – will provide binary weighted

negatively signed pulses, while transistors to – will

provide positively signed ones. Note that the sources of the

mirror input and output branches are not connected directly to

2552 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

Fig. 5. Schematic diagram of signed i&f neuron with forgetting capability.

the power supply rails. There are two reasons for this: 1) by set-

ting and , a current gain will

be introduced from the mirror inputs to their outputs, which al-

lows reduction of supply consumption in standby and 2) sepa-

rating the source voltages from the power rails allows for very

low current processing [67], [68]. Transistors –
are binary weighted in size (each nMOS unit transistor is of

size 1/4 m and each pMOS one is of 2/6 m). If the sign of the

input event and stored weight are the same, lines will

be activated (according to weight magnitude), otherwise lines

will become active selectively.

The amplitude of the current pulses can be quite small. The

integrating capacitor has a rather low value of 140 fF (m

m in size) to reduce pixel area consumption. For our convo-

lution chip prototype, maximum kernel size is 32 32, which

means that a possible situation could arise in which a pixel

has to fire when it receives pulses from 32 32 a neighbor-

hood: it might be necessary to charge capacitor after receiving

. If the monostable pulsewidth

is set to ns and the integration voltage threshold to

V, then the

current pulse values would be in the order of

fF V

ns
pA (1)

and the pulse amplitude for the least significant bit would be a

small fraction of this pA . It is obvious that cur-

rent pulsing transistors – will be operated deep in

the subthreshold region. Transistor mismatch under such condi-

tions is very high [69]. Fig. 6 shows measurements of transistor

mismatch for 30 different transistor sizes operated down to the

nanoamperes range.3 We can see that a 1.2/4 nMOS transistor

operating at 1 nA has a current mismatch standard deviation

of . In our case, we want to achieve a 3-bit precision

with the most significant bit. This means that its must be below

1/8 of the range, which implies a standard deviation better than

3For smaller currents, mismatch tends to stabilize.

. Looking at Fig. 6, we can see that there is no transistor

size that can achieve this for currents less than or around 1 nA.

Consequently, we require some kind of calibration mechanism.

In our prototype we used the mini-DACs calibration scheme re-

ported elsewhere [70] at each pixel. This scheme, which results

in fairly compact layouts, exploits the use of MOS ladder struc-

tures to digitally control the aspect ratio of an equivalent tran-

sistor. Fig. 7 shows the schematic of the so-called digi-MOS

[70]. When all switches are ON, the ladder structure is equiva-

lent to a MOS transistor of almost in size. As switches are

turned off, the structure is equivalent to a MOS of size ,

where is a digitally controlled weight of value

(2)

where is either 0 or 1. Currents and in Fig. 5 are

generated with the circuits shown in Fig. 8. Transistors within

the boxes “pixel” are replicated once per pixel, while the rest

belong to the periphery and are not replicated. Consequently,

currents and are replicated once per pixel and will

present mismatch from pixel to pixel. This mismatch is repre-

sented on the right side of Fig. 8 when .

Each staircase on the right-hand side of Fig. 8 corresponds to

one pixel. For example, for , each pixel can store a different

value for . This way, after calibration, the values of

the pixels should be very close to the thick dotted horizontal

line. For optimum calibration, the peripheral current bias values

and should be adjusted so that the minimum

value for equals the maximum value for max-

imum . For equivalent considerations are made. In

practice, we do not calibrate trying to find very stable values for

(or) from pixel to pixel, as shown in Fig. 8. In prac-

tice, we do calibrate trying to find stable values for the pixels

output frequencies. This way, calibration compensates for mis-

match originated by: 1) the replication of currents , ,

, and ; 2) the mismatch in transistors and

; (c) the mismatch in the total capacitance of pixels

SERRANO-GOTARREDONA et al.: NEUROMORPHIC CORTICAL-LAYER MICROCHIP 2553

Fig. 6. Measurements of nMOS transistor current mismatch standard deviations for a CMOS 0.35-�m technology. Twenty-five different transistor sizes were
characterized, sweeping W from 0.6 to 10 �m and L from 0.3 to 10 �m. Transistor current mismatch standard deviation �(�I =I) is shown on the vertical
axes in %. Horizontal axes represent drain current I . These curves were obtained by sweeping V from 0 V to 3.3 V, while maintaining V at 1.65 V (V =2).

Fig. 7. Schematic diagram of digi-MOS.

node ; and (d) the mismatch in offset voltage of all voltage

comparators.

Calibration words and are stored on static RAM

cells within each pixel, have 5-bit resolution each, do not have a

sign bit, and are loaded at startup. Calibration needs to be done

for each fabricated chip sample and is done by loading a kernel

of size 1 1 of maximum value, sending events of constant

frequency for each pixel, and identifying each pixel frequency

as a function of the stored calibration word. Calibration words

and peripheral bias currents are optimized for minimum disper-

sion in pixel output frequency values. This procedure is repeated

twice to calibrate the two signed parts of current pulsing circuits,

by either changing the sign of the input events or the sign of the

stored 1 1 kernel.

The block labeled Logic in Fig. 5 decides whether a positive

or negative current pulse should be provided and what value it

should have. Its output directly controls the calibrated pulsing

current sources. It also takes care of the forgetting mechanism.

Fig. 8. Digi-MOS-based circuits for generating the in-pixel calibration
currents.

This way, the forgetting mechanism implemented in our chip

exploits the availability of calibrated current pulses. Therefore,

by adding some extra logic, we have an accurate calibrated

forgetting mechanism. The details of the Logic block are

2554 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

Fig. 9. Schematic diagram of the Logic block in Fig. 5.

shown in Fig. 9. It contains a dynamic 4-bit weight register

that temporarily holds the convolution weight and the sign of

the pixel. This is the weight copied from the peripheral static

kernel-RAM. During normal event convolution processing

signal is low (no forgetting), and, depending on the

sign of the chip input event, the monostable will trigger a pulse

through either line or . If the signs of input

event and pixel weight are equal, the monostable pulse will

appear on node , and the weight bits will come out

through lines , thus producing a positive charge for

the integration capacitor in Fig. 5. If the signs of input event

and pixel weight are different, the monostable pulse will appear

on node , and the pixel weight will come out through lines

, thus producing a negative charge for the integra-

tion capacitor. The forgetting mechanism works by providing

global forgetting pulses at input of constant frequency

and width. Both frequency and width are adjusted through

configuration registers. The digital controller will take care of

providing these forgetting pulses. Two counters are periodically

reset. The first one, which controls the frequency of ,

is decremented by the system clock and the controller checks

if it has reached 0, in which case it activates the pulse and the

other counter is decremented until ‘0’ to finish the pulse. If

the system is idle (no events are being processed), is

triggered when the first counter reaches 0. The forgetting pulses

will produce either a positive or negative charge, depending on

the sign of the net integration present at the capacitor. If the

voltage at the integration capacitor is above , we have a

positive net integration (, in Figs. 5 and 9) and

negative forgetting charges are produced by activating signal

in Fig. 9. If the integration capacitor voltage is below

, then positive forgetting charges are

produced by activating signal .

