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Abstract

Stochastic resonance (SR) is the enhanced representation of a weak input signal by the addition of 

an optimal level of broadband noise to a nonlinear (threshold) system. Since its discovery in the 

1980s the domain of input signals shown to be applicable to SR has greatly expanded, from 

strictly periodic inputs to now nearly any aperiodic forcing function. The perturbations (noise) 

used to generate SR have also expanded, from white noise to now colored noise or vibrational 

forcing. This study demonstrates that a new class of perturbations can achieve SR, namely, series 

of stochastically generated biphasic pulse trains. Using these pulse trains as ‘noise’ we show that a 

Hodgkin Huxley model neuron exhibits SR behavior when detecting weak input signals. This 

result is of particular interest to neuroscience because nearly all artificial neural stimulation is 

implemented with square current or voltage pulses rather than broadband noise, and this new 

method may facilitate the translation of the performance gains achievable through SR to neural 

prosthetics.

1. Introduction

Non-linear threshold systems transmit weak input signals more accurately when exposed to 

an optimal level of noise, a phenomenon called stochastic resonance (SR) (Gammaitoni et 

al. 1998). Since neurons are essentially noisy, thresholded, information transfer systems, SR 

has found multiple applications in neuroscience (McDonnell and Abbott 2009). For 

example, the nervous system appears to leverage the noise inherent in neural circuits to 

improve information transfer (Ma et al. 2006; Stein et al. 2005; Faisal et al. 2008), and much 

current work seeks to explain the mechanisms by which this is accomplished. Another 

application lies in injecting external noise into the nervous system to create SR, thereby 

artificially enhancing neural information transfer. Advances on this front have the potential 

to restore sensitivity and functionality to the damaged or diseased nervous system where, for 

example, age related or diabetes-induced neuropathy may weaken sensation in the peripheral 

nervous system (Sumner et al. 2003; Mold et al. 2004). The present study is motivated by 
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this second aim, and we present an approach to achieve SR that is conducive to artificial 

stimulation of the nervous system.

Numerous studies have demonstrated improved performance across multiple sensory 

modalities by artificially introducing an optimal level of noise, but little of this technology 

has been applied in neural prosthetics outside of the laboratory. For example, SR enhanced 

performance in photoreceptors (Bahar and Moss 2004), cochlear implants and audition 

(Jaramillo and Wiesenfeld 1998; Chatterjee and Robert 2001), mechanoreceptors (Collins et 

al. 1996; Douglass et al. 1993; Manjarrez et al. 2002; Richardson et al. 1998), muscle 

receptors (Fallon et al. 2004), cardiac regulation (Hidaka et al. 2001), muscle motor units 

(Kouzaki et al. 2012), finger force production accuracy (Mendez-Balbuena et al. 2012), 

vibrotactile sensation (Liu et al. 2002), and balance in subjects with neurological deficit 

(Priplata et al. 2006).

However, there is a disconnect between studies of SR and neural prosthetics: nearly all work 

on generating and tuning SR employs broadband noise while nearly all neural prosthetics 

use square pulses to activate the nervous system. In all of the mentioned in vivo studies, and 

in canonical theoretical studies as well (Hanggi et al. 1993; Benzi et al. 1981; Collins et al. 

1995; Longtin 1993), SR research was overwhelmingly focused on broadband noise, such as 

white noise (in fact, this is true of nearly all classical SR studies in the physical sciences, for 

reviews see (Wellens et al. 2004; Lindner et al. 2004)). This is an obstacle to the 

implementation of SR in neural prosthetics because by far the most common and studied 

type of neural stimulation is highly structured pulse trains (Merrill et al. 2005), where a time 

series of rectangular current or voltage pulses is delivered to the neural tissue. Trains of 

current pulses are much more suitable than broadband noise for application in neural 

stimulation because existing devices make pulses easy to implement and the vast literature 

dealing with electrical stimulation of neural tissue can be brought to bear on the mechanisms 

and effects of the stimulation. Moreover, this approach is likely to facilitate regulatory 

approval because a large number of neural stimulation devices that use square stimulation 

pulses are approved for use in humans (for example peripheral nerve stimulators, spinal cord 

stimulators and deep brain stimulators), and investigations into electrical stimulation safety 

focus nearly exclusively on square pulses (Ballestrasse et al. 1985; Agnew et al. 1986; 

Merrill et al. 2005). Therefore, to advance the development of neural prosthetics that can 

leverage SR it is necessary to know whether pulse trains can elicit SR behavior in neurons, 

and how this compares to SR achieved with traditional broadband noise.

The present study demonstrates that charge balanced biphasic pulses delivered with random 

interpulse intervals and pulse durations elicit classical SR behavior in a computational 

Hodgkin Huxley model neuron (Hodgkin and Huxley 1952). Moreover, with optimized 

parameters, the stochastic pulse trains can perform better than broadband noise. These 

results may facilitate the translation of laboratory studies of SR in the nervous system to 

neural prosthetics by enabling the use of pulse train perturbations to generate SR, rather than 

broadband noise.
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2. Materials and Methods

2.1. The Model

All analysis was conducted using the canonical Hodgkin Huxley single compartment model 

neuron (Hodgkin and Huxley 1952). The model equations were numerically integrated in 

MATLAB R2013a using the Euler method with a fixed step size of 0.025 ms, determined 

empirically to produce numerically stable results (with the exception of the highest 

correlation time curve in Fig. 5A which used a step size of 0.01 ms). A single simulation 

consisted of integrating the model equations for 2075 ms. Model parameters are given in 

table 1. Model equations and analysis code can be found in Online Resource 1.

