
Received May 10, 2019, accepted May 22, 2019, date of publication May 27, 2019, date of current version June 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2919163

A Neuromorphic-Hardware Oriented Bio-Plausible
Online-Learning Spiking Neural Network Model

G. C. QIAO1, S. G. HU 1, J. J. WANG 1, C. M. ZHANG1, T. P. CHEN2, N. NING 1,
Q. YU1, AND Y. LIU 1
1State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
2School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

Corresponding author: S. G. Hu (sghu@uestc.edu.cn)

This work was supported in part by the NSFC under Project 61774028 and Project 61771097, in part by the Fundamental Research Funds
for the Central Universities under Project ZYGX2016Z007, and in part by the Opening Project of Science and Technology on Reliability
Physics and Application Technology of the Electronic Component Laboratory under Project ZHD201602.

ABSTRACT Neuromorphic hardware inspired by the brain has attracted much attention for its advanced
information processing concept. However, implementing online learning in the neuromorphic chip is still
challenging. In this paper, we present a bio-plausible online-learning spiking neural network (SNN) model
for hardware implementation. The SNN consists of an input layer, an excitatory layer, and an inhibitory
layer. To save resource cost and accelerate information processing speed during hardware implementation,
online learning based on the spiking neural model is realized by trace-based spiking-timing-dependent
plasticity (STDP). Neuron and synapse activities are digitalized, and decay behaviors of neuron and synapse
parameters are realized by the bit-shift operation. After learning training set from the Modified National
Institute of Standards and Technology (MNIST), the spiking neural model successfully recognizes the digits
from the MNIST test set, showing the feasibility and capability of the model. The recognition accuracy
increases significantly from 90.0% to 94.5% with the number of the excitatory/inhibitory neurons rising
from 400 to 3,500, which provides a guide to make a trade-off between the recognition accuracy and the
resource cost during hardware implementation. Encouragingly, compared to its corresponding floating-point
model, the proposed model reduces the hardware resources and power consumption by 40.7% and 36.3%,
respectively (under 55-nm CMOS process).

INDEX TERMS Neuromorphic hardware, online learning, SNN, STDP.

I. INTRODUCTION

A neuromorphic computing platform, inspired by the
advanced information processing scheme of the brain [1],
is more efficient and bio-plausible than the traditional Von
Neumann computing platform when dealing with brain-like
computation tasks (such as pattern recognition) [2]. There-
fore, it has attracted significant attention in recent years.
However, an effectivemethod to implement online learning in
a neuromorphic computing platform is still missing [3]. For
example, SpiNNaker, one of the representative neuromorphic
platforms, is based on multi-core ARM digital chips and
may still suffer from the Von Neumann bottleneck [4], [5].
TrueNorth, another example of the most advanced platforms,
does not support any synaptic plasticity mechanisms and thus

The associate editor coordinating the review of this manuscript and
approving it for publication was Bora Onat.

does not have online learning ability [6]–[8]. In these cases,
neurons and synaptic parameters can only be off-line mapped
into the chip to achieve neural network functions.

Among the various spiking neural network (SNN) train-
ing methods [9], training SNN based on the traditional
back-propagation (BP) algorithm [10]–[14] or train-
ing artificial neural network (ANN) into the SNN
by mapping [15]–[18] are inefficient and biologically
implausible. Recently, bio-plausible learning rules, such as
spiking-timing-dependent plasticity (STDP), together with
BP algorithm have been used to achieve supervised learn-
ing in SNN [19]–[21]. For example, Tavanaei proposed a
BP-STDP algorithm to approximate backpropagation using
STDP and achieved a recognition accuracy of 97.2% under
Modified National Institute of Standards and Technol-
ogy (MNIST) test set [21]. However, these models can-
not realize unsupervised online learning, thus cannot well

71730
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0003-2273-5449
https://orcid.org/0000-0001-7183-422X
https://orcid.org/0000-0001-7893-1428
https://orcid.org/0000-0003-0615-7036


G. C. Qiao et al.: Neuromorphic-Hardware Oriented Bio-Plausible Online-Learning SNN Model

emulate the brain’s autonomous learning function (since
the brain is unsupervised and event-based). More recently,
unsupervised learning based on STDP and other biologically
plausible learning rules were reported by several groups
[22], [23]. Diehl proposed an SNN model that can achieve
unsupervised learning based on bio-plausible STDP learning
rule [23] and achieved a recognition accuracy of 95.0% under
MNIST test set. However, this model is implemented on
the Brian2 spiking neural network work simulator [24] and
involves a large number of floating-point calculations, which
is extremely difficult to be implemented in hardware.
This paper presents a hardware-oriented online learn-

ing neuromorphic computing model. Biologically plausible
STDP rule is used in the model to achieve unsupervised
learning. Moreover, neuron and synapse activities are dig-
italized, and decay behaviors of the neuron and synapse
parameters are realized by bit-shift, which can significantly
reduce the hardware cost. In the model with the size of
784-3500-3500, a recognition accuracy of 94.5% is achieved
under the MNIST test set. Moreover, under the 55 nm CMOS
process, the hardware resources and power consumption
are reduced by 40.7% and 36.3%, respectively (model size:
784-784-784). The model can be used as a reference model
to design a neuromorphic computing platform with an online
learning engine, and can also be used to verify the perfor-
mance of such a platform in the future. Efficiently embedding
online learning capabilities enables neuromorphic platforms
to adapt to and learn new features from changing environ-
ments, which has various practical application scenarios,
such as autonomous smart sensing in the Internet-of-Things
(IoT) [25], autonomous embedded systems [26] and
robots [27], brain-machine interfaces [28], and experimental
neuroscience platform [29], etc.