The boxes labeled Positive Event Block and Negative Event

Block in Fig. 5 respectively detect whether the positive threshold

or the negative one are reached by integration ca-

pacitor voltage , reset this voltage to , send a row re-

quest to the row arbiter, and, when the row acknowledge

comes back, activates either the or column lines,

Fig. 10. Detailed schematic diagram of Positive Event Block in Fig. 5.

signaling that a positive or negative event has been generated by

this pixel. Fig. 10 shows the detailed circuit schematic diagram

for the box Positive Event Block. The circuit for the Negative

Event Block is a symmetrical version. While the integration ca-

pacitor is being charged or discharged, the event blocks remain

idle. When idle, transistors and in Fig. 10 are off,

while is on. The source of is separated from the power

supply to minimize leakages while it is off [67], [68]. When

approaches , usually slowly, the comparator output will

slowly turn on . This will enable a positive feedback that

will speed up the charging of the capacitor through transistor

, making the comparator toggle faster and minimizing the

transition time. Also, to speed up this transition, the comparator

bias current, which is maintained low through bias during

the idle periods for minimum power consumption, is momen-

tarily increased to a high value through transistor . To this

end, the inverter between nodes and has been carefully

designed to present a transition threshold that turns on

when is still at the beginning of its transition. Once is

low and high, goes low (note that is high during

idle periods), sending a row request by pulling up line .

After a small delay (a few nanoseconds), the row arbiter will ac-

knowledge back, activating to a low value, which will set

node high. This will disconnect the capacitor from by

turning off and will reset its voltage to by turning

on . Since we also want the comparator to transition back

fast, it will need a high bias current until it finishes its transi-

tion back. However, during back transitioning, transistor

will be turned off, which will make the comparator slow before

the transition actually finishes. For this reason, transistor

has been added, so that the comparator is kept fast until the ac-

knowledge signal from the row arbiter returns to its idle state.

This way the comparator bias current is kept at a high value

until after it has transitioned back to its resting state. Since

is active for a few nanoseconds, this is not a major power con-

sumption concern. Also, during the time is active (and

high), column signal is activated, signaling that this column

of the arbitrated row has generated a positive event. In a similar

way, the Negative Event Block would activate signal , if ca-

pacitor voltage reached the negative threshold .

The right-peripheral row arbitration circuits and top-periph-

eral column arbitration and output event generation circuits

follow the row-parallel event read-out scheme proposed by

Boahen in 2000 [24], and we use the same circuits with minor

modifications to handle the sign bit as well [65].

SERRANO-GOTARREDONA et al.: NEUROMORPHIC CORTICAL-LAYER MICROCHIP 2555

Fig. 11. Microphotograph of fabricated 32 � 32 pixel convolution chip with
up to 32 � 32 programmable kernel.

IV. EXPERIMENTAL RESULTS

A small size mm prototype chip was fabricated in the

AMS 0.35- m CMOS process. Its microphotograph is shown in

Fig. 11. We can see the array of 32 32 i&f pixels of approx-

imately mm in size, the digital controller of size around

m , the kernel static RAM of 32 32 4-bit words

of size m , and the left/right column shifter of size

m . We can also see the row and column arbiters

of the AER-out section. The remainder of the circuits occupies

a small amount of area.

The chip can address an input space of 128 128 pixels. A set

of configuration registers loaded at startup indicate the corner

coordinates of the 32 32 pixels within the 128 128 input ad-

dress space. The chip can generate output events at a maximum

rate of4 eps (events/s: event communication cycle time

of 40 ns).5 The input events throughput depends on kernel size

and internal clock frequency. The event cycle time is given by

, where is the number of programmed

kernel lines (from 1 to 32) and is the internal clock period.

The internal clock could be set up to 200 MHz ns

before observing operation degradation. Maximum input event

throughput can therefore vary between eps (30-ns event

cycle time) for a one line kernel down to eps (340-ns

event cycle time) for a full 32 line kernel. The power consump-

tion of the chip depends on input AER throughput and kernel

size. For example, for a high input throughput, the power con-

sumption varies between 66–150 mW, depending on kernel size.

The different parameters the user can control are shown in

Table I. The top eight are analog parameters, while the two

bottom parameters are digital words. Current biases are con-

trolled by digital words in peripheral current DACs. Other dig-

ital words loaded at startup are the calibration words for each

pixel and the kernel size and weights.

The pixel layout is shown in Fig. 12. The left side shows a

complete pixel, with its different components highlighted: the

4Measured by shorting output Rqst and Ack lines.

5An event rate of 25 Meps is a fairly high rate for present state-of-the-art AER
chips. For example, in the multi-AER module vision system reported in [64] the
event rate was always below 1 Meps at any AER link.

TABLE I

BIASES AND PARAMETERS

integration capacitor, the calibration circuitry, the pulsing and

weighting nMOS and pMOS transistors that feed the capacitor,

the logic block of Fig. 9, the set of dynamic weight registers

that hold the pixel convolution weight, the comparator used for

the forgetting circuitry, and the asynchronous logic for gener-

ating the output events (half of it shown in Fig. 10). The area

of the active circuitry is m , where the routing is

not included. The routing lines are shared by the neighbors, by

grouping four pixels symmetrically around the center as shown

in the right-hand side of Fig. 12. This way, the integrating ca-

pacitors of the four pixels, which are the most noise sensitive el-

ements, are placed close together in the center. The most noise

sensitive analog lines are routed (like voltage bias lines) close

to the capacitors. The dynamic weight registers and the logic

block are the noisiest circuits within the pixel and are kept as

far as possible from the capacitors. The calibration circuitry is

loaded at startup and remains silent throughout normal opera-

tion. The AER output asynchronous logic is triggered when the

capacitor reaches threshold, and thus does not disturb the capac-

itor while it is being charged. The pitch of the four pixel layout

inside the pixel array is m m. Consequently,

the effective pixel area, including routing is m .

Next we show some experimental chip measurements, in-

cluding characterizations and image processing operations. The

chip is used and characterized by means of a specially developed

AER infrastructure based on FPGAs [71]. From this infrastruc-

ture, we used two functional elements: 1) an AER sequencer,

which takes artificially generated AER sequences stored in a

computer’s memory and transforms them into physical AER

streams and 2) an AER data logger, which collects AER streams

and either visualizes them on a computer screen in real time or

stores the data in computer’s memory for later analysis.

A. Pixel Characterization

The first measurements consist of characterizing the pixel re-

sponse to different convolution weights and calibration words.

For this, a uniform image was transformed into AER and fed

into the chip input AER port. Then, the generated AER output

events were collected, the frequency for each pixel identified,

and all pixel frequencies represented as a 2-D image. First, the

pixel output frequencies were measured without calibration as a

2556 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

Fig. 12. Layout of i&f neuron pixel, on the left. On the right, four pixels with horizontal and vertical symmetry for sharing common routing lines.

Fig. 13. Measured pixel frequencies as function of convolution weight, for all
32�32 = 1024 pixels. (a) Before calibration (constantw). (b) After calibra-
tion (optimumw for each pixel). (c) Computed standard deviations (in %) of
measured relative frequency spreads among pixels before and after calibration.

function of convolution weight only. This is shown in Fig. 13(a),

where convolution weights were varied from 7 to 7, and the

measured frequencies of all pixels are shown.

We can see that, for positive output events, frequencies at max-

imum convolution weight have a dispersion of 110 Hz over a

range of 155 Hz. Consequently, relative spread is 71%. Simi-

larly, for negative output events, frequencies at maximum con-

volution weight present a spread of over a range of 75 Hz, which

corresponds to a relative spread of 87%.

Fig. 14. Gabor kernel for vertical edge extraction.

To calibrate the array of pixels, all pixels were loaded with

the same convolution weight and calibration weight, convolu-

tion weights were set to either the maximum positive value (7)

or to the minimum negative value (7), and the 5-bit calibration

word was swept from 1 to 32. Pixel output frequencies and rel-

ative values between and (as well as and)

were identified, and for each pixel one positive and one negative

calibration word was selected to minimize the frequency spread

between all pixels. Once this set of 5-bit cal-

ibration words was identified, it was loaded into the pixels cal-

ibration static registers, and the pixels frequencies versus con-

volution weight were measured again. The result is shown in

Fig. 13(b). Fig. 13(c) shows the resulting precision as a func-

tion of convolution weight. As can be seen, standard deviation

after calibration is kept below 2%.