The equation describing the neuron's transmembrane voltage is

(1)

where V is the transmembrane voltage, IS is the stimulus current acting as the input signal to 

the cell, Iδ is a perturbation current applied to achieve stochastic resonance, and Ir is the rth 

ionic current: sodium, potassium, or leak.

The input signal, IS, was constructed to mimic a sensory stimulus, such as a series of tactile 

events, and consisted of a 6 Hz periodic square wave with a duty cycle of 45 % and a linear 

rise to peak amplitude and fall back to baseline (0 mA) of 18 ms. The peak signal amplitude 

was constant across each simulation but varied between simulations as indicated for each 

figure. For data in Fig. 6 the input signals used for each simulation are listed in the figure.

The ionic currents are expressed as

were Er is the reversal potential of ionic current r, gr is the maximum membrane 

conductance of species r, and m, h, and n are the gating variables ranging from zero to one 

that modify membrane conductance. The gating variable equations are

2.2. Signal Matching Measure

To quantify the degree to which the output of the neuron matched the input signal over each 

simulation we used a measure related to the “power norm” developed for aperiodic stimuli 

(Collins et al. 1995):
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(2)

Here, S is the input signal to be detected (with mean subtracted), IS, and R is an indicator 

variable representing the presence or absence of an action potential at sample k, of which 

there are N for each simulation. Therefore, this measure is effectively the cross-correlation 

of S and R at time-lag zero, normalized by the product of their zero-mean RMS amplitudes. 

This measure of signal matching focuses on the coherence between input and output, and 

avoids definitions that rely on spectral power ratios, which are incomplete descriptions of a 

system's ability to represent an aperiodic input signal (Galdi et al. 1998; Inchiosa and 

Bulsara 1995).

The indicator variable, R, was constructed as a time-series equal in length to the input signal 

that was zero everywhere except for 2ms windows centered at the time of each action 

potential (detected by 50 mV thresholding of the membrane potential) that were set to a 

value of one. R was then used to calculate C̃
1 in equation 2. We transformed the response in 

this way because it is assumed that the neuron only conveys information through action 

potentials and that other fluctuations in transmembrane potential do not contribute to signal 

transmission and should be ignored by the cross-correlation measure. This measure is a 

slight departure from that presented in Collins et al. 1995 because R in this context is the 

spike train rather than the firing rate of the neuron.

2.3. Perturbation Parameterization

Biphasic pulse train perturbations, Iδ in equation 1, consisted of rectangular current pulses 

with a positive leading phase and a negative trailing phase with a combined pulse width of 

w. Each pulse was separated by an interpulse interval T (see Fig. 3A). Each interpulse 

interval and pulse width was drawn from uniform distributions. New realizations of the 

stochastic pulse trains were generated for each simulation. The amplitude of each pulse in 

the biphasic pulse train was constant during each simulation and calculated as a = E[Arms]

((bw + aw)/(bT + bw))−1/2 (see 3.2 in Results), where Arms is the desired RMS amplitude of 

the pulse train and E[·] is the expected value.

The broadband perturbations were simulated with the Ornstein-Uhlenbeck (OU) process. 

The discrete OU process stochastic differential equation is

(3)

where yt is the process value at time step t, dt is the size of the time step and rc is the 

parameter that controls the rate at which the process reverts to the mean set to rc = 0.5 ms-1 

for all simulations using the OU process unless otherwise indicated (Lee and Kim 1999). 

The stochastic component, Wt, is the Wiener process, N is the standard normal distribution 

and σ is the RMS process amplitude. Colored noise, such as the OU process, is often used in 
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place of pure white noise when studying SR neural systems to provide direct control over 

the noise correlation time (Yu et al. 2001; Lee and Kim 1999; Longtin 1993).

2.4. Spectral Analysis

Spectral analysis was done using the open source Chronux software (chronux.org) (Mitra 

and Bokil 2008), implemented with MATLAB R2013a (Mathworks). The double-sided 

power spectra in Fig. 7 and 8 were calculated using a simulation sampling rate of 40kHz, 

and are multitaper spectral estimates using 19 tapers.

The noise-like time series with a spectrum matching the stochastic biphasic pulse train was 

built by randomly generating real and imaginary parts of Fourier coefficients that were 

scaled by the actual corresponding coefficients from the target biphasic pulse train. The real 

part of the inverse-Fourier transform was then used to recover the desired noise-like signal 

in the time domain.

The time series of pulses with a spectrum matching the broadband perturbation was built 

using a spectral mimicry algorithm that permutes a time series X using the time rank 

statistics of time series Y to produce a new time series Z such that the spectra of Y and Z are 

similar (Cohen et al. 1999). Therefore, the mimicry pulse train (Fig. 7, orange) contains 

precisely the same time points as a realization of a stochastic biphasic pulse train (Fig. 7, 

black is one example, although it has a different amplitude) only shuffled in time to produce 

the desired spectrum.

