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Abstract—Among diagnostic biomarkers, high frequency oscil-
lations in human iEEG are used to identify epileptogenic brain
tissue during epilepsy surgery. However, current methods typi-
cally analyse the raw data offline using complex time-consuming
algorithms. We developed a compact neuromorphic sensory-
processing system-on-chip that can monitor the iEEG signals
and detect high frequency oscillations in real-time using spiking
neural networks. To this end, we present an integrated device
with an analog front-end that can extract predefined spectral
features and encode them as address-events, and a neuromorphic
processor core that implements a network of integrate and fire
neurons with dynamic synapses. The device was fabricated using
a standard 0.18µm CMOS technology node. The estimated power
consumption of the front-end is 6.2µW/channel and the area-on-
chip for a single channel is 0.15 square millimetres. The SNN
classifier provides 90.5% sensitivity and 67.7% specificity for
detecting high frequency oscillations. This is the first feasibility
study towards identifying relevant features in intracranial human
data in real-time on-chip using event-base processors.

Index Terms—Electrophysiological signals, Neural-recording,
Event-based processing, Epilepsy, intracranial EEG, Biomarker

I. INTRODUCTION

In surgical treatment of patients with epilepsy, High Fre-

quency Oscillation (HFO) are among biomarkers for the

epileptogenic zone [1]. These patterns can be detected in

intracranial electroencephalography (iEEG) and aid clinical

decisions during epilepsy surgery [2]. In current practice, HFO

detection requires storing iEEG for off-line reconstruction

and data-analysis on standard computers. This demands high

signal acquisition quality, in terms of amplifier Signal to Noise

Ratio (SNR), alongside with high-resolution Analog to Digital

Converter (ADC) of up to 24 bits [3].

The diagnostic application of HFO would benefit from on-

chip and on-line processing. The requirements on ADC band-

width and resolution can be relaxed by employing multiple

detection frequency bands as long as the SNR is sufficient for

HFO detection.

In this setting, we propose a neuromorphic device with a

front-end signal conditioning stage optimized to detect HFO

with minimum power consumption and layout area require-

ments. Specifically, we present a System-On-Chip (SOC) so-

lution comprising eight analog front-end modules, a multi-core

Dynamic Neuromorphic Asynchronous Processor (DYNAP)

block [4], and full custom interfacing and biasing blocks

integrated in standard 0.18µm fabrication technology. The

front-end amplifies the bio-signals, filters them in specific

frequency bands and converts filter outputs to asynchronous

events. The DYNAP block is configured to implement a

spiking neural network which receives these events, processes

them via its dynamic synapses and neurons, and detects HFO

in two different frequency bands.

Since in our approach signal processing is performed on-

chip in an end-to-end manner, the stringent requirements

that are common for biomedical recording devices are not

necessary, provided that the extracted information is sufficient

to ensure robust classification.

In Section II we present the building-blocks and diagrams

of the analog front-end circuits. In Section III we describe the

spiking neural network used for classification, including its

training and test procedures, and in Section IV we provide the

specifications of the analog front-end circuits, obtained from

circuit-level simulations, and neural network classification

results on human iEEG data.

II. ANALOG FRONT-END

The analog front-end comprises a Low-Noise Amplifier

(LNA), three analog filters and four asynchronous ADCs

per channel as shown in Fig. 1(a). The amplifier output is

filtered using one low-pass and two band-pass Tow-Thomas

second-order filters. Filtered signals as well as the amplified

wide-band data are converted to events using asynchronous

ADCs [5]. The presented structure is employed alongside with

a configurable bias-generator [6] and an address-event repre-

sentation encoder interfaced to the event-based neuromorphic

processor core. The neuromorphic processor core block is

based on the design presented in [4]. The layout of front-end

and processor core is shown in Fig. 2.

A. Low-Noise Amplifier

The LNA is the most critical block employed in the front-

end, which ensures linear amplification and systematic noise

suppression. It includes an Operational Transconductance Am-

plifier (OTA) in capacitive feedback configuration with MOS-

Bipolar structure as resistive elements [7].

The LNA structure is desirable for physiological recordings

since input coupling capacitors not only reject the inappro-

priate DC component of the input signals but also present

a degree of freedom for gain adjustment. Thanks to the

extremely large impedance introduced by using MOS-Bipolar

elements (≈ ×100 GΩ), input and feedback capacitors are

within reasonable area limitations to be implemented on chip.
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(a) General block diagram.

(b) OTA transistor-level design.

(c) Configurable Tow-Thomas filters.