Pixel operation is characterized by a special parameter

defined as “the number of maximum charge packets required

to produce an output event” . According to Fig. 5, the

maximum positive current charging up the pixel capacitor is6

. The voltage increment after one such maximum pulse

is , where is the pulse width. is

usually set to the maximum possible value imposed by the

maximum event throughput, which is , as

stated earlier. For maximum clock frequency (200 MHz),

can be set between 30 and 340 ns, depending on the number

6The maximum negative current is 7I , which, after calibration, should
be 7I .

SERRANO-GOTARREDONA et al.: NEUROMORPHIC CORTICAL-LAYER MICROCHIP 2557

Fig. 15. Experimentally obtained convolution processing results with a Gabor kernel for vertical edge extraction. (a) Real image from which we use a 32 �
32 subimage. (b) Selected input subimage from (a). (c) Ideal convolution output computed with MATLAB. (d) Experimentally obtained convolution output
with calibration ON. (e) Experimentally obtained convolution output with calibration OFF. (f) Numerical representation of pixel frequency for one of the rows
(row 21 starting from bottom) obtained from (c), (d), and (e).

of kernel lines . If the pixel capacitor only re-

ceives maximum current pulses of the same sign, then we can

compute as

(3)

Pixel capacitor has a value of about fF,

is usually set around 0.5 V, and

can be set over a very wide range (from 10 pA to 100 A). This

allows the user to adjust a very wide range for : from one to

several hundred thousand maximum pulses. In a practical situa-

tion, where multiple convolutions are cascaded in a multilayer

2558 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

Fig. 16. Convolution with forgetting. The mosaic on the top shows the input image, the ideal output image, and 18 different outputs, each with a different
forgetting ratio. The first output was obtained with forgetting disabled, while the rest were set to the forgetting ratio indicated on top of each image. Forgetting
ratios are expressed in percent (100� t =T). In the lower part, the experimentally obtained pixel frequency for some of the forgetting ratios is shown.

AER cortical system, it is convenient to keep the same max-

imum pixel firing frequency for all stages. This means that if

input event maximum pixel frequency is , then convolution

output pixel maximum frequency should also be . Conse-

quently, should be adjusted according to kernel shape: if

an input image is presented that produces the maximum pos-

sible convolution output, the most active output pixels should

fire events also at . For example, if kernel size is 32 32

with all weights at maximum value (7), and input image is a

32 32 square of maximum value (input pixels fire at),

then the central pixel receives, during a time period of ,

maximum pulses, and should generate output

events at a rate of . Therefore, should be 1024. For

the example 9 9 kernel in Fig. 14 if a perfect edge with half

pixels at and the other half at is centered with the

kernel, then , where is the

sum of all of the kernel weights (in absolute value) shown in

Fig. 14.

During the calibration procedure described above, we set

(by setting nA, ns,

), and a kernel of size

1 1 with . Frequency of input events was 200 Hz.

SERRANO-GOTARREDONA et al.: NEUROMORPHIC CORTICAL-LAYER MICROCHIP 2559

B. Convolution Processing of Images

This chip can be programmed to compute convolutions with

kernels of arbitrary size and shape, as long as size is less than or

equal to 32 32 pixels and shape is discretized to a four bit res-

olution (including sign). To illustrate convolution processing,

we programmed the 9 9 Gabor kernel shown in Fig. 14, used

typically in image processing for orientation extraction. As

input image we selected a real photograph [shown in Fig. 15(a)]

and selected from it the 32 32 subimage shown in Fig. 15(b).

Fig. 15(c) shows the result of the mathematical computation

(with MATLAB) of this input image with the kernel in Fig. 14.

The images shown in Fig. 15(d) and (e) are obtained exper-

imentally from the convolution chip by collecting the AER

output stream and reconstructing it in a computer. The image in

Fig. 15(d) corresponds to the output obtained when calibration

is turned ON and Fig. 15(e) when it is OFF. The numerical

frequency values for row 21 (row count starts from bottom)

are shown in Fig. 15(f), comparing the cases of calibrated and

uncalibrated outputs with respect to the ideal output.

C. Convolution Processing With Forgetting

The effect of introducing a loss (or forgetting) mechanism in

the convolution integration is equivalent to adding a threshold

for the outputs. This is quite obvious, because now the integral

of the weighted incoming events within a given time interval has

to overcome the effect of the loss. The experimental confirma-

tion of this can be seen in Fig. 16. The forgetting rate is adjusted,

through the chip configuration registers, by setting the period

of the global forgetting signal (in Figs. 5 and 9)

and its width . For the results in Fig. 16, was set con-

stant and equal to 630 ns, while was changed between in-

finity (no forgetting) and 15 s. The forgetting ratio is defined

as . In the top part of Fig. 16, a mosaic with different

images is shown. The top left image corresponds to the input

image used for this experiment, which is also a 32 32 sub-

frame of the photograph in Fig. 15(a). Convolutions are com-

puted using the kernel in Fig. 14. The image below this one

is the mathematically computed ideal output, and the rest are

chip outputs for different forgetting ratios from 0 (disabled)

to 0.042. The gray levels code from maximum positive output

(white) to minimum negative output (black). Consequently, zero

output activity is coded by an intermediate gray level. The pixels

with zero activity have been marked with a small black dot. As

forgetting ratio is increased, we can see there are larger areas

with zero output activity, while only those areas with activity

above a positive threshold or below a negative threshold yield

nonzero outputs. The bottom part in Fig. 16 shows the numer-

ical pixel frequency values measured experimentally along row

21 for some of the forgetting ratios. Input events were coming

in with a pixel maximum frequency of 2.1 kHz. We can see that

increasing the forgetting ratio not only introduces a thresholding

effect, but also a global attenuation of the output signals. This is

because the average current integrated onto the capacitor is

the semi-rectified version of the difference between the average

pulsing current produced by the input events and the average

forgetting current . This can be seen in Fig. 17(a), where as

the forgetting current is increased a central gap appears, and the

Fig. 17. Visualization of thresholding effect of forgetting mechanism. (a) I
is kept constant while forgetting current is increased, thus producing a reduction
of net capacitor current and attenuation of output frequency. (b) To compensate
for this effect, currents I are scaled by a factor � to maintain constant output
frequency.

net average capacitor current decreases. To compensate for

this, the charging currents produced by the input events can be

scaled by a factor . This is illustrated in Fig. 17(b), where we

can see that the maximum current (and therefore, maximum

output frequency) is kept constant. The data shown in Fig. 16

were obtained following the scheme in Fig. 17(a), without com-

pensation .

D. Convolution With Forgetting for Spatio-Temporal

Correlated Pattern Detection

An interesting feature of processing convolutions with lossy

integration or forgetting, is that it allows for spatio-temporal

correlated pattern detection. This means that in order to rec-

ognize a given object shape, the features forming this pattern

have to appear within a given time interval. To illustrate this

we will program the convolution chip to detect a circumference

of radius 12 pixels. Fig. 18(a) shows the 32 32 kernel pro-

grammed for this operation. Note that the kernel is such that for

pixels on the circumference of radius 12 the kernel has value 2,

while for the rest the kernel has value 1. The kernel has 120

pixels of value 2. This kernel, when convolved with the input

image in Fig. 18(b), provides an output image with all pixels

saturated at the minimum negative value except for the center

of the circumference which will be maximum positive. In this

experiment, the 120 pixels of the circumference were firing at

a frequency of 2.5 kHz, and the active output pixel was firing

at the same frequency. The value of for the pixels was set

to 34.3. If we now present the input image as two half circles7

[see Fig. 18(c), (d)], the output of the convolution will be dif-

ferent depending on whether or not forgetting is turned ON. If

forgetting is turned ON, the output of the chip is the one shown

in Fig. 18(e), which means that the chip does not recognize the

two half circles sequenced in time as a single circumference.