3. Results

3.1. Stochastic Resonance in the Model Neuron

Stochastic resonance (SR) emerges from the interaction of an input signal (what the system 

attempts to detect), the perturbations (noise that is delivered) and the coherence of the 

system's output with the input (the system's accuracy or quality of information 

transmission). We used a single compartment Hodgkin Huxley model neuron as the system 

and the input signal was an applied current that mimicked a series of stimuli found in typical 

sensory studies in neurophysiology (Collins et al. 1997; J. Hao and Delmas 2010), and the 

output of the model was its action potentials.

We first determined how effective the model was at representing signals in the ideal case, 

when the inputs were strong enough to be detected without SR, and this served as a baseline 

of comparison for weaker inputs. We applied a zero-noise input signal to the model and 

varied its amplitude from 5-13 mA. This revealed three distinct response regimes: 1) sub-

threshold region where the neuron was silent, 2) threshold level where the neuron fired a 

constant number of action potentials in response to each stimulus, and 3) supra-threshold 

levels where the firing rate in response to each stimulus was higher than at the threshold 

level (Fig. 1). The threshold amplitude was identified as the magnitude of the input signal 

required to elicit a sustained response throughout each input pulse. At the threshold level the 

neuron fired 5 action potentials during each 75 ms crest of the input pulse, for an average 

firing rate of 66.67 Hz.
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To quantify the model's accuracy in representing each input signal we used a modified 

power norm measure, C̃
1, which is effectively a cross-correlation between the model's 

output and the input signal. Using this measure allowed us to calculate the effect of SR for 

signals with relevant power in more than one frequency, which is almost always the case for 

sensory stimuli. The value of C̃
1 produced by the model in response to a threshold-

amplitude noiseless input is indicated in fig. 1 as φ. Meaning, if C̃
1 =φ. the noise added to 

generate SR in the presence of a sub-threshold input signal allows the neuron to represent 

that weak input with the same fidelity as it would represent that same signal at a threshold-

level amplitude.

Prior to the signal amplitude crossing the threshold the neuron never fired an action 

potential, and we define this to be C̃
1 = 0. Once the threshold is crossed the neuron begins 

firing at a frequency that increases with signal amplitude. This frequency determines the 

number of spikes fired during a given pulse, and thus, C̃
1. When the frequency becomes 

sufficiently high to fire an additional spike during an input pulse, it appears as a “step” in the 

C̃
1 measure (Fig. 1). The slight decreasing trend in C̃

1 between these steps is due to the first 

spike fired by the model in response to an input pulse occurring earlier in the rising phase of 

that pulse, which is penalized by the normalization procedure in the power norm measure.

It was possible to achieve clear SR behavior in the model neuron using biphasic pulses as 

“noise”, as well as the traditional broadband noise used in SR studies. To generate SR, we 

applied an input signal consisting of a series of sub-threshold stimuli (6.5 mA, Fig. 1) to the 

model and varied the intensity of the additive perturbations (or noise). Fig. 2 shows 

realizations of three intensities of two types of perturbations: a biphasic pulse train with 

stochastically determined interpulse intervals and pulse widths and traditional broadband 

noise. For both perturbation types at low RMS amplitudes the model produced few spikes 

during a stimulus event, and at high RMS amplitudes the model produced spikes both when 

the stimulus event was present and when it was not. The model displayed clear SR behavior 

in response to both perturbation types, exhibiting a single optimal perturbation intensity that 

produced the maximum C̃
1.

3.2. Optimization of Pulse Trains to Produce SR

The structure of the stochastic biphasic pulse train perturbations used in Fig. 2 was 

determined by the pulse amplitude, a, and by drawing each interpulse interval, T, and each 

pulse width, w, independently from separate uniform distributions (Fig. 3A). The time 

between each pulse varied between bw and a maximum of bT. The pulse width varied 

between aw and a maximum value of bw, which ensured that no pulse would start before the 

previous pulse had ended, thereby eliminating the possibility of pulse summation.

Traditionally, the optimal C1̃ for SR applications is found by performing a 1-dimensional 

optimization over the expected perturbation intensity (equivalently, the expected RMS 

amplitude, E[Arms]), which for white noise is a function only of the intensity. However, 

finding the optimal C̃
1 generated by the stochastic biphasic pulse train perturbation required 

a 4-dimensional optimization over the parameters aw, bw, bT, and E[Arms]. This was not a 6-

dimensional optimization because the maximum pulse width was constrained to equal the 
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minimum interpulse period to avoid overlapping pulses, and after fixing the remaining free 

parameters the constant pulse amplitude can be calculate as

Plotting the results of the numerical optimization over the parameter space (excluding the aw 

dimension) revealed that C̃
1 is a continuous function of the three parameters, with a number 

of local maxima (Fig. 3B). The model neuron responses across this parameter space clearly 

exhibited SR behavior where optimal parameter combinations greatly elevated C̃1 from base 

levels of nearly zero. Changes in C̃
1 were quantified over a larger parameter space (1.5 < bT 

< 40, 0.1 < bw < 2, aw ∈ {0.15,0.25,0.35,0.45}) based on typical values used in neural 

stimulation studies, but for clarity a reduced space was plotted that included the most salient 

maxima. The C̃
1 measure was least sensitive to the aw parameter, which was why it was 

excluded from the parameter space visualization. The average variability (standard 

deviation) of C̃
1 in response to changes in aw (0.016) was equivalent to the variability in 

response to simply repeating the simulations with a new realization of the stochastic pulse 

train perturbation (0.014), while variability of C̃
1 in response to changes in E[Arms]), for 

example, was approximately 3 times greater (0.045).