II. MODEL DESCRIPTION

A. NETWORK ARCHITECTURE

As shown in Fig. 1, the SNN architecture consists of three
layers, and the black and blue arrows denote excitatory and
inhibitory synapses, respectively. The first layer is an input
layer used to receive spikes from the outside. The second
layer is an excitatory layer, and the synapses between the
input neurons and excitatory neurons are excitatory synapses,
whose weights are placed in the weight matrix Mxe. The
delay time is randomly assigned (e.g., 0∼10 ms) during the
initialization process and will not be changed later. Moreover,
the values of the delay time should be integer multiples of a
time step (e.g., 0.5 ms) for efficient hardware computation.
The third layer is an inhibitory layer, and there is a one-
to-one correspondence between the excitatory neurons and
inhibitory neurons, i.e., the number of inhibitory neurons is
equal to the number of excitatory neurons. A competitive
learning mechanism, which is similar to the one used in
the Self Organizing Maps (SOM) model [30] and winner-
take-all model [31], [32], is introduced among the excitatory
neurons. When an excitatory neuron fires a spike, it will

FIGURE 1. Spiking neural network architecture.

FIGURE 2. (a) Size of excitatory synapse parameters. (b) Size of excitatory
neuron parameters.

cause the excitation of its corresponding inhibitory neuron
through excitatory synapse (with a large fixed weight). The
inhibitory neuron, in turn, inhibits all other excitatory neu-
rons through inhibitory synapses. The weights of excitatory
synapses and inhibitory synapses between the excitatory neu-
rons and inhibitory neurons are placed in weight matrices
Mei and Mie, respectively. Fig. 1 also shows the size of the
weight matrices and delay matrix. The activities of the neuron
and synapse are digitalized and are represented by fixed-point
numbers, and the size of the parameters are shown in Fig. 2.

B. NEURON MODEL

Integrate-and-Fire (IF) [33] neuron, as well as excitatory
synapse and inhibitory synapse, are used as the basic build-
ing block in the three-layer SNN (i.e., including an input
layer, an excitatory layer, and an inhibitory layer). More-
over, the excitatory synapse between the input neurons and
excitatory neurons has a delay unit, and its weight can be
autonomously adjusted according to the STDP rule [34],
whereas the excitatory synapse between the excitatory neu-
rons and inhibitory neurons and the inhibitory synapse have
no delay unit, and their weights Mei and Mie cannot be
changed. The conductance of an excitatory neuron is updated

VOLUME 7, 2019 71731



G. C. Qiao et al.: Neuromorphic-Hardware Oriented Bio-Plausible Online-Learning SNN Model

at each time step following the rule:

gexcj (t) =

m
∑

i=1

xij (t)wij (1)

ginhj (t) =

n
∑

l=1

xlj (t)wlj (2)

where i, j, l are the indexes of the input neuron, the excitatory
neuron, and the inhibitory neuron, respectively; gexcj and ginhj
are the excitatory conductance and the inhibitory conductance
of the excitatory neuron j, respectively; xij is the input from
the input neuron i to the excitatory neuron j, which can only
be either 1 or 0 (spike or none spike); xlj is the input from the
inhibitory neuron l to the excitatory neuron j;wij is the weight
from the input neuron i to the excitatory neuron j; wlj is the
weight from the inhibitory neuron l to the excitatory neuron j;
m and n are the numbers of input neurons and inhibitory
neurons, respectively.

The excitatory and the inhibitory currents are then updated
according to:

I excj (t) = gexcj (t)×V j (t − 1) (3)

I inhj (t) = ginhj (t)×V j (t − 1) (4)

where I excj and I inhj are the excitatory current and inhibitory
current of neuron j, respectively; Vj is the membrane potential
of neuron j.
The membrane potential is updated according to the IF

neuron model:

Vj (t) = Vj (t − 1)+ I excj (t)+ I inhj (t) (5)

Vj (t) =

{

Vj (t) , if V j (t) < Vth
j

Vreset
j , if V j (t) ≥ Vth

j

(6)

where Vth
j and Vreset

j are the threshold and reset membrane
potential of neuron j, respectively. The membrane potential
is updated by adding the excitatory current and inhibitory
current simultaneously. If the updated membrane potential
is higher than the threshold, the neuron fires a spike, and
then its membrane potential is reset to Vreset

j ; otherwise,
the membrane potential remains unchanged. When a neuron
fires a spike, its threshold will be increased by a specific
value (e.g., 5×105); otherwise, it will exponentially decrease
with time (it will be discussed later). After firing a spike,
the neuron entries the refractory period, during which the
parameters of the neuron will not be changed, and no spike
will be fired. Moreover, a timer and a counter are used to
record the duration of the refractory period and the number
of spikes, respectively.

C. SYNAPSE MODEL

The classic STDP is typically defined as [35]:

1w =
∑

tpre

∑

tpost

F
(

tpost − tpre
)

(7)

FIGURE 3. Weight modification with the trace-based STDP.

where tpre and tpost are the pre- and post-synaptic spike times,
respectively; w is the weight of the synapse; F is a function
defined as:

F (1t) =

{

Apree
−1t/τpre , if 1t > 0

Aposte
1t/τpost , if1t< 0

(8)

where1t = tpost−tpre; τpre and τpost are time constants of the
pre- and post-synaptic neurons; Apre and Apost are amplitude
constants.
It is inefficient to use the classic STDP to update weights

directly because all pairs of spikes have to be summed over,
which is also biologically unrealistic because neurons can-
not remember all previous spikes times [24]. By contrast,
the trace-based STDP, which has been proved equivalent to
the classic STDP [34], is more efficient for hardware imple-
mentation. The pre- and post-synaptic traces are defined as
pre and post, respectively, which are governed by:

dpre

dt
= −

pre

τpre
(9)

dpost

dt
= −

post

τpost
(10)

When a pre-synaptic spike occurs, the pre-synaptic trace
and weight are modified according to:

pre (t) = pre (t − 1)+ Apre (11)

w (t) = w (t − 1)− post(t − 1) (12)

When a post-synaptic spike occurs, the post-synaptic trace
and weight are modified according to:

post (t) = post (t − 1)+ Apost (13)

w (t) = w (t − 1)+ pre(t − 1) (14)

For example, if we take τpre = τpost = 20 ms and
Apre = Apost = 0.01, weight modification with trace-based
STDP (Fig. 3) gets the same effect with the classic STDP.