However, if forgetting is turned OFF, the chip output is shown in

Fig. 18(f) and the chip does recognize the two halves as a single

circumference. Consequently, forgetting allows the system to

discriminate whether the features of a figure appear within a

certain time frame, so that they can be considered as being orig-

inated by the presence of the figure and not by the sequential

presence of two or more separate pieces of a figure. This way,

7During a time interval of 100 ms, only pixels of one half circumference were
activated. During the next 100-ms interval, the pixels of the other half were
activated, and so on.

2560 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

Fig. 18. Spatio-temporal pattern recognition by performing convolution with lossy integration (forgetting). (a) Circumference kernel of radius ten pixels.
(b) Circumference input image of radius ten pixels. (c) Left half of input circle and (d) right half of input circle. (e) Output with forgetting ON. (f) Output with
forgetting OFF.

the convolution chip processing is equivalent to a coincidence

detector.

E. Recognition of Rotating Propellers

An experiment that demonstrates the high-speed processing

capabilities of AER based systems is the recognition of high-

speed rotating propellers. For this, we will feed the convolution

chip with a stimulus consisting of two rotating propellers. Each

propeller has a different shape, as shown in Fig. 19. One is rec-

tilinear, and the other has an S-like shape. When the propellers

rotate at high speed, one only sees a solid circle that moves

slowly across the screen. Therefore, a human observer would

not be able to discriminate between the two propellers. In this

experiment, we generated an artificial sequence of events repre-

senting the rotating propellers. This sequence of events was gen-

erated numerically as explained in the Appendix and physically

provided in real-time by a sequencer PCB [72], [73] connected

SERRANO-GOTARREDONA et al.: NEUROMORPHIC CORTICAL-LAYER MICROCHIP 2561

Fig. 19. Response of convolution chip to two rotating propellers of different
shape. The top row corresponds to an S-shaped propeller, while the bottom row
corresponds to a rectilinear propeller. The kernel programmed onto the chip is
for recognizing the S-shaped propeller when it is in horizontal position. The
left-hand columns show the input stimuli. Since the propellers are rotating at
high speeds, only solid circles are seen. The right-hand columns show the output
of the convolution processing. The top output detects the S-shaped propeller in
horizontal position. Consequently, in the top output a dot would be seen moving
along the screen, which means that the s-shaped propeller is being followed. The
bottom output is empty, since the convolution chip does not detect an S-shaped
propeller.

Fig. 20. Real-time recognition and monitoring of high speed (100 revolu-
tions/s) simultaneous rotating propellers. Left-hand frames are inputs, and
right-hand frames are outputs of convolution processing. Top frames are the
result of collecting events during 0.9 s, while bottom frames are the result of
collecting events for 1 ms (1/10 of a revolution).

to the input AER port of our convolution chip.8 The input and

output AER ports of the convolution chip were recorded simul-

taneously using a monitor PCB [72], [73]. All input and output

events, conveniently time-stamped, were recorded in computer

memory for careful analysis. Note that AER streams are not

represented by sequences of frames (as in conventional video).

However, to show the results graphically, we will collect events

during certain time intervals, and show 2-D images. This is, for

8Note that we had to generate this stimulus artificially because presently there
is no AER motion retina capable of correctly sensing propellers rotating up to
5000 revolutions per second. For example, the AER motion retina in [36] is able
to sense rotations of up to 400–500 revolutions per second.

Fig. 21. Real-time recognition and monitoring of high speed (5000 revs/sec)
rotating propellers. Left-hand frames: rotating propeller is rectilinear. Right-
hand frames: rotating propeller is S-shaped. Top four frames were collected
during 150 ms. Bottom four frames were collected during 50 �s (1/4 of a pro-
peller revolution).

example, what we show in Figs. 20 and 21. Fig. 20 corresponds

to an experiment where two propellers rotating at 100 revolu-

tions per second (6-k revolutions per minute) move across the

screen and intersect at a given point. One propeller is rectilinear

and the other is S-shaped. Each propeller has a diameter of 16

pixels. The frames shown have 48 pixels in width and height.9

There are four frames shown in Fig. 20. Those on the left-hand

side correspond to the input stimulus (the rotating propellers),

and those on the right-hand side to the output. The bottom ones

were generated collecting events during a short time interval of

1 ms (which corresponds to 1/10 of one propeller revolution),

while the top ones correspond to a much longer time interval of

0.9 s. The convolution chip was programmed with a kernel to

detect the center of the S-shaped propeller when it is in the hor-

izontal position. As can be seen, the output of the convolution

chip follows the center of the S-shaped propeller as it moves

across the screen. In this experiment forgetting ratio was set to

0.13, , and . The kernel

loaded for this experiment is shown in Fig. 22, where weights

of value 3, 3, and 7 (from dark to light) were used.

Fig. 21 shows the results of a similar experiment, but now

the propellers are rotating at 5000 revolutions per second (300 k

revolutions per minute). The programmed kernel is also given

by the drawing in Fig. 22, but with weights of value 1, 0, and

9Although each convolution chip has an array of 32 � 32 pixels, remember
that the input address space it can process is 128 � 128.

2562 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

Fig. 22. Kernel used for the rotating propeller recognition experiments. For the
propeller experiment rotating at 100 revolutions per second, the kernel weight
values were �3, +3, and +7, while for the propeller experiment rotating at
5000 revolutions per second the kernel weight values were �1, 0, and+6.

6 (from dark to light). The input stimulus is either the rec-

tilinear propeller or the S-shaped propeller. The four bottom

frames were generated using a 50- s time interval (1/4 of a

propeller revolution), while the four top ones used a time in-

terval of 150 ms (one complete back-and-forth screen crossing).

The left-hand frames correspond to the case of the input rec-

tilinear propeller and the right-hand frames to the case of the

input S-shaped propeller. As can be seen, the convolution chip

correctly follows the S-shaped propeller, while for the recti-

linear propeller only some spurious noise is observed at the

output. In this experiment, the forgetting ratio was set to 0.0025,

nA, and , and an array 2 2

of convolution chips was assembled with a total of 64 64 i&f

pixels.

In a practical setup, for example, a motion AER image sensor

would be required. For example, the one presented in [36] is able

to sense rotating images at up to 400–500 Hz. If the size of the

propellers is not known a priori (for example, if the distance

to the imager can change), then several convolution chips are

required in parallel, each programmed with kernels of different

size [64].

Note that using conventional frame-based image processing

methods to discriminate between the two propellers is a compli-

cated task, which requires a high computational load. First, im-

ages must be acquired with an exposure time of at least 100 s.

The recorded propeller may appear with any angle, so the con-

volution kernels would have to be processed for different orien-

tations (for example, ten different orientations). All this must be

performed in real time.

V. CONCLUSION

We have presented an AER-based transceiver chip that

computes convolutions on its 2-D input AER data stream. The

pixels can also be programmed to allow a forgetting rate, which

allows for thresholding and coincidence detections. The kernel

of the convolutions can be programed with 4-bit resolution

and can be up to 32 32 pixels in size. The chip can receive

AER input data representing images of up to 128 128 pixels,

although its output space is only 32 32 pixels. The chip

can be tiled in a matrix fashion, so that an array of

chips can provide an output space of pixels. The

chip can handle an input event throughput of between 3 and

Fig. 23. Diagram of half propeller rotating counterclockwise.