(d) asynchronous ADC circuit.

Fig. 1: The analog front-end circuit schematics.

Fig. 2: Physical layout of analog front-end and peripheral

circuits alongside with the adjacent DYNAP core

This configuration results in a band-pass frequency response

with sub-Hertz lower cutoff frequency making it capable of

faithful signal acquisition with minimal baseline distortion.

To confront channel mismatch, an inevitable issue in multi-

channel recordings due to electrode placement and fabrication

inconsistency, the amplifier employs digitally adjustable gain,

which prevents output-node saturation and signal loss.

The OTA employed in this design is a modified folded-

cascode amplifier [8] as shown in Fig. 1(b). The design

features power efficient biasing scheme for input differential

pair and low flicker noise that is the dominant term in the lower

physiological frequency range (10-100 Hz). This is achieved

by suppressing the noise generated by NMOS current mirrors

implemented in traditional folded-cascode input stage, by

implementing source degeneration resistors.

B. Analog Filters

The implementation of the low-pass active filter is shown

in Fig. 1(c). It comprises multiple op-amps configured as

a Tow-Thomas resonating filter. This circuit consists of a

damped inverting integrator, cascaded with another undamped

integrator, and an inverter with feedback applied around the

entire structure, while R4 is optimized for the feedback loop to

be stable. An advantage of this circuit, not commonly found in

other active integrated realizations, is that it offers independent

tuning of quality factor and center frequency [9]. This configu-

ration is chosen over less sophisticated 2nd order counterparts

mainly because of the degrees of freedom it provides for fine

tuning in case of channel mismatch. Moreover, the architecture

presents both low-pass and band-pass outputs without major

changes in design layout. It is thus desirable for having an

isometric multi-band filter structure layout. The configuration

shown in Fig. 1(c) is realized using metal-insulator-metal

capacitors and tunable double-PMOS pseudo resistors.

C. Asynchronous ADC

The asynchronous ADC enables the analog front-end to

interface with the event-based processing core and translates

the input data to a sequence of spikes. Here, each spike

corresponds to a polarized, adjustable amount of change

in the analog input signal [5]. Depicted in Fig. 1(d), this

block comprises an adaptive feedback amplification stage and

a set of comparators forming a clock-less delta-modulator

that generates “UP” and “DOWN” spikes in response to an

adjustable amount of increase/decrease in the signal amplitude.

The voltages Vtu and Vtd are thresholds for generating the

UP and DOWN spikes. The bias Vrefr controls the refractory

period during which the ADC stays dormant after generating

a spike. These three voltages are hyper-parameters that can be

optimized to achieve high reconstruction accuracy or block

background noise depending on the application. They also

determine spike generation rate.

III. SPIKING NEURAL NETWORK (SNN) ARCHITECTURE

To verify that an SNN can indeed reliably perform HFO

pattern recognition, we built a simple network that uses spikes

generated by the analog front-end as input for a single layer

of Integrate-and-Fire (I&F) neurons that project to an output

node. The latter is trained as a binary classifier to decide

whether the input spike train contains HFO traces within a

time window, which we chose according to the typical duration

of an HFO event.

We trained the output node via a supervised logistic re-

gression method. The training dataset was taken from the

iEEG data [10] described in [1]. This dataset was recorded, as

a part of the pre-surgical evaluation, from 20 patients with
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Fig. 3: Three HFO snippets from the iEEG training dataset

filtered in (a) FR band and (b) Ripple band. The UP and

DOWN spikes accumulate during the HFO. The time windows

with detected HFO activity (purple marks) overlap with the

validated HFO taken from [1], [10] (golden marks).

intractable epilepsy, 13 of which achieved seizure freedom

after epilepsy surgery. This dataset contains validated HFO

that predict postsurgical seizure freedom with 57% sensitivity

and 100% specificity [1]. To create the iEEG training set, we

concatenated a selection of data from [10] into snippets that

contained validated HFO embedded in 50 ms baseline activity.

A. HFO detector training/testing procedure

The raw iEEG training data set was filtered in two bands of

interest, 80-250 Hz (Ripple band) and 250-500 Hz (Fast Ripple

(FR) band) and fed into the ADC, resulting in 4 spike trains

(as described in Section II-C). To train the neural network

and evaluate its performance, we iteratively divided the data

snippets in training (80%) and test (20%) sets and adopted a

20-80% model cross-validation scheme.