To further optimize the hardware implementation with the
bit-shift operation (see below), pre is reset to an initial value
(e.g., 104) when the pre-synaptic neuron fires a spike, and a
learning rate is introduced in the weight modification:

wij (t) = wij (t − 1)− λpre × postj(t − 1) (15)

where wij (t − 1) and wij (t) are the weights from input neu-
ron i to excitatory neuron j at the previous time step and cur-
rent time step, respectively; λpre is the pre-synaptic learning

71732 VOLUME 7, 2019



G. C. Qiao et al.: Neuromorphic-Hardware Oriented Bio-Plausible Online-Learning SNN Model

TABLE 1. The meaning and unit of symbols.

rate; postj is the post-synaptic trace of excitatory neuron j.
Since λpre is a constant coefficient, the decay of synaptic
weight can be realized by the bit-shift operation.
When the post-synaptic neuron fires a spike, post is reset to

its initial value, and the synaptic weight is updated according
to:

wij (t) = wij (t − 1)+ λpost × prei(t − 1) (16)

where λpost is the post-synaptic learning rate; prei is the
pre-synaptic trace of input neuron i. The symbols for vari-
ables above are summarized in Table 1.
The original STDP rule is unstable [36], i.e., the learning

process may not converge to a stable state. Therefore, a
weight constraint scheme is introduced into the STDP rule to
prevent the weights from growing unbounded. Specifically,
the sum of the weights of all synapses connected to each neu-
ron is restricted to the same magnitude, to guarantee that each
excitatory neuron has a fair chance to win the competition.
Moreover, the weights are clamped into the upper- and lower-
boundaries. These strategies are executed together in each
time step to prevent the weights from getting out of control.
The working steps of the weight normalization is shown in
Algorithm 1.
A delay connection matrix is required to obtain the

summed weights (W) that should be added to the neu-
rons’ conductance at the current time step. Due to the pres-
ence of synaptic delays, synchro pre-synaptic spikes may
arrive at the target neurons at different times, whereas non-
synchro pre-synaptic spikes may reach the neuron at the
same time.
As shown in the top panel of Fig. 4, the number of rows

(i.e., 21) in the delay connection matrix is the sum of the
maximum delay / time step (i.e., 10 ms / 0.5 ms = 20) and
initial state (i.e., 1). The number of columns is equal to the
number of excitatory neurons, and each column of the delay
connection matrix corresponds to an excitatory neuron. Here,

Algorithm 1 Pseudo Code of the Weight Normalization

1: #Initialization of input constants
2: constant1← input1
3: constant2← input2
4: constant3← input3
5: #Initialization of weight w (m×n)
6: w← rand (m, n) ∗ constant1
7: while i < training number do
8: #Sum by column to w
9: w_sum← sum (w, 1)
10: # Calculate normalization factor
11: factor← round (constant2./wsum)
12: # Update weight
13: w← w.∗factor
14: # Shift operation to w
15: w← bitshift (w, constant3)
16: end while

a delay connection vector of a single neuron [37] is used to
illustrate the delay mechanism, as shown in the bottom panel
of Fig. 4. Themaximumdelay and time step are assumed to be
10 ms and 0.5 ms, respectively. The delay connection vector
is updated every time step. W pointed by the pointer denotes
the summed weight which arrives at the excitatory neuron at
the current time step. As an example, it is assumed that the
pointer points to W(0) at the current time step and one of the
pre-synaptic neurons connected to this neuron fires a spike.
The weight of this synapse (w0) and the delay time (assumed
to be 4.5 ms) are retrieved from the weight matrix Mxe and
the delay matrix (as shown in Fig. 1), respectively. Since w0

will reach the neuron after 9 (i.e., 4.5 ms / 0.5 ms = 9) time
steps, w0 will be added to W(9). If there are any other pre-
synaptic spikes, this delay connection vector will be updated
in a similar way. Subsequently, W(0) will be added to this
neuron’s excitatory conductance and then reset to zero, and
the pointer will move to the next cell and point to next weight
(W(1)). The above procedures are repeated until the end of the
learning or inferencing process.

D. HARDWARE IMPLEMENTATION

Tomaintain the dynamic balance of the entire neural network,
the parameters including conductance, threshold, trace, etc.,
always decline over time [38]. Here, all these decreasing
processes are implemented by bit-shift operation. In the tra-
ditional SNN, these parameters normally decrease exponen-
tially after reset. For example, the evolution of pre is governed
by dpre/dt = −pre/τ , where τ is a time constant. For
hardware simplification, the above equation is converted into
Eq. (9) according to the Euler’s method:

pre (t) = pre (t − 1)−
dt × pre (t − 1)

τpre
(17)

To further simplify the hardware implementation, a bit-
shift method is used to approximate Eq. (17). For example,
if we take dt= 0.5 ms and τpre = 8 ms, the division operation

VOLUME 7, 2019 71733



G. C. Qiao et al.: Neuromorphic-Hardware Oriented Bio-Plausible Online-Learning SNN Model

FIGURE 4. Schematic of delay connection matrix and delay mechanism.