33 Mega-events per second, depending on programmed kernel

size, and is capable of generating output events at a maximum

rate of 25 Mega-events per second. Pixel operation is based

on integrating programmable current pulses, using special

techniques which allow to program current pulses down to pi-

coamperes within nanoseconds delays. Extensive experimental

measurements have been provided, including real-time image

processing and recognition tasks, including 2-D image filtering

operations, coincidence detections, and recognition/discrimi-

nation of propellers rotating at speeds of up to 5000 revolutions

per second. The presented AER programmable-convolu-

tion/programmable-forgetting rate transceiver chip is a key

element for the future development of multilayer hierarchically

structured artificial cortical systems for performing complex

cognitive tasks. This work has been developed in the context

of the EU funded CAVIAR (IST-2001-34124) project, where

a multi-AER-module vision demonstrator was assembled [64],

which includes the convolution chip reported in this paper, an

AER motion sensing retina [36], a 2-D AER Winner-Takes-All

module [74], a hebbian-based associative learning module [75],

and a set of chip–chip and chip–computer AER interfaces [72],

[73].

APPENDIX

To artificially generate the stream of input events representing

a propeller (rectilinear or S-shaped) rotating at revolu-

tions per second, we used the following procedure. Consider

the half propeller rotating counter clockwise shown in Fig. 23

having size and height . This rotating half propeller sweeps

the circular area of radius . Consider now the grid of pixels in-

side the square . Every time the rotating half

propeller intersects the center of a pixel , an event for that

pixel coordinate is produced at the time of this intersection. Con-

sequently, this event is represented by . We wrote a

little MATLAB script that returns the time it takes for the half

propeller in Fig. 23 to intersect the center of a pixel , given

, , and . If

a pixel is outside the circle of radius , it would return , in-

dicating that no event with this coordinate was produced. This

way, one full rotation of the half propeller would produce as

many events as there are pixels inside the circle of radius . For

the propellers in Figs. 20 and 21, we used . Consequently,

there are about events produced for each half-pro-

peller revolution. The following MATLAB script shows how to

generate the events for a half propeller full revolution.

SERRANO-GOTARREDONA et al.: NEUROMORPHIC CORTICAL-LAYER MICROCHIP 2563

function events = geteventsPP(Trot; nh; R)

for x = 1 : 2 � R

for y = 1 : 2 � R

tt0(y + 2 � R � (x � 1)) =
event time(Trot; nh; x; y; R);

xt0(y + 2 � R � (x � 1)) = x;

yt0(y + 2 � R � (x � 1)) = y;

end

end

indx0 = find(tt0 > �0:5);

tt1 = tt0(indx0);

xt1 = xt0(indx0);

yt1 = yt0(indx0);

[tmp ii] = sort(tt1);

events = [tt1(ii); xt1(ii); yt1(ii)];

This script sweeps the coordinates of the pixels con-

taining the half propeller full revolution. For each pixel, the

function is called, which provides the timestamp

for that pixel event. Afterwards, the pixels not producing any

events are discarded, and the rest are ordered in time. For gen-

erating a full propeller, the events of the half propeller are sep-

arated into the first half time and second

half time . For the events of the first half

time we add to each timestamp, and for the events of the

second half time we subtract from each timestamp. Then

we merge all events of the two half-time propellers and reorder

them according to their timestamps. This is performed by the

following MATLAB script.

function events full propeller =one rot propeller
(Trot; nh; R)

events1 = getevents(Trot; nh; R);

indx0 = find(events1(1; :) > Trot=2);

events2A = events1(:; indx0);

events2A(1; :) = events2A(1; :) � Trot=2;

LT = length(events1);

LA = length(indx0);

events2B = events1(:; 1 : LT � LA);

events2B(1; :) = events2B(1; :) + Trot=2;

events2 = [events2A; events2B];

ee = [events1; events2];

[tmp ii] = sort(ee(1; :));

events full propeller =[ee(1; ii); ee(2; ii); ee(3; ii)];

If we now want to add motion to the rotating propeller, the

procedure is simply to add a trajectory vector de-

scribing the motion of the central point of the propeller. In gen-

eral, if is the initial propeller center position and

is its instantaneous velocity vector, then the pro-

peller center trajectory vector is given by

(4)

In the case of a rectilinear motion of constant speed, and

are constant, and the trajectory vector would be given

by

(5)

The values calculated for are then added to the - and

-coordinates of the rotating propeller events. This is done by

the following MATLAB script.

function ee2 =
moving propeller(Trot; nh; R; Nrevs; xo; yo; vx; vy)

ees = one rot propeller(Trot; nh; R);

ee2 = ees;

for i = 1 : Nrevs � 1

ees(1; :) = ees(1; :) + Trot;

ee2 = [ee2; ees];

end

ee2(2; :) = ee2(2; :) + (xo� R) + round(vx � ee2(1; :));

ee2(3; :) = ee2(3; :) + (yo� R) + round(vy � ee2(1; :));

The new input arguments are the number of propeller revo-

lutions , the starting coordinate for the propeller center

, and the rectilinear speed . First, the script gen-

erates the events for the number of propeller revolutions speci-

fied. Afterwards, it applies (5) to these events. The new - and

-coordinates are rounded to the nearest integer. The value for

time in (5) is taken from the timestamp of each event.

REFERENCES

[1] H. Fujii, H. Ito, K. Aihara, N. Ichinose, and M. Tsukada, “Dynam-

ical cell assembly hypothesis—theoretical possibility of spatio-tem-

poral coding in the cortex,” Neural Netw., vol. 9, pp. 1303–1350, 1996.

[2] G. A. Orban, Neural Operations in the Visual Cortex. Berlin, Ger-

many: Springer-Verlag, 1984.

[3] M. Shadlen and W. T. Newsome, “Noise, neural codes and cortical

organization,” Current Opinion Neurobiol., vol. 4, pp. 569–579, 1994.

[4] G. M. Shepherd, The Synaptic Organization of the Brain, 3rd ed.

Oxford, U.K.: Oxford Univ. Press, 1990.

[5] K. Fukushima, “Visual feature extraction by a multilayered network of

analog threshold elements,” IEEE Trans. Syst. Sci. Cybern., vol. SC-5,

no. 4, pp. 322–333, Oct. 1969.

[6] K. Fukushima and S. Miyake, “Neocognitron: A new algorithm for pat-

tern recognition tolerant of deformations and shifts in position,” Pattern

Recogn., vol. 15, pp. 455–469, 1982.

[7] K. Fukushima, “Neocognitron: A hierarchical neural network capable

of visual pattern recognition,” Neural Netw., vol. 1, pp. 119–130, 1988.

[8] ——, “Analysis of the process of visual pattern recognition by the

neocognitron,” Neural Netw., vol. 2, pp. 413–420, 1989.

[9] Y. Le Cun and Y. Bengio, “Convolutional networks for images, speech,

and time series,” in Handbook of Brain Theory and Neural Networks,

M. A. Arbib, Ed. Cambridge, MA: MIT Press, 1995, pp. 255–258.

2564 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

[10] C. Neubauer, “Evaluation of convolution neural networks for visual

recognition,” IEEE Trans. Neural Netw., vol. 9, no. 4, pp. 685–696,

Jul. 1998.

[11] M. Matsugu, K. Mori, M. Ishi, and Y. Mitarai, “Convolutional spiking

neural network model for robust face detection,” in Proc. 9th Int. Conf.