It was possible to achieve high C̃
1 using stochastic pulse train perturbations with many 

different parameter combinations. This resulted in a trade-off between C̃
1 and perturbation 

amplitude. Short interpulse intervals and long pulse widths achieved C̃
1 values of nearly 

0.22, or 0.95φ (□ in Fig. 3B), while other parameter combinations resulted in near-optimal 

C̃
1 values (+ in Fig. 3B) but at less than half of the RMS perturbation amplitude. This trade-

off was visualized by plotting all C̃
1 values obtained in the optimization against the RMS 

amplitude of the pulse train (Fig. 3C), where all parameter combinations that produced at 

least 85% of the maximum C̃
1 are colored red.

To compare accurately the SR effects of biphasic pulses to that of traditional broadband 

noise it is important first to explore the possible parameterizations of broadband noise. 

Colored noise, which is the primary type of perturbations used in SR studies, can be 

optimized over the expected RMS amplitude, E[Arms], and the noise correlation rate, rc. An 

exploration of this parameter space using the Hodgkin-Huxley neuron model (Fig. 4 top) 

shows that the value of E[Arms] at which the peak C̃
1 occurs decreases as rc becomes larger, 

up to approximately rc=1 ms-1.

This trend of peak C̃
1 at lower E[Arms] as the noise becomes “whiter” has been observed in 

neurons experimentally (Nozaki et al. 1999) (though this was using 1/fβ noise for increasing 

β rather than correlation rates), in analytical approximations using the FitzHugh-Nagumo 

(FN) model (Nozaki et al. 1999), and in double-well potential models (Gammaitoni et al. 

1989; Hanggi et al. 1993). These studies also indicate that their SR measures attain higher 

overall peaks as the noise approaches pure white noise, however, our simulations show very 

little change in peak C̃
1 across rc (note the compressed C̃

1 axis in Fig. 4 bottom). This 

difference is likely due to the dynamics of the Hodgkin-Huxley model used here as opposed 

to reduced dimensional models that are typically studied. When performing this 

Danziger and Grill Page 7

J Comput Neurosci. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



optimization using the FN model and the same sub-threshold “trapezoidal” input signal we 

find the expected increase in overall peak C̃
1 with increasing rc (see Online Resource 2).

The simulations here also show a rise in E[Arms] needed to reach peak C̃
1 at large noise 

correlation rates. The range of correlation rates simulated, 0.005-5 ms-1, encompasses the 

typical rates found in studies using the Hodgkin-Huxley model with colored noise, which 

are on the order of 0.5 ms-1 (Lee and Kim 1999; Yu et al. 2001; Lee et al. 1998) for 

transmembrane noise, 0.09 and 0.37 ms1 for conductance-based noise models (Wenning et 

al. 2005; Wenning and Obermayer 2003) and 1 ms-1 (Gong et al. 2009; Y. H. Hao et al. 

2011) or 1.6-3.3 ms-1 (Sun and Lu 2014) for network analysis. The increase in E[Arms] 

needed to reach peak C̃
1 becomes apparent in our simulations only at rc > 1 ms-1. (Our 

optimization using the FN model did not show this subsequent increase for rc > 1 ms-1.)

To compare the stochastic pulse train to traditional broadband noise perturbations, we fixed 

the pulse train parameters at the two combinations marked in Fig. 3B, the optimal C̃
1 and the 

near-optimal but low RMS amplitude combinations, and plotted the resulting 1-dimensional 

optimization over expected RMS perturbation amplitude (Fig. 5A). Also plotted are 

broadband noise perturbations with the parameters marked in Fig. 4 and an additional high-

correlation rate noise perturbation. All perturbations generated a single peak C̃
1 smoothly 

approached from each side. The pulse trains were able to achieve higher C̃
1 than broadband 

noise with low and medium correlation rates; however, these optimum values required 

greater RMS perturbation amplitudes. At very large correlation rates the shape of the C̃
1 

curves began to more closely resemble those generated with biphasic pulses. Examples of 

simulation segments from each perturbation type are shown in Fig. 5B.

The frequency of the “trapezoidal” input signal (shown in Fig. 5B) was varied to ensure that 

SR behavior was not confined to a narrow input signal range. C̃
1 vs E[Arms] curves for 

inputs across numerous periods show that SR persists across many parameterizations of the 

input signal (Fig. 6A). Threshold amplitudes were determined for each noiseless input signal 

and the input signals were then applied to the model at 90% of this threshold.