FIGURE 5. Comparison of exponential decline and bit-shift decline of pre.

can be replaced by a right shift 4-bit operation. As shown
in Fig. 5, the bit-shift method (red line) approximates the
equation (black line) well in the first 50 iterations. After
50 iterations, pre is reduced to less than 15, and it remains
unchanged as it is impossible for it to be right-shift 4 bits. It is
observed that this small error may result in non-convergence
during the learning process. Fortunately, the non-convergence
can be effectively addressed by forcing pre to 0 when it is
less than 15, as shown in Fig. 5. Also, similar strategies are
applied to other parameters with the behavior of exponen-
tial decay. This bit-shift variable updating method is much
more computationally efficient than conventional exponential
calculation [39].

FIGURE 6. Schematic of the hardware implementation scheme of the
STDP-based online learning SNN.

The schematic and corresponding working steps of the
hardware implementation scheme of the STDP-based online
learning SNN are given in Fig. 6 and Algorithm 2, respec-
tively. To accelerate the learning process of the all multiple
connections, parallel computing technique can be used in
each step of Algorithm 2. Moreover, to save memory space
and improve memory access efficiency, input images may be
placed on off-chip memory, whereas other parameters can be
placed on on-chip memory.

III. RESULTS AND DISCUSSIONS

A. LEARNING PROCESS

The SNN will be used to classify digital images after it learns
from 60,000 images of the MNIST training set. The pixel
of each image was encoded by a Poisson distributed spike
train, whose firing rate is proportional to the pixel value, and
a larger pixel corresponds to more spikes during the time win-
dow. Maximum input rate determines the maximum number
of spikes during the time window. The numbers of excitatory
neurons and inhibitory neurons are both 784. Fig. 7 shows
the weight distribution of the 614,656 synapses (784 × 784)
between the input layer and the excitatory layer after learning
from 0, 10,000, and 60,000 images, respectively. The weights
were uniformly distributed between 0 and 3 × 107 before
learning. During the learning process, the weights gradually
gathered to 0, which is similar to the sparse connectivity
concept in the deep neural networks and is bio-plausible for
each neuron only connects to a limited number of neurons
in the biological neural networks [40]. Sparse connectivity
reduces the complexity of the wiring between neurons and
enables more efficient information processing and storage,
and can also improve pattern recognition accuracy [41].
Moreover, the comparison of weight matrices before and after
learning is also presented in Fig. 7. All weights connected to
an excitatory neuron are reconstructed in 28 × 28 matrices.

71734 VOLUME 7, 2019



G. C. Qiao et al.: Neuromorphic-Hardware Oriented Bio-Plausible Online-Learning SNN Model

Algorithm 2 Pseudo Code of a Possible Hardware Working
Scheme of the STDP-Based Online Learning SNN

1: Memory initialization. # Storing images in off-chip
memory, and traces, weights, delays, conductance,
etc. in on-chip memory.

2: while i < number of images do
3: Loading a new image and coding. # Loading image

and coding by Poisson spike train generator.
4: Weights normalization. # Loading weights and

normalizing weights in the computation module,
then returning updated weights to the on-chip
memory.

5: while t < time window do

6: Weights modification according to STDP
on-pre. # Loading weights and pre from the
on-chip memory, and spike1 from Poisson
spike train generator; implementing the weights
reduction, and then returning the updated
weights.

7: Conductance updating. # Loading weights,
delays, spike and conductance, and then
calculating the conductance.

8: Current updating. # Loading conductance and
membrane potential, and then calculating
and returning the current.

9: Membrane potential updating. # Loading current
and membrane potential, and then calculating
and returning the updated membrane potential.

10: Spike2 updating. # Loading membrane potential
and threshold, and then calculating and
returning the spike2.

11: Weights modification according to STDP
on-post. # Loading spike2, weights and
post, and implementing the weights increment,
and then returning the updated weights.

12: Parameters bit-shift decay. # Loading pre, post,
conductance and threshold, and implementing
the bit-shift decay (controlled by the decay
controller), and then returning the updated
parameters.

13: end while

14: end while

As the learning process proceeds, reconstructed matrices are
displayed as specific digits, which means that the network
tends to converge [42].
Fig. 8 shows the evolution of the thresholds of excita-

tory neurons during the learning process. Before learning,
the thresholds of 784 neurons were all set to 2 × 108.
After learning, the thresholds roughly distributed within
3.5 × 108 ∼ 5.5 × 108. Fig. 9 shows the membrane
potential change during the learning process of a randomly
selected excitatory neuron (Fig. 9(a)) and its corresponding
inhibitory neuron (Fig. 9(b)). After the SNN learning from

FIGURE 7. Weight distribution and evolution of weight matrices during
the learning process.

FIGURE 8. Threshold distribution during the learning process.

60,000 images, excitatory neurons were divided into ten clas-
sifications, and then each neuron was labeled according to
how it responds to the ten types of inputs. Fig. 10 shows the
number of each type of labels.

B. IMAGE CLASSIFICATION

The 10,000 images from the MNIST test set were used to
test the performance of the neural network after learning.
The excitatory layer also acts as the output layer during the
inference process, so an extra classifier is not needed. The
total number of spikes sent by each class of excitatory neurons
for the current image will be added up and divided by the
number of excitatory neurons in the class. The most signif-
icant one of excitatory neurons is identified as the winner,
and the label corresponding to the winner is regarded as the
final predicted result. For example, assuming that the current
input is digit ‘‘0’’. As can be seen from Fig. 10, there are
110 excitatory neurons are assigned to digit ‘‘0’’. Then all
spikes fired by these 110 neurons are added up and divided

VOLUME 7, 2019 71735



G. C. Qiao et al.: Neuromorphic-Hardware Oriented Bio-Plausible Online-Learning SNN Model

FIGURE 9. Waveforms of membrane potential during the learning
process. (a) A randomly selected excitatory neuron and (b) its
corresponding inhibitory neuron. The solid black line denotes the
membrane potential; the dotted red and blue line denote the threshold
and reset value, respectively.