Neural Inf. Process. (ICONIP’02), 2002, vol. 2, pp. 660–664.

[12] B. Fasel, “Robust face analysis using convolutional neural networks,”
in Proc. Int. Conf. Pattern Recogn. (ICPR’02), 2002, pp. 40–43.

[13] M. Browne and S. S. Ghidary, “Convolutional neural networks

for image processing: an application in robot vision,” in Advances

Artif. Intell.: Proc. 16th Australian Conf. on AI, Nov. 2003, pp.

641–652.

[14] R. Serrano-Gotarredona, T. Serrano-Gotarredona, A. Acosta-Jiménez,

and B. Linares-Barranco, “An arbitrary kernel convolution AER-trans-

ceiver chip for real-time image filtering,” in Proc. IEEE Int. Conf. Cir-

cuits Syst. (ISCAS’06), 2006, pp. 3145–3148.

[15] M. Sivilotti, “Wiring considerations in analog VLSI systems with ap-

plication to field-programmable networks,” Ph.D. dissertation, Comp.

Sci. Div., California Inst. Technol., Pasadena, CA, 1991.

[16] M. Mahowald, “VLSI analogs of neural visual processing: A synthesis

of form and function,” Ph.D. dissertation, Comp. Sci. Div., California

Inst. Technol., Pasadena, CA, 1992.

[17] ——, An Analog VLSI Stereoscopic Vision System. Boston, MA:

Kluwer, 1994.

[18] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Silvilotti, and D. Gille-

spie, “Silicon auditory processors as computer peripherals,” IEEE

Trans. Neural Netw,, vol. 4, no. 3, pp. 523–528, May 1993.

[19] J. P. Lazzaro and J. Wawrzynek, “A multi-sender asynchronous ex-

tension to the address-event protocol,” in Proc. 16th Conf. Advanced

Res. VLSI, W. J. Dally, J. W. Poulton, and A. T. Ishii, Eds., 1995, pp.

158–169.

[20] A. Mortara and E. A. Vittoz, “A communication architecture tailored

for analog VLSI artificial neural networks: Intrinsic performance and

limitations,” IEEE Trans. Neural Netw., vol. 5, no. 3, pp. 459–466, Jul.

1994.

[21] A. Mortara, E. A. Vittoz, and P. Venier, “A communication scheme for

analog VLSI perceptive systems,” IEEE J. Solid-State Circuits, vol. 30,

no. 6, pp. 660–669, Jun. 1995.

[22] Z. Kalayjian and A. G. Andreou, “Asynchronous communication of

2-D motion information using winner-takes-all arbitration,” Int. J.

Analog Integr. Circuits Signal Proc., vol. 13, no. 1–2, pp. 103–109,

Mar./Apr. 1997.

[23] K. A. Boahen, “Communicating neuronal ensembles between neuro-

morphic chips,” in Neuromorphic Systems Engineering: Neural Net-

works in Silicon, T. S. Lande, Ed. Norwell, MA: Kluwer, 1998, ch.

11.

[24] ——, “Point-to-point connectivity between neuromorphic chips using

address events,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal

Process., vol. 47, no. 5, pp. 416–434, May 2000.

[25] ——, “A burst-mode word-serial address-event link—Part I: Trans-

mitter design,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no.

7, pp. 1269–1280, Jul. 2004.

[26] ——, “A burst-mode word-serial address-event link—Part II: Receiver

design,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 7, pp.

1281–1291, Jul. 2004.

[27] ——, “A burst-mode word-serial address-event link—Part III: Anal-

ysis and test results,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51,

no. 7, pp. 1292–1300, Jul. 2004.

[28] E. Culurciello, R. Etienne-Cummings, and K. A. Boahen, “A biomor-

phic digital image sensor,” IEEE J. Solid-State Circuits, vol. 38, no. 2,

pp. 281–294, Feb. 2003.

[29] P. F. Ruedi et al., “A 128 � 128, pixel 120-dB dynamic-range vi-

sion-sensor chip for image contrast and orientation extraction,” IEEE

J. Solid-State Circuits, vol. 38, no. 12, pp. 2325–2333, Dec. 2003.

[30] M. Barbaro, P. Y. Burgi, A. Mortara, P. Nussbaum, and F. Heitger, “A

100� 100 pixel silicon retina for gradient extraction with steering filter

capabilities and temporal output coding,” IEEE J. Solid-State Circuits,

vol. 37, no. 2, pp. 160–172, Feb. 2002.

[31] C. Shoushun and A. Bermak, “A low power CMOS imager based on

time-to-first-spike encoding and fair AER,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS’05), 2005, pp. 5306–5309.

[32] X. G. Qi, X. , and J. Harris, “A time-to-first-spike CMOS imager,”
in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS’04), Vancouver, BC,

Canada, 2004, pp. 824–827.

[33] M. Azadmehr, J. Abrahamsen, and P. Häfliger, “A foveated AER im-

ager chip,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS’05), Kobe,

Japan, 2005, pp. 2751–2754.

[34] J. Kramer, “An on/off transient imager with event-driven, asyn-

chronous read-out,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS’02),

Phoenix, AZ, 2002, pp. 165–168.

[35] P. Lichtsteiner, T. Delbrück, and J. Kramer, “Improved on/off tempo-

rally differentiating address-event imager,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS’04), Vancouver, BC, Canada, 2004, pp. 211–214.

[36] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 � 128 120 dB

30 mW asynchronous vision sensor that responds to relative intensity

change,” in IEEE ISSCC Dig. Tech. Papers, San Francisco, CA, 2006,

pp. 508–509.

[37] M. Arias-Estrada, D. Poussart, and M. Tremblay, “Motion vision

sensor architecture with asynchronous self-signaling pixels,” in

Proc. 7th Int. Workshop Comput. Architecture Machine Perception

(CAMP’97), 1997, pp. 75–83.

[38] C. M. Higgins and S. A. Shams, “A biologically inspired modular VLSI

system for visual measurement of self-motion,” IEEE Sensors J., vol.

2, no. 6, pp. 508–528, Dec. 2002.

[39] E. Özalevli and C. M. Higgins, “Reconfigurable biologically inspired

visual motion system using modular neuromorphic VLSI chips,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 1, pp. 79–92, Jan. 2005.

[40] G. Indiveri, A. M. Whatley, and J. Kramer, “A reconfigurable neu-

romorphic VLSI multi-chip system applied to visual motion compu-

tation,” in Proc. Int. Conf. Microelectron. Neural, Fuzzy Bio-Inspired

Syst. (Microneuro’99), Granada, Spain, 1999, pp. 37–44.

[41] K. Boahen, “Retinomorphic chips that seez quadruple images,” in

Proc. Int. Conf. Microelectron. Neural, Fuzzy Bio-Inspired Syst.

(Microneuro’99), Granada, Spain, 1999, pp. 12–20.

[42] R. Z. Shi and T. K. Horiuchi, “A VLSI model of the bat dorsal nucleus

of the lateral lemniscus for azimuthal echolocation,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS’05), Kobe, Japan, 2005, pp. 4217–4220.

[43] A. van Schaik and S.-C. Liu, “AER EAR: a matched silicon cochlea

pair with address event representation interface,” in Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS’05), Kobe, Japan, 2005, pp. 4213–4216.

[44] G. Cauwenberghs, N. Kumar, W. Himmelbauer, and A. G. Andreou,

“An analog VLSI chip with asynchronous interface for auditory feature

extraction,” IEEE Trans. Circ. Syst. II, Analog Digit. Signal Process.,

vol. 45, no. 5, pp. 600–606, May 1998.