To verify that the SR behavior of the model neuron was not an artifact of the form of the 

input signal, the simulations were repeated using a number of different inputs. All sub-

threshold input signals combined with stochastic biphasic pulse trains produced 

characteristic SR behavior, indicating the effect is robust to varied signal types. Fig. 6B 

shows three example C̃
1 curves resulting from a 30Hz sine wave input, a 10Hz cosine input 

and a random-uniformly distributed series of 2 ms-duration square pulses. Threshold 

amplitudes were determined for each noiseless input signal and the input signals were then 

applied to the model at 90% of this threshold. C̃
1 rose to a single peak value for all input 

signals.

3.3. Spectral Analysis

The stochastic biphasic pulse train is fundamentally different from classical broadband noise 

perturbations. The (double-sided) power spectral density of the pulse train is not broadband, 

but rather it consists of a single lobe for which power scales inversely with expected 

interpulse interval and for which the cutoff is the inverse of the expected pulse width,

Danziger and Grill Page 8

J Comput Neurosci. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(4)

where aw and bw are the minimum and maximum allowable pulse width, respectively. The 

difference is clearly visible where the stochastic biphasic pulse train (red) produces a lobe of 

spectral power (cutoff 1.31 kHz) while the broadband noise (blue) simply falls off with 

frequency (Fig. 7).

The spectral content of the perturbations appears to be more relevant to the character of the 

C̃
1 response than the time-domain content. The previously described broadband (blue) and 

stochastic biphasic pulse perturbations (red) were used to generate C̃1 curves across 

perturbation amplitudes (using the sub-threshold input signal described in Fig. 1), and they 

exhibited markedly different SR behavior, with peak C̃
1 separated by 8 mA RMS amplitude. 

Next we generated a perturbation that was similar to broadband noise in the time domain, 

but which had a power spectrum that matched the stochastic biphasic pulse train (black). 

Fig. 7 shows that the C̃
1 curve for this perturbation was clearly more similar to the stochastic 

biphasic pulse C ̃
1 curve than to the broadband noise curve. Further, we generated a 

perturbation consisting of only stochastic square pulses (although not strictly biphasic or 

charged balanced), which had a spectrum that matched the broadband noise (orange). The 

C̃
1 curve with this pulse train was clearly more similar to the broadband noise curve. These 

results suggest that the distribution of spectral power in the perturbations is the primary 

factor driving the shape of SR responses. Moreover, these results show, in principle, that a 

time series using only square pulses can be generated that will create many different SR 

peak heights, locations and widths. This is promising because nearly all neural stimulation 

devices operate with square pulses, and thus would be capable of eliciting and tuning SR 

behavior in the excitable tissue.

The spectra in Fig. 7 also show that using stochastic biphasic pulses as “noise” is a clear 

departure from work that generates SR in neuron populations using pulses as a stand-in for 

distributed synaptic events (Stacey and Durand 2000; Teramae et al. 2012; Mino and 

Durand 2010; Droste et al. 2013) because such perturbations are deliberately constructed to 

have a white spectrum of event frequencies, and therefore act as broadband noise. These 

studies also focus on SR as an internal phenomenon of neural networks, rather than as an 

external artificial perturbation, and as such conceptualize the pulses as delta functions 

integrated over the synapses of the network elements.

The effectiveness of SR in bistable systems with external forcing can be modulated by 

manipulating the correlation time of the broadband noise added to the system (Casado 1997; 

Hanggi et al. 1993). Such studies typically model the noise as an Ornstein-Uhlenbeck (OU) 

process where the correlation time (or the inverse of which, the correlation rate, rc) is the 

degree of correlation between successive values of the noise process. In fact, the ideal 

correlation time of broadband noise to produce SR should be on the order of the fast time 

scale of the neuron, meaning its action potential dynamics. Increasing the correlation time 

beyond that regime will require an increase in noise intensity to achieve the same signal-to-

noise ratio because more of the noise power will be located in the high frequency range that 

is effectively filtered out by the neuron dynamics (Lindner et al. 2004). This means that as 
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the correlation time approaches zero (white noise) more spectral power will be located at 

frequencies beyond the neuron's fast dynamics and will attenuate the effects of SR. For 

stochastic pulse train perturbations the frequency limit of spectral power concentration is 

determined by the lobe cutoff frequency (equation 4 and Fig. 7). The lobe cutoff frequency 

is, therefore, the stochastic pulse train analogue to the broadband noise correlation time.

Fig. 8 shows that as the lobe cutoff frequency increases more power is required to achieve a 

desired C̃
1; each spectrum corresponds to a stochastic pulse train that achieved C̃

1 of 0.16, 

and for larger cutoffs larger RMS amplitudes were needed. The inset shows spectra from 

biphasic pulse trains with the same cutoffs as the main panel but with equal RMS amplitude 

(and therefore unequal resulting C̃
1). In these spectra more power is distributed at higher 

frequencies, which are filtered out by the membrane dynamics. For the pulse trains 

(resulting in the spectra in the inset) to achieve equivalent C̃
1 the RMS amplitude of the 

stochastic pulse train must be scaled to the point where there exists appropriate power in the 

critical low frequency range, as indicated by the main panel where the slopes of the spectra 

at low frequencies are similar. This is consistent with previous results showing that as 

broadband noise correlation time decreases, and more spectral power is located at higher 

frequencies, that SR becomes more difficult to achieve (Lindner et al. 2004).