FIGURE 10. Number of each type of digital labels.

by 110 to get the average number of spikes per neuron.
If the number is greater than all other nine classifications,
the output of the network is determined to be digit ‘‘0’’.
As shown in Fig. 11, the recognition accuracy of the SNN
(consisting of 784 input neurons, 784 excitatory neurons, and
784 inhibitory neurons) gradually increases to 92.1%with the
number of training images.
Fig. 12 shows statistics of the number of predicted digits

and the corresponding target digits during the test process.
It is observed that digits, such as ‘‘9’’, are prone to be erro-
neously predicted. Recognition accuracy as a function of the
maximum input rate is shown in Fig. 13(a), which provide
a guide to implement the proposed model in hardware with

FIGURE 11. Recognition accuracy as a function of the number of training
images.

FIGURE 12. Statistics of predicted digits versus target digits.

fewer spikes while maintaining high accuracy (fewer spikes
corresponding to less energy consumption in the neuromor-
phic hardware [7]). From Fig. 13(a), the recognition accuracy
drops sharply when the maximum input rate decreases from
60 Hz to 50 Hz because that if the maximum input rate is
lower than 60 Hz, some neurons cannot receive enough input
to cross their thresholds to fire spikes, thus resulting in a
significant loss of accuracy [15]. So the maximum input rate
is set to 60 Hz in this work to achieve a balance between the
accuracy and energy.

Also, it is observed that the recognition accuracy signif-
icantly increased from 90.0% to 94.5% with the number of
excitatory neurons increasing from 400 to 3500, as shown
in Fig. 13(b). For ASIC implementation, a trade-off between
the recognition accuracy and hardware cost can be made
according to this result. Although the maximum number of
excitatory neurons in the ASIC is unchangeable because of
the hardware limit, it can be designed to be downward com-
patible, i.e., the number of excitatory neurons can be set by
changing the synaptic connection states (e.g., disconnect the
unused synaptic connections). Moreover, the time consump-
tion also increases greatly with the increase in the number of
excitatory neurons, as shown in Table 2.

71736 VOLUME 7, 2019



G. C. Qiao et al.: Neuromorphic-Hardware Oriented Bio-Plausible Online-Learning SNN Model

FIGURE 13. Recognition accuracy as a function of (a) the maximum input
rate. (b) The number of excitatory neurons.

TABLE 2. Time consumption during the learning process.

TABLE 3. Comparison between the proposed model and traditional
unsupervised ANN models considering the training time and performance
on MNIST data set.

Table 3 compares the training time and performance on
MNIST data set between the proposed model and pioneer
ANN models with unsupervised learning methods. The pro-
posed model achieves a 92.1% accuracy with a relatively fast
learning speed. The simulation in this work is carried out with
Matlab on Intel i9-7940x platform.
Table 4 shows the comparison of the cost of Multiplier/

Divider and RAM between the proposed model and three
pioneer SNNs achieved by supervised training, unsupervised
learning, and ANN to SNN converting, respectively. Here,
the Multiplier/Divider refers to the number of hardware calls

TABLE 4. Comparison between various SNN models considering the cost
of multiplier/divider and RAM on MNIST data set.

TABLE 5. Comparison of area cost and power performance between the
floating-point and fixed-point multipliers [48].

per neuron per time step, and the RAM denotes the on-
chip memory, which stores the parameters except for the
input data. The proposed model achieves a comparable accu-
racy compared with other models while consuming much
fewer hardware resources (i.e., multiplier/divider and RAM).
For example, the model in Reference [23] roughly requires
2,363 (STDP related: pre-synaptic neuron number 784 ×
post-synaptic neuron number 1 = 784, conductance related:
excitatory synapse number 784+ inhibitory synapse number
784 = 1568, exponential decline parameters: 10, weight
normalization: 1) multipliers/dividers and 9.53 MB RAM
(weights: pre-synaptic neuron number 784 × post-synaptic
neuron number 784 × data width 64 = 39337984 bits =
4.69 MB, delay: 4.69 MB, others: 0.15 MB), whereas
the model proposed in this work only requires 3 multipli-
ers/dividers and 2.78 MB RAM.

Multiplication takes up most of the computations in the
neural network [49]. The proposed model only requires three
16-bit fixed-point multipliers per neuron per time step, which
dramatically reduces hardware requirements [50] (A 32-bit
floating-point multiplier consumes 6.1 times chip area and
7.3 times power than a 16-bit fixed-point multiplier does
under the 65 nm TSMC CMOS technology node [48],
as given in Table 5). Because an MLP with bit operation
runs seven times faster under MNIST dataset than with
32-bit floating-point multiplication on GPU [51], the pro-
posed model can greatly accelerate the computation since
most of the calculations of the proposed model are realized
by bit-shift operations rather than multiplication or division.

Table 6 gives the resources and power comparison between
the 32bits-floating-point model and the proposed model
(since 32bits is the mostly used precision in the deep learning

VOLUME 7, 2019 71737



G. C. Qiao et al.: Neuromorphic-Hardware Oriented Bio-Plausible Online-Learning SNN Model

TABLE 6. Comparison of hardware and power performance between the
proposed model and the floating-point model (size: 784-784-784).

framework [52]). Here the hardware synthesis is carried out
with Design Compiler (DC) from Synopsys Inc. under the
55 nm SMIC CMOS process. Encouragingly, the proposed
model reduces the hardware resources and power consump-
tion by 40.7% and 36.3%, respectively.