[45] M. Oster and S.-C. Liu, “Spiking inputs to a spiking winner-take-all cir-

cuit,” in Advances in Neural Information Processing Systems, Y. Weiss,

B. Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT Press, 2006,

vol. 18, pp. 1051–1058 [Online]. Available: http://books.nips.cc/pa-

pers/files/nips18/NIPS2005_0521.pdf, (NIPS’06)

[46] J. Abrahamsen, P. Häfliger, and T. S. Lande, “A time domain

winner-take-all network of integrate-and-fire neurons,” in Proc. IEEE

Int. Symp. Circuits Syst. (ISCAS’04), Vancouver, BC, Canada, May

2004, vol. V, pp. 361–364.

[47] E. Chicca, G. Indiveri, and R. J. Douglas, “An event-based VLSI net-

work of integrate-and-fire neurons,” in Proc. IEEE Int. Symp. Circuits

Syst. (ISCAS’04), Vancouver, BC, Canada, 2004, vol. V, pp. 357–360.

[48] T. Teixeira, A. G. Andreou, and E. Culurciello, “Event-based imaging

with active illumination in sensor networks,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS’05), Kobe, Japan, 2005, pp. 644–647.

[49] P. Häfliger, “Asynchronous event redirecting in bio-inspired commu-

nication,” in Proc. ICECS01, 2001, pp. 87–90.

[50] D. H. Goldberg, G. Cauwenberghs, and A. G. Andreou, “Proba-

bilistic synaptic weighting in a reconfigurable network of VLSI

integrate-and-fire neurons,” Neural Netw., vol. 14, no. 6–7, pp.

781–793, 2001.

[51] R. J. Vogelstein, U. Mallik, and G. Cauwenberghs, “Silicon spike-based

synaptic array and address-event transceiver,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS’04), 2004, vol. 5, pp. 385–388.

[52] R. J. Vogelstein, F. Tenore, R. Philipp, M. S. Adlerstein, D. H. Gold-

berg, and G. Cauwenberghs, “Spike timing-dependent plasticity in the

address domain,” in Advances in Neural Information Processing Sys-

tems, S. Becker, S. Thrun, and K. Obermayer, Eds. Cambridge, MA:

MIT Press, 2003, vol. 15.

[53] R. J. Vogelstein, U. Mallik, G. Cauwenberghs, E. Culurciello, and R.

Etienne-Cummings, “Saliency-driven image acuity modulation on a re-

configurable silicon array of spiking neurons,” in Advances in Neural

Information Processing Systems, L. K. Saul, Y. Weiss, and L. Bottou,

Eds. Cambridge, MA: MIT Press, 2005, vol. 17, pp. 1457–1464.

SERRANO-GOTARREDONA et al.: NEUROMORPHIC CORTICAL-LAYER MICROCHIP 2565

[54] U. Mallik, R. J. Vogelstein, E. Culurciello, R. Etienne-Cummings, and

G. Cauwenberghs, “A real-time spike-domain sensory information pro-

cessing system,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS’05),

Kobe, Japan, 2005, pp. 1919–1922.

[55] R. J. Vogelstein, U. Mallik, E. Culurciello, R. Etienne-Cummings, and

G. Cauwenberghs, “Spatial acuity modulation of an address-event im-

ager,” in Proc. 11th IEEE Int. Conf. Electron., Circuits Syst. (ICECS

’04), Dec. 2004, pp. 207–210.

[56] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbrück, and R. Douglas, “Ori-

entation-selective aVLSI spiking neurons,” Neural Netw., vol. 14, pp.

629–643, 2001.

[57] P. Vernier, A. Mortara, X. Arreguit, and E. A. Vittoz, “An integrated

cortical layer for orientation enhancement,” IEEE J. Solid-State Cir-

cuits, vol. 32, no. 2, pp. 177–186, Feb. 1997.

[58] T. Serrano-Gotarredona, A. G. Andreou, and B. Linares-Barranco,

“AER image filtering architecture for vision processing systems,”
IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46,

no. 9, pp. 1064–1071, Sep. 1999.

[59] T. Y. W. Choi, B. E. Shi, and K. Boahen, “An ON-OFF orientation

selective address event representation image transceiver chip,” IEEE

Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 2, pp. 342–353, Feb.

2004.

[60] T. Y. W. Choi, P. A. Merolla, J. V. Arthur, K. A. Boahen, and B. E. Shi,

“Neuromorphic implementation of orientation hypercolummns,” IEEE

Trans. Circuits. Syst. I, Reg. Papers, vol. 52, no. 6, pp. 1049–1060, Jun.

2005.

[61] S. Grossberg, E. Mingolla, and J. Williamson, “Synthetic aperture radar

processing by a multiple scale neural system for boundary and surface

representation,” Neural Netw., vol. 8, no. 7/8, pp. 1005–1028, 1995.

[62] S. Grossberg, E. Mingolla, and W. D. Ross, “Visual brain and visual

perception: How does the cortex do perceptual grouping?,” Trends Neu-

rosci., vol. 20, pp. 106–111, 1997.

[63] E. Mingolla, W. Ross, and S. Grossberg, “A neural network for en-

hancing boundaries and surfaces in synthetic aperture radar images,”
Neural Netw., vol. 12, no. 3, pp. 499–511, 1999.

[64] R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Bar-

ranco, R. Paz-Vicente, F. Gómez-Rodríguez, H. Kolle Riis, T.

Delbrück, S. C. Liu, S. Zahnd, A. M. Whatley, R. Douglas, P.

Häfliger, G. Jimenez-Moreno, A. Civit, T. Serrano-Gotarredona, A.

Acosta-Jiménez, and B. Linares-Barranco, “AER building blocks

for multi-layers multi-chips neuromorphic vision systems,” in Ad-

vances in Neural Information Processing Systems, Y. Weiss, B.

Schölkopf, and J. Platt, Eds. Cambridge, MA: MIT Press, 2006,

vol. 18, pp. 1217–1224 [Online]. Available: http://books.nips.cc/pa-

pers/files/nips18/NIPS2005_0268.pdf, (NIPS’06)

[65] R. Serrano-Gotarredona, T. Serrano-Gotarredona, and B. Linares-Bar-

ranco, “Event generators for address event representation transmitters,”
in Proc. SPIE, Jun. 2005, vol. 5839, Bioengineered and Bioinspired

Systems, pp. 148–159.

[66] B. Linares-Barranco, T. Serrano-Gotarredona, R. Serrano-Go-

tarredona, and J. Costas-Santos, “A new charge-packet driven

mismatch-calibrated integrate-and-fire neuron for processing positive

and negative signals in AER based systems,” in Proc. IEEE Int. Symp.

Circuits Syst. (ISCAS’04), May 2004, vol. 5, pp. 744–747.

[67] B. Linares-Barranco and T. Serrano-Gotarredona, “On the design and

characterization of femtoampere current-mode circuits,” IEEE J. Solid-

State Circuits, vol. 38, no. 8, pp. 1353–1363, Aug. 2003.

[68] B. Linares-Barranco, T. Serrano-Gotarredona, R. Serrano-Go-

tarredona, and C. Serrano-Gotarredona, “Current-mode techniques for

sub-pico ampere circuit design,” Int. J. Analog Integr. Circuits Signal

Process., vol. 38, pp. 103–119, 2004.

[69] T. Serrano-Gotarredona and B. Linares-Barranco, “CMOS mismatch

model valid from weak to strong inversion,” in Proc. Eur. Solid State

Circuits Conf. (ESSCIRC’03), Sep. 2003, pp. 627–630.