4. Discussion

Laboratory studies over many years and spanning many sensory modalities have shown that 

artificial SR can enhance or restore human function, but these results have not been 

translated to assistive devices. In part, this is due to the broadband noise source that is 

universally used to generate SR, as opposed to trains of rectangular pulses common to nearly 

all neural stimulation studies and neural prosthetics (Merrill et al. 2005). This study 

demonstrates (using a Hodgkin Huxley model neuron) that it is possible to induce and tune 

SR using classic square pulse trains. This advance is important as it initiates a 

straightforward path between laboratory results and potential translational neuroscience 

technology that leverages SR. This approach may encourage the development of neural 

prosthetics that enhance the body's native sensory systems, perhaps to offset neuropathy or 

other diseases (Hanggi 2002; McDonnell and Abbott 2009), a prospect that has been 

motivating work in neuroscience SR for at least two decades.

We showed that the spectral content of the noise appears to be the main determining factor 

in the character of SR behavior, rather than the time domain dynamics, even when those 

dynamics differ significantly between square pulses and random processes (Fig. 7). It 

appears possible, therefore, to manipulate the perturbation (noise) spectrum to control the 

peak SNR location along the perturbation intensity dimension, as well as the width of the 

peak. Moreover, these manipulations can be made using only square pulse waveforms, 

meaning they could be implemented using existing technology. The results also showed that 

the correlation time of broadband noise, a feature that has been investigated in SR studies, 

has a stochastic biphasic pulse train analogue in the lobe cutoff frequency, suggesting that 

the membrane filtering mechanisms that shape SR when using broadband noise play a 

similar role when SR is generated with the biphasic pulse trains.
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The optimization of C̃
1 over the stochastic pulse train parameters revealed tradeoffs between 

high C̃
1 and low perturbation amplitude (Figs. 2A, 3B and 3C). At short interpulse intervals 

and long pulse widths, C̃
1 approached 0.95φ, or 95% of the fidelity achieved when 

representing noiseless threshold-level inputs. These parameters generated high duty cycle 

pulse trains that, in the limit, mimic a dc perturbation. Of course, a true dc offset would also 

achieve “stochastic” resonance in the model; but in practice dc current may corrode the 

stimulating electrodes and result in tissue damage. Other parameter combinations resulted in 

high, near-optimal C ̃
1 values (‘+’ in Fig. 3B), but achieved this performance at less than half 

of the RMS perturbation amplitude. To obtain the highest possible C̃1 or near-optimal C̃
1 at 

greatly reduced RMS amplitude is a tradeoff whose resolution will be application specific.

It is important to estimate the relevance of a given C̃
1 value in terms of behavior or 

performance to put the results in context and to determine an appropriate compromise 

between RMS perturbation amplitude and C̃
1. For example, Fig. 5A shows a high amplitude 

perturbation parameterization with a maximum C̃
1 of roughly 0.22 (orange) and a low 

amplitude perturbation parameterization with a maximum C̃
1 of roughly 0.20 (green), but 

the functional importance of the 0.02 reduction in C̃
1 is not clear. An accurate answer likely 

requires an understanding of the way information is encoded in action potentials, how the 

sensory neuron in question interacts with local circuitry to process the information, and 

perhaps even how the sensory information is used by executive centers for decision making.

We turned to the results of two psychometric studies to estimate the behavioral significance 

of changes in C̃
1. The first study showed that the distribution of average neural firing rates 

during a stimulus presentation has a receiver operator characteristic that matches the 

psychometric curve of a monkey performing a tactile discrimination task, suggesting that 

average firing rates of sensory-related neurons contribute to (or at least correlate with) 

sensory discrimination at a behavioral level (Hernandez et al. 2000). Moreover, these firing 

rates changed linearly with stimulus intensity. The second study showed that classical SR 

enhances people's ability to detect accurately sub-threshold tactile impulses (Collins et al. 

1997) of roughly the same shape as the “trapezoidal” pulses presented to the model neuron 

in the current study. These psychometric results indicate that tactile discrimination acuity 

can be enhanced by SR, and that the average firing rate of our model neuron can be used as 

a proxy for sensory discrimination. Therefore, the sub-threshold input signal to the model 

neuron can be viewed as a series of sub-threshold tactile perturbations, and the average 

firing rate of the neuron maps to a point on a psychometric curve indicating the expected 

classification of a tactile event. The input signal can then be binned into segments where it is 

either maximum or zero, and the average firing rate during those bins determines the 

neuron's classification: either an event was present or no event was present. We assume that 

the average firing rate during a threshold level stimulus (C̃
1 = φ, 67 Hz, Fig. 1) or higher 

corresponds to always classifying a bin as having an event, a firing rate of zero corresponds 

to never classifying the bin as having an event, and the probability of classifying a bin as 

having an event between the extremes is the firing rate normalized by 67 Hz.

The simple linear relation between average firing rate and bin classification yields an 

estimate of the impact that changes in C̃
1 have on a behavioral outcome, and shows that a 

reduction of 0.02 C̃
1 from its peak results in a 5.3% loss in discrimination accuracy (Fig. 
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9A). In this figure the average percent correct curve is superimposed on the corresponding 

C̃
1 for a simulation where a stochastic biphasic pulse train was added to the sub-threshold 

input signal, and shows, as expected, that the peak C̃
1 corresponds to the best performance. 