IV. CONCLUSION

In this work, we propose a biologically plausible SNN model
for hardware implementation, which can realize the recogni-
tion accuracy of 94.5% with the MNIST database. The model
uses a hardware-friendly STDP mechanism to achieve self-
learning. The neuron and synapse activities are digitalized
and updated by fixed-point operations, and decay behaviors
of the neuron and synapse parameters are realized by bit-
shift operations, which can significantly reduce hardware cost
and power consumption by 40.7% and 36.3%, respectively
(model size: 784-784-784). This model provides a meaning-
ful reference for designing a neuromorphic platform that can
efficiently realize online learning. While there are still some
challenges for online learning in neuromorphic chips. The
weights of SNN require a large amount of on-chip storage
space, which may be alleviated by recently proposed weight
quantification method [53]; meanwhile, a large amount of
time- and energy- consuming memory access are involved
during the implementation of STDP, which may be eased
by reducing the scale of weight matrixes by pruning method
[54]. And these will be further studied in our future work.

REFERENCES

[1] W. Gerstner and W. Kistler, Spiking Neuron Models: An Introduction.
Cambridge, U.K.: Cambridge, Univ. Press, 2002.

[2] G. Indiveri and S.-C. Liu, ‘‘Memory and information processing in neuro-
morphic systems,’’ Proc. IEEE, vol. 103, no. 8, pp. 1379–1397, Aug. 2015.

[3] F. Walter, F. RÖhrbein, and A. Knoll, ‘‘Neuromorphic implementations of
neurobiological learning algorithms for spiking neural networks,’’ Neural
Netw., vol. 72, pp. 152–167, Dec. 2015.

[4] E. Painkras, L. A. Plana, J. Garside, S. Temple, S. Davidson,
J. Pepper, D. Clark, C. Patterson, and S. Furber, ‘‘Spinnaker: A multi-
core system-on-chip for massively-parallel neural net simulation,’’ in Proc.
Custom Integr. Circuits Conf., Sep. 2012, pp. 1–4.

[5] S. B. Furber, D. R. Lester, L. A. Plana, J. D. Garside, E. Painkras,
S. Temple, and A. D. Brown, ‘‘Overview of the SpiNNaker system archi-
tecture,’’ IEEE Trans. Comput., vol. 62, no. 12, pp. 2454–2467, Dec. 2013.

[6] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, ‘‘A survey of neuromorphic computing and
neural networks in hardware,’’ 2017, arXiv:1705.06963. [Online]. Avail-
able: https://arxiv.org/abs/1705.06963

[7] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, ‘‘A million spiking-neuron
integrated circuit with a scalable communication network and interface,’’
Science, vol. 345, no. 6197, pp. 668–673, Aug. 2014.

[8] A. S. Cassidy, P. Merolla, J. V. Arthur, S. K. Esser, B. Jackson,
R. Alvarez-Icaza, P. Datta, J. Sawada, T. M. Wong, V. Feldman, A. Amir,
D. B.-D. Rubin, F. Akopyan, E. McQuinn, W. P. Risk, and D. S. Modha,
‘‘Cognitive computing building block: A versatile and efficient digital
neuron model for neurosynaptic cores,’’ in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Aug. 2013, pp. 1–10.

[9] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and
A. S. Maida, ‘‘Deep learning in spiking neural networks,’’ 2018,
arXiv:1804.08150. [Online]. Available: https://arxiv.org/abs/1804.08150

[10] P. O’Connor and M. Welling, ‘‘Deep spiking networks,’’ 2016,
arXiv:1602.08323. [Online]. Available: https://arxiv.org/abs/1602.08323

[11] J. H. Lee, T. Delbruck, and M. Pfeiffer, ‘‘Training deep spiking neural
networks using backpropagation,’’ Frontiers Neurosci., vol. 10, p. 508,
Nov. 2016.

[12] E. Neftci, C. Augustine, S. Paul, and G. Detorakis, ‘‘Event-driven random
back-propagation: Enabling neuromorphic deep learningmachines,’’Fron-
tiers Neurosci., vol. 11, p. 324, Jun. 2017.

[13] H. Mostafa, ‘‘Supervised learning based on temporal coding in spiking
neural networks,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 7,
pp. 3227–3235, Jul. 2017.

[14] T. Liu, Z. Liu, F. Lin, Y. Jin, G. Quan, and W. Wen, ‘‘Mt-spike: A mul-
tilayer time-based spiking neuromorphic architecture with temporal error
backpropagation,’’ in Proc. 36th Int. Conf. Comput.-Aided Design, 2017,
pp. 450–457.

[15] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer,
‘‘Fast-classifying, high-accuracy spiking deep networks through weight
and threshold balancing,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2015, pp. 1–8.

[16] E. Hunsberger and C. Eliasmith, ‘‘Spiking deep networks with
LIF neurons,’’ 2015, arXiv:1510.08829. [Online]. Available:
https://arxiv.org/abs/1510.08829

[17] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha,
‘‘Backpropagation for energy-efficient neuromorphic computing,’’ in
Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 1117–1125.

[18] D. Neil, M. Pfeiffer, and S.-C. Liu, ‘‘Learning to be efficient: Algorithms
for training low-latency, low-compute deep spiking neural networks,’’ in
Proc. 31st Annu. ACM Symp. Appl. Comput., 2016, pp. 293–298.

[19] J. Brader, W. Senn, and S. Fusi, ‘‘Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics,’’ Neural Comput., vol. 19,
no. 11, pp. 2881–2912, 2007.

[20] C. Eliasmith, T. Stewar, X. Choo, T. Bekolay, T. DeWolf,
C. Tang, D. Rasmussen, ‘‘A large-scale model of the functioning
brain,’’ Science, vol. 338, no. 6111, pp. 1202–1205, 2012.