[70] B. Linares-Barranco, T. Serrano-Gotarredona, and R. Serrano-Go-

tarredona, “Compact low-power calibration mini-DACs for neural

massive arrays with programmable weights,” IEEE Trans. Neural

Netw., vol. 14, no. 5, pp. 1207–1216, Sep. 2003.

[71] A. Linares-Barranco, G. Jimenez-Moreno, B. Linares-Barranco, and

A. Civit-Ballcels, “On algorithmic rate-coded AER generation,” IEEE

Trans. Neural Netw., vol. 17, no. 3, pp. 771–788, May 2006.

[72] F. Gomez-Rodriguez and R. Paz-Vicente et al., “AER tools for com-

munications and debugging,” in Proc. IEEE Int. Symp. Circuits Syst.,

(ISCAS’06), May 2006, pp. 3253–3256.

[73] R. Paz-Vicente and A. Linares-Barranco et al., “PCI-AER interface for

neuro-inspired spiking systems,” in Proc. IEEE Int. Symp. Circuits Syst.

(ISCAS’06), May 2006, pp. 3161–3164.

[74] S.-C. Liu and M. Öster, “Feature competition in a spike based

winner-take-all VLSI network,” in Proc. IEEE Int. Symp. Circuits

Syst. (ISCAS’06), May 2006, pp. 3634–363637.

[75] P. Häfliger, “Adaptive WTA with an analog VLSI neuromorphic

learning chip,” IEEE Trans. Neural Netw., submitted for publication.

[76] R. Serrano-Gotarredona et al., “On real-time AER 2D convolutions

hardware for neuromorphic spike based cortical processing,” IEEE

Trans. Neural Netw., submitted for publication.

[77] K. A. Zaghloul and K. Boahen, “Optic nerve signals in a neuromor-

phic chip: Part I and II,” IEEE Trans. Biomed. Eng., vol. 51, no. 4, pp.

657–675, Apr. 2004.

[78] J. Costas Santos et al., “A contrast retina with on-chip calibration for

neuromorphic spike-based AER vision systems,” IEEE Trans. Circuits

Syst. I, Reg. Papers, accepted for publication.

Rafael Serrano-Gotarredona received the B.S.
degree in telecommunications engineering from
the University of Seville, Sevilla, Spain, in 2002.
He is currently working toward the Ph.D. degree
at the “Instituto de Microelectrónica de Sevilla”
(IMSE-CNM-CSIC).

During June and July of 2006, he was with the
Department of Electrical and Computer Engineering,
Texas A&M University, College Station, as a Visiting
Scholar. He has also visited the Neuroinformatics
Institute of ETH, Switzerland, in the context of the

European-funded research project CAVIAR. His research interests include
analog and mixed-signal VLSI circuit design applied to vision processing
systems and high-speed LVDS chip communications.

Mr. Serrano-Gotarredona is the recipient of a scholarship from the Spanish
Ministry of Education and Science.

Teresa Serrano-Gotarredona received the B.S.
degree in electronic physics and the Ph.D degree
in VLSI neural categorizers from the University of
Seville, Sevilla, Spain, in 1992 and 1996, respec-
tively, and the M.S. degree from the Department
of Electrical and Computer Engineering, Johns
Hopkins University, Baltimore, MD, in 1997.

She completed her doctoral research at the “Sevilla
Microelectronics Institute” (IMSE), which is one
of the institutes of the “National Microelectronics
Center” (CNM) of the “Spanish Research Council”

(CSIC) of Spain. She was on a sabbatical stay at the Electrical Engineering
Department, Texas A&M University, College Station, during the spring of
2002. She was an Assistant Professor with the University of Seville from 1998
until 2000. Since June 2000, she has held a Tenured Scientist position with
the “Sevilla Microelectronics Institute” (IMSE), Sevilla, Spain. Since January
2006, she is also a part-time Professor at the university of Seville. Her research
interests include analog circuit design of linear and nonlinear circuits, VLSI
neural-based pattern recognition systems, VLSI implementations of neural
computing and sensory systems, transistor parameters mismatch characteri-
zation, address-event-representation VLSI, RF circuit design, and real-time
vision processing chips. She is coauthor of the book Adaptive Resonance

Theory Microchips (Kluwer, 1998).
Dr. Serrano-Gotarredona was corecipient of the 1997 IEEE TRANSACTIONS

ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS Best Paper Award for
the paper “A real-time clustering microchip neural engine” and of the IEEE
CAS Darlington Award for the paper “A General Translinear Principle for Sub-
threshold MOS Transistors.” While with the Johns Hopkins University, she was
supported by a Fulbright Fellowship.

2566 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

Antonio Acosta-Jiménez received the “Licenciado
en Física” degree and the Ph.D. degree in electronic
physics from the University of Seville, Sevilla, Spain,
in 1989 and 1995, respectively.

He is currently with the Institute of Micro-
electronics of Seville, CNM-CSIC, and with the
Department of Electronics and Electromagnetism,
University of Seville, where he has been an Associate
Professor since 1998. His current research interests
are in the areas of CMOS digital and mixed-signal
VLSI design, low-power and low-noise CMOS,

description of timing phenomena in VLSI digital systems, and asynchronous
and self-timed circuits. He has authored or coauthored more than 70 interna-
tional scientific publications and has been involved in different National and
European R&D projects. He was the General Ghair of the 2002 PATMOS
International Workshop.

Bernabé Linares-Barranco received the B.S.
degree in electronic physics, the M.S. degree
in microelectronics, and the Ph.D. degree in
high-frequency OTA-C oscillator design from the
University of Seville, Sevilla, Spain, in 1986, 1987,
and 1990, respectively, and the Ph.D. degree in
analog neural network design from Texas A&M
University, College Station, in 1991.

Since September 1991, he has been a Tenured
Scientist with the Sevilla Microelectronics Institute
(IMSE), which is one of the institutes of the National

Microelectronics Center (CNM) of the Spanish Research Council (CSIC) of
Spain. In January 2003, he was promoted to Tenured Researcher and in January
2004, to Full Professor of Research. Since March 2004, he is also a part-time
Professor at the University of Seville. From September 1996 to August 1997,
he was on sabbatical with the Department of Electrical and Computer Engi-
neering, Johns Hopkins University, Baltimore, MD, as a Postdoctoral Fellow.
During spring 2002, he was a Visiting Associate Professor with the Electrical
Engineering Department, Texas A&M University. He has been involved with
circuit design for telecommunication circuits, very large scale integration
(VLSI) emulators of biological neurons, VLSI neural-based pattern recognition
systems, hearing aids, precision circuit design for instrumentation equipment,
bio-inspired VLSI vision processing systems, transistor parameter mismatch
characterization, address-event-representation VLSI, RF circuit design, and
real-time vision processing chips.

Dr. Linares-Barranco was corecipient of the 1997 IEEE TRANSACTIONS ON

VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS Best Paper Award for the
paper “A real-time clustering microchip neural engine” and the 2000 IEEE
Circuits and Systems Darlington Award for the paper “A general translinear
principle for subthreshold MOS Transistors.” He organized the 1994 Nips
Post-Conference Workshop “Neural Hardware Engineering”. From July 1997
until July 1999, he was an Associate Editor for the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS PART II, ANALOG DIGITAL AND SIGNAL PROCESSING,
and, since January 1998, he has also been an Associate Editor for the IEEE
TRANSACTIONS ON NEURAL NETWORKS. He was Chief Guest Editor of the
2003 IEEE TRANSACTIONS ON NEURAL NETWORKS Special Issue on Neural
Hardware Implementations. He is coauthor of the book Adaptive Resonance

Theory Microchips (Kluwer, 1998). He was the coordinator of the EU-funded
CAVIAR (Convolution AER Vision Architecture for Real-Time) Project.