In the training phase, the output node was trained using

logistic regression. In this particular classification problem, we

first calculate the neurons’ mean firing rate in the single layer

over adjacent time windows of 45 ms. The extracted firing rate

of UP and DOWN neurons in FR and Ripple bands were used

as “features” for the logistic regression algorithm, in which

the validated HFO were the teacher signal. After training, the

algorithm should classify whether a time window contained

a HFO (output value 1) or baseline (output value 0). Fig.3

presents a classification example for the test set.

To quantify the performance of our HFO detector, we

calculated sensitivity and specificity from the contingency

table with the following elements. True positive (TP) are

windows classified as 1 that overlap with validated HFO,

true negatives (TN) are windows where both, detected and

validated HFO are 0, false positive (FP) are windows that

are classified as 1 where there is no validated HFO and false

negative (FN) windows are where the detector outputs 0 and

there is a validated HFO.

Fig. 4: Frequency spectrum of human iEEG from [10] versus

systematic noise of the designed LNA.

IV. RESULTS

A. Analog Front-End Simulation Results

We performed circuit simulations of the analog front-end

using a standard 0.18µm technology node. According to the

simulation results, the LNA generates ≤ 100 nV/
√
Hz noise

throughout the spectrum. This figure scaled down as frequency

increased. Thus, Ripple band signal experiences 10 nV/
√
Hz

and FR band, 5 nV/
√
Hz, as shown in Fig. 4. The circuit level

simulations of the LNA revealed a 0.8 Hz-10 KHz bandwidth,

0.7 V/1.8 V output swing and more than 40 dB common mode

rejection ratio. This circuit consumed 3µW of power per

channel while presenting switchable gain among 20 dB, 32 dB,

36 dB and 40 dB.

Each filter consumed 0.9µW power and the biases were

optimized such that low-pass filter cut-off frequency was set

to 80 Hz and band pass filters have 80 Hz-250 Hz and 250 Hz-

500 Hz bandwidth for Ripple and FR detection respectively

observed in Fig. 5. The asynchronous ADC circuit featured

adjustable refractory period, minimum inter-spike time-step,

allowing spike-rates to vary from 500 Hz to 1 MHz. The

least significant delta recognized by ADC is 500µV and

static power consumption was 104 nW. The overall hardware

specifications are presented in Table I.

B. Network Simulation Results

The network resulted in a sensitivity of 99.5% and speci-

ficity of 55.7% for HFO detection in the training dataset. The

sensitivity of the network on the test dataset, which consists

of five-minutes iEEG recordings not used for training (Fig. 6),

was 90.5% and specificity was 67.7% (Table II).

V. CONCLUSION

Employing event-based processing in biomedical pattern

recognition and signal classification offers an efficient real-

time solution and reduces power consumption, complexity

and output data rate in multi-channel recording systems. The

compact SOC design and low power consumption makes this
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Fig. 5: Frequency response of LNA, low-pass filter, and two

implemented band-pass filters

Fig. 6: Continuous iEEG filtered in Ripple and FR band (test

set). Our network detected more HFO (purple marks) than

there were HFO validated in current practice (golden marks)

[1], [10].

TABLE I: Analog Front-End specifications

Feature Value

Power Consumption 6.2µW/ch

In band noise ≤100nV/
√
Hz

Amplifier Gain (V/V) 10/40/70/100

Amplifier THD ≤1%

Overall Gain (V/V) 80/320/560/800

CMRR, PSRR ≥40dB

Frequency Range 0.8Hz-10kHz

Band Config LPF-BPF-BPF-APF

ADC LSB 500µV

Spiking Rate 500Hz-1MHz

Number of Channels 8/chip

Supply Voltage 1.8 V

device suitable for the operating theatre where it may support

the medical team during epilepsy surgery.

This study is a proof of concept that verifies that a net-

work running in an event-based processor can potentially

identify clinically relevant features in human iEEG. Although

we present here ongoing work that must be confirmed by

more datasets, the promising results from our simple network

encourage us to explore more powerful SNN-based computa-

tional paradigms for further performance improvements [11].

TABLE II: Classification results in training and test iEEG

datasets based on mean firing rate of UP and DOWN spike

trains in FR and Ripple bands.

Metrics Equivalence Detection

in training

dataset

Detection

in test

dataset

Sensitivity TP/(TP+FN) 99.5% 90.5%

Specificity 1-(FN/(TP+FN)) 55.7% 67.7%

Positive

Predicted

Value

TP/(FP+TP) 57.4% 61.0%

Accuracy (TP+TN)/(TP+FP+FN+TN) 71.5% 73.9%
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