[21] A. Tavanaei and A. Maida, ‘‘BP-STDP: Approximating backpropaga-
tion using spike timing dependent plasticity,’’ Neurocomputing, vol. 330,
pp. 39–47, Feb. 2019.

[22] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, ‘‘Immunity to
device variations in a spiking neural network with memristive nan-
odevices,’’ IEEE Trans. Nanotechnol., vol. 12, no. 3, pp. 288–295,
May 2013.

[23] P. U. Diehl andM.Cook, ‘‘Unsupervised learning of digit recognition using
spike-timing-dependent plasticity,’’ Frontiers Comput. Neurosci., vol. 9,
p. 99, Aug. 2015.

[24] D. Goodman and R. Brette, ‘‘Brian: A simulator for spiking neural net-
works in Python,’’ Frontiers Neuroinform., vol. 2, no. 5, p. 5, 2008.

[25] F. Sandin, A. I. Khan, A. G. Dyer, A. H. M. Amin, G. Indiveri, E. Chicca,
and E. Osipov, ‘‘Concept learning in neuromorphic vision systems: What
can we learn from insects?’’ J. Softw. Eng. Appl., vol. 7, no. 5, pp. 387–395,
2014.

[26] Y. Sandamirskaya, ‘‘Dynamic neural fields as a step toward cognitive
neuromorphic architectures,’’ Frontiers Neurosci., vol. 7, p. 276, Jan. 2014.

[27] M. B. Milde, H. Blum, A. Dietmüller, D. Sumislawska, J. Conradt,
G. Indiveri, andY. Sandamirskaya, ‘‘Obstacle avoidance and target acquisi-
tion for robot navigation using a mixed signal analog/digital neuromorphic
processing system,’’ Frontiers Neurorobot., vol. 11, p. 28, Jul. 2017.

[28] F. Corradi and G. Indiveri, ‘‘A neuromorphic event-based neural recording
system for smart brain-machine-interfaces,’’ IEEE Trans. Biomed. Circuits
Syst., vol. 9, no. 5, pp. 699–709, Oct. 2015.

[29] R. George, C. Mayr, G. Indiveri, and S. Vassanelli, ‘‘Event-based softcore
processor in a biohybrid setup applied to structural plasticity,’’ in Proc. Int.
Conf. Event-Based Control Commun. Signal Process., Jun. 2015, pp. 1–4.

[30] T. Kohonen, ‘‘Self-organized formation of topologically correct feature
maps,’’ Biological Cybern., vol. 43, no. 1, pp. 59–69, 1982.

71738 VOLUME 7, 2019



G. C. Qiao et al.: Neuromorphic-Hardware Oriented Bio-Plausible Online-Learning SNN Model

[31] A. Delorme, L. Perrinet, and S. J. Thorpe, ‘‘Networks of integrate-and-fire
neurons using Rank Order Coding B: Spike timing dependent plasticity
and emergence of orientation selectivity,’’ Neurocomputing, vols. 38–40,
pp. 539–545, Jun. 2001.

[32] T. Masquelier and S. J. Thorpe, ‘‘Unsupervised learning of visual features
through spike timing dependent plasticity,’’ PLoS Comput. Biol., vol. 3,
p. e31, Feb. 2007.

[33] L. F. Abbott, ‘‘Lapicque’s introduction of the integrate-and-fire model
neuron (1907),’’ Brain Res. Bull., vol. 50, no. 5, pp. 303–304,
1999.

[34] G. Q. Bi and M. M. Poo, ‘‘Synaptic modifications in cultured hippocampal
neurons: Dependence on spike timing, synaptic strength, and postsynaptic
cell type,’’ J. Neurosci., vol. 18, no. 24, pp. 10464–10472, 1998.

[35] S. Song, K. D. Miller, and L. F. Abbott, ‘‘Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity,’’ Nature Neurosci.,
vol. 3, pp. 919–926, Sep. 2000.

[36] G. Chechik, I. Meilijson, and E. Ruppin, ‘‘Synaptic pruning in develop-
ment: A computational account,’’Neural Comput., vol. 10, pp. 1759–1777,
Oct. 1998.

[37] J. Shen, D. Ma, Z. Gu, M. Zhang, X. Zhu, X. Xu, Q. Xu, Y. Shen, and
G. Pan, ‘‘Darwin: A neuromorphic hardware co-processor based on spiking
neural networks,’’ Sci. China Inf. Sci., vol. 59, pp. 1–5, Feb. 2016.

[38] L. Abbott and S. Song, ‘‘Temporally asymmetric hebbian learning, spike
liming and neural response variability,’’ in Proc. Adv. Neural Inf. Process.
Syst., 1999, pp. 69–75.

[39] J. P. David, K. Kalach, and N. Tittley, ‘‘Hardware complexity of modular
multiplication and exponentiation,’’ IEEE Trans. Comput., vol. 56, no. 10,
pp. 1308–1319, Oct. 2007.

[40] X. Glorot, A. Bordes, and Y. Bengio, ‘‘Deep sparse rectifier neural net-
works,’’ in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011, pp. 315–323.

[41] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, ‘‘Sparse
representation for computer vision and pattern recognition,’’ Proc. IEEE,
vol. 98, no. 6, pp. 1031–1044, Jun. 2010.

[42] D. H. Hubel and T. N. Wiesel, ‘‘Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex,’’ J. Physiol., vol. 160,
no. 1, pp. 106–154, 1962.

[43] G. E. Hinton, S. Osindero, and Y.-W. Teh, ‘‘A fast learning algorithm for
deep belief nets,’’ Neural Comput., vol. 18, no. 7, pp. 1527–1554, 2006.

[44] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
‘‘Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,’’ J. Mach. Learn. Res.,
vol. 11, no. 12, pp. 3371–3408, Dec. 2010.