This 5.3% loss in accuracy represents a substantial amount, 15.6% of the total range from 

the maximum of 83.8% correct to chance levels of 50%. Of course, because the performance 

and C̃
1 curves are not linear, a reduction in C̃

1 will result in different performance losses 

depending on the location in the curve. The maximum performance value of approximately 

84% correct classifications is in rough agreement with previous sub-threshold tactile 

discrimination behavioral studies that report between 70 to 76% correct at peak 

performance, depending on subject (Collins et al. 1997). The separation between the average 

firing rate during bins with (red) and without (black) a stimulus present is the determining 

factor in the shape of both the C ̃
1 and performance curves (Fig. 9B). At low perturbation 

amplitudes the neuron rarely fires, and classifies every bin as having no event, attaining 50% 

accuracy because half the bins actually have no event. As the distance between the two 

curves grows it reaches a point of maximum distinguishability, corresponding to peak 

performance (8.6 mA RMS amplitude), after which point false positives begin occurring 

frequently because the firing rate increases during bins without events. This analysis 

provides an approximation of how the gain of C̃
1 due to SR translates into a measurable 

performance variable.

The broad potential applicability of SR in biology has motivated numerous studies into how 

systems can exploit SR, what signals are best suited to benefit from SR and even how the 

noise used to generate SR can be tuned to boost its effects (McDonnell and Abbott 2009). In 

addition to optimizing the noise color for SR (Hanggi et al. 1993), work has been done to 

show how incorporating deterministic perturbations with noise can supplement SR. 

Extended alternating sub-threshold DC offsets have been shown effectively to reduce the 

barrier for a system to become excited, or switch to a new stable state, thereby enhancing SR 

(Mason et al. 2000). High frequency (with respect to the signal to be detected) sinusoids 

have also been combined with noise to produce a reduction in the noise intensity that 

otherwise would have been needed to reach the optimal SNR (Ullner et al. 2003). The 

present study builds on these ideas and demonstrates that perturbations comprised only of 

square pulses, which are ideally suited for bioengineering applications, can also be used to 

generate and tune SR. There is no need for extended offsets that can damage neurons and 

electrodes, and the flexibility of square pulses readily permits asymmetric charge-balanced 

pulse designs, bursts of pulses, pulses at irregular intervals and other stimulation strategies 

that are often used in neuroscience and bioengineering. This result promotes new ways to 

examine how the nervous system uses SR for signal detection and processing, and to exploit 

SR to restore function to the damaged or diseased nervous system.
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Fig. 1. 
The model neuron's ability to represent a noiseless input signal as a function of signal 

amplitude. Sub-threshold magnitude signals (<7 mA) that elicited no response from the 

model are considered weak inputs and can benefit from noise perturbations that produce SR. 

Once threshold is reached, the model fired a constant number of times in response to each 

stimulus in the input signal. The inset shows the input signal (colored traces), which is a 

series of stimulus events, and the model neuron's response (raster above each trace) at key 

signal magnitudes. The model's response is quantified using a version of the power norm 

measure (C1̃).

Danziger and Grill Page 16

J Comput Neurosci. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
Simulation segments illustrating SR in the model neuron in response to stochastic biphasic 

pulse train and broadband noise perturbations. Realizations of perturbations (gray traces) 

added to a sub-threshold input signal (black traces) and the model's response (raster above 

each trace). Each trace is a segment taken from longer simulations (2075 ms) with C1̃ 

approximately matched between the two perturbation types. C̃
1 for biphasic pulses are 0.14, 

0.20, 0.07 and broadband noise are 0.08, 0.15, 0.06 for low, optimal and excess levels 

respectively. The RMS amplitudes of the perturbations are 4.62, 8.24, and 11.86 mA for the 

biphasic pulses and 0.6, 1.5, and 4.5 mA for the broadband noise. The parameters of the 

biphasic pulse trains correspond to the open circles in Fig. 3B. The broadband noise 

correlation rate is 0.5 ms-1.
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Fig. 3. 
Stochastic biphasic pulse train perturbations generated SR in the model neuron. (A) The 

biphasic pulse train used as the perturbation. Each pulse width, w, and period, T, was drawn 

independently from uniform distributions, X∼U(Xmin, Xmax). The pulse amplitude, a, was 

constant during each simulation. (B) C̃
1 across the pulse train parameter space. Each cell is 

the average C̃
1 of eight 2075 ms simulations in response to sub-threshold input signals (Fig. 