[45] R. Salakhutdinov and H. Larochelle, ‘‘Efficient learning of deep
Boltzmann machines,’’ in Proc. 13th Int. Conf. Artif. Intell. Statist., 2010,
pp. 693–700.

[46] M. Beyeler, N. D. Dutt, and J. L. Krichmar, ‘‘Categorization and decision-
making in a neurobiologically plausible spiking network using a STDP-like
learning rule,’’ Neural Netw., vol. 48, pp. 109–124, Dec. 2013.

[47] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, ‘‘Real-
time classification and sensor fusion with a spiking deep belief network,’’
Frontiers Neurosci., vol. 7, p. 178, Oct. 2013.

[48] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
‘‘Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,’’ inProc. 19th Int. Conf. Archit. Support Program. Lang.
Operating Syst., 2014, pp. 269–284.

[49] M. Marchesi, G. Orlandi, F. Piazza, and A. Uncini, ‘‘Fast neural networks
without multipliers,’’ IEEE Trans. Neural Netw., vol. 4, no. 1, pp. 53–62,
Jan. 1993.

[50] M. Baesler and T. Teufel, ‘‘FPGA implementation of a decimal floating-
point accurate scalar product unit with a parallel fixed-point multi-
plier,’’ in Proc. Int. Conf. Reconfigurable Comput. FPGAs, Dec. 2009,
pp. 6–11.

[51] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, ‘‘Bina-
rized neural networks: Training deep neural networks with weights and
activations constrained to +1 or −1,’’ 2016, arXiv:1602.02830. [Online].
Available: https://arxiv.org/abs/1602.02830

[52] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, ‘‘Comparative
study of deep learning software frameworks,’’ 2015, arXiv:1511.06435.
[Online]. Available: https://arxiv.org/abs/1511.06435

[53] M. Courbariaux, Y. Bengio, and J.-P. David, ‘‘Binaryconnect: Training
deep neural networks with binary weights during propagations,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[54] Y. LeCun, J. S. Denker, and S. A. Solla, ‘‘Optimal brain damage,’’ in Proc.
Adv. Neural Inf. Process. Syst., 1990, pp. 598–605.

G. C. QIAO received the B.S. degree in microelec-
tronics from the University of Electronic Science
and Technology of China, where he is currently
pursuing the Ph.D. degree. His current research
interests include neuromorphic computing and
artificial intelligence.

S. G. HU received the Ph.D. degree in microelec-
tronics from the University of Electronic Science
and Technology of China, Chengdu, where he has
been an Associate Professor, since 2016. His cur-
rent research interests include thin-film transistors,
and nonvolatile memory devices and their applica-
tions in artificial intelligence.

J. J. WANG received the B.S. degree in micro-
electronics from the University of Electronic Sci-
ence and Technology of China, Chengdu, China,
where he is currently pursuing the Ph.D. degree.
His current research interests include digital circuit
design, and nonvolatile memory devices and their
applications in artificial intelligence.

C. M. ZHANG received the B.S. degree in micro-
electronics from the University of Electronic Sci-
ence and Technology of China, China, where he
is currently pursuing the M.S. degree. His current
research interests include neuromorphic compu-
tation, neural network hardware, and digital IC
design.

T. P. CHEN received the Ph.D. degree from The
University of Hong Kong, Hong Kong, in 1994.
He is currently an Associate Professor with the
School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore.

N. NING received the Ph.D. degree in microelec-
tronics and solid state electronics from the Uni-
versity of Electronic and Science Technology of
China. He has been with the School of Micro-
electronic and Solid State Electronics, University
of Electronic Science and Technology of China,
where he is currently a Professor of the Very Deep
Sub Micrometer Integrated Circuit and System
Lab. He holds three national patents and four util-
ity mode patents. Furthermore, he has published

over ten papers in important domestic and foreign academic journals, includ-
ing two papers cited by SCI and five papers cited by EI. He has fulfilled three
national projects, and he is doing five research projects. His research interests
include AD/DA mixed integrated circuits, display panel drivers, and power
managers.

VOLUME 7, 2019 71739



G. C. Qiao et al.: Neuromorphic-Hardware Oriented Bio-Plausible Online-Learning SNN Model

Q. YU received the Ph.D. degree from the Uni-
versity of Electronic Science and Technology of
China (UESTC), Chengdu, China, in 2010, where
he is currently a Professor and the Vice Dean
of the School of Microelectronics and Solid-State
Electronics.

Y. LIU received theB.Sc. degree inmicroelectronics
from Jilin University, China, in 1998, and
the Ph.D. degree from Nanyang Technological
University, Singapore, in 2005. From 2005 to
2006, he was a Research Fellow with Nanyang
Technological University. In 2006, he was
awarded the prestigious Singapore Millennium
Foundation Fellowship. In 2008, he joined the
School of Microelectronics, University of Elec-
tronic Science and Technology, China, as a Full

Professor. He has authored or coauthored over 130 peer-reviewed journal
papers and more than 100 conference papers. He holds one U.S. patent
and more than 30 China patents also. His current research interests include
memristor neural network systems, neuromorphic computing ICs, and
AI-RFICs.

71740 VOLUME 7, 2019


	INTRODUCTION
	MODEL DESCRIPTION
	NETWORK ARCHITECTURE
	NEURON MODEL
	SYNAPSE MODEL
	HARDWARE IMPLEMENTATION

	RESULTS AND DISCUSSIONS
	LEARNING PROCESS
	IMAGE CLASSIFICATION

	CONCLUSION
	REFERENCES
	Biographies
	G. C. QIAO
	S. G. HU
	J. J. WANG
	C. M. ZHANG
	T. P. CHEN
	N. NING
	Q. YU
	Y. LIU