1). The input signals were identical across all simulations, though realizations of the 

stochastic pulse train perturbations varied. The aw parameter was fixed at 0.15. The open 

circles indicate the parameter combinations used to create the example traces using biphasic 

pulse train perturbations in Fig. 2. (C) Scatter-plot of all C̃
1 values in (B) versus expected 

RMS perturbation amplitude. Red points are >85% of the maximum C̃
1.
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Fig. 4. 
Parameter optimization of C̃

1 for broadband noise. The top panel shows C̃
1 as a function of 

the noise correlation rate, rc and expected RMS amplitude. Each cell is the average C̃
1 of 

eight 2075 ms simulations in response to sub-threshold input signals (Fig. 1). The bottom 

panel shows the average maximum C̃
1 across rc (black line) and one standard deviation 

about the mean (gray patch). Vertical dashed lines denote correlation rates used in Fig. 5.
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Fig. 5. 
A broad range of perturbations generated SR in a model neuron. (A) C̃

1 with traditional 

broadband noise as a function of expected perturbation amplitude compared with optimal 

and near-optimal but low RMS amplitude stochastic pulse trains. Parameters for the biphasic 

pulses are marked in Fig. 3B as “+” and “□” and for broadband noise in Fig. 4 as dashed 

vertical lines for rc of 8 and 500 Hz. Lines are the average, and gray regions indicate one 

standard deviation (n=20 simulations). (B) Realizations of the perturbation types, biphasic 

pulses at high RMS amplitude, at low RMS amplitude, OU noise with high, medium and 

low correlation rates, from top to bottom. The input signals are black, the perturbations are 

colored, and the rasters mark the model's action potential responses. The examples are taken 

at peak C̃
1 for each type and the corresponding RMS amplitude of each realization is marked 

by triangles in panel A.
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Fig. 6. 
The model exhibited SR behavior in response to varied input signals. (A) C̃

1 curves for the 

“trapezoidal” input signal shown in Fig. 5B at various interpulse periods, showing SR across 

input signal frequencies when stochastic biphasic pulse perturbations are applied. (B) The 

model exhibited SR behavior in response to different types of input signals. C1̃ is plotted in 

response to subthreshold inputs of either a 30 Hz sine wave, a 10 Hz cosine wave or a 

random series of square pulses as the input signal (inset). The parameters of the 

perturbations in panels A and B were stochastic biphasic pulses and followed the white line 

through parameter space indicated in Fig. 3B. Each trace is the mean C̃
1 over n=20 

repetitions and gray bands are one standard deviation. Each input signal was scaled to 90% 

of its respective threshold RMS amplitude.
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Fig. 7. 
Responses of the model neuron to matched perturbation (noise) types indicate that the 

spectrum, rather than time domain structure, is responsible for the C ̃
1 characteristics. 

Simulations were run for four perturbation types: basic broadband noise (blue, also see Fig. 

5, blue traces), the stochastic biphasic pulse train (red), broadband noise-like time domain 

fluctuations with a spectrum matching that of the stochastic biphasic pulse train (black) and 

a train of stochastic square pulses with a spectrum matching the broadband noise (orange). 

Each trace is the mean of n=50 simulations and the gray bands are one standard deviation. 

Next to each spectrum is an inset of 500 ms of the corresponding time series, and the 

vertical axes of the times series are not to scale. The spectra axes are scaled differently 

because they are each calculated using the time series corresponding to their peak C̃
1 RMS 

amplitude, 9 mA RMS for the top two and 1 mA RMS for the bottom two. The stochastic 

biphasic pulse train (red) C1̃ curve was generated by fixing the parameters at the value found 

in the middle white open circle in Fig. 3B and varying RMS amplitude, and the vertical 

dashed line marks the spectral lobe cutoff frequency. The broadband noise had rc=0.5 ms-1.
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Fig. 8. 
Strength of SR declines as high frequency spectral power increases. Each spectrum 

corresponds to a stochastic biphasic pulse train delivered during a simulation that, in 

combination with the input signal, yielded an average C1̃ of 0.16. The spectra are colored by 

RMS perturbation amplitude, and their cutoff frequencies are indicated by dashed lines. The 

inset shows spectra of stochastic biphasic pulse trains with the same cutoffs as those in the 

main panel, but with equal RMS amplitudes (5 mA) and varied resulting C̃
1. For clarity, the 

curves plotted are interpolated spline fits of the power spectra.
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Fig. 9. 
A model of the relationship between C1̃ and performance in a sensory discrimination task. 

(A) A sub-threshold 6.5 mA input signal (described in Fig. 1) and stochastic biphasic pulse 

train perturbations were applied to the neuron model and the resulting C̃
1 is plotted (green), 

where the solid line is the average and the shaded region is one standard deviation. The 

perturbations were generated following the trajectory in parameter space denoted by the 

white line in Fig. 3B, example trials of which are given in Fig. 2A. The input signal was 

divided into bins where a crest of the input signal was either present or absent, and the 

average firing rate determined the neuron's classification of each bin as either having or not 

having an event. The average percentage correct classifications for each 2075 ms simulation 

were then calculated, and averaged over n=20 simulations for each point on the curve (blue). 

A reduction of 0.02 C̃
1 from peak C̃

1 results in a 5.3% loss in classification accuracy. (B) 

For each simulation the average firing rate during bins with (red) and without (black) events 

are plotted. Peaks in performance and C̃
1 curves correspond to the largest separation 

between the two firing rate curves (44.9Hz).
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Table 1

Neuron model parameters.

Parameter Name Symbol Value

Sodium reversal potential ENa 115 mV

Max. sodium conductance gNa 120 mS

Potassium reversal potential EK -12 mV

Max. potassium conductance gK 36 mS

Leakage reversal potential EL 10.6 mV

Max. leakage conductance gL 0.3 mS

Membrane capacitance Cm 1 μF
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