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Pitch is a perceptual correlate of periodicity. Sounds with distinct spectra can elicit

the same pitch. Despite the importance of pitch perception, understanding the cellular

mechanism of pitch perception is still a major challenge and a mechanistic model of

pitch is lacking. A multi-stage neuronal network model is developed for pitch frequency

estimation using biophysically-based, high-resolution coincidence detector neurons.

The neuronal units respond only to highly coincident input among convergent auditory

nerve fibers across frequency channels. Their selectivity for only very fast rising slopes

of convergent input enables these slope-detectors to distinguish the most prominent

coincidences in multi-peaked input time courses. Pitch can then be estimated from

the first-order interspike intervals of the slope-detectors. The regular firing pattern of

the slope-detector neurons are similar for sounds sharing the same pitch despite the

distinct timbres. The decoded pitch strengths also correlate well with the salience of

pitch perception as reported by human listeners. Therefore, our model can serve as a

neural representation for pitch. Our model performs successfully in estimating the pitch

of missing fundamental complexes and reproducing the pitch variation with respect to

the frequency shift of inharmonic complexes. It also accounts for the phase sensitivity

of pitch perception in the cases of Schroeder phase, alternating phase and random

phase relationships. Moreover, our model can also be applied to stochastic sound stimuli,

iterated-ripple-noise, and account for their multiple pitch perceptions.

Keywords: pitch, slope-detector, missing fundamental, inharmonics, alternating phase, Schroeder phase,

iterated-ripple-noise

1. INTRODUCTION

Pitch is a perceptual correlate of periodicity (Oxenham, 2012). Operationally, the pitch of a sound
can be measured by matching it to a pure tone (Hartmann, 1997). Sounds with the same repetition
rate generally share the same pitch. The spectra of the sounds, however, can be distinct, which
results in different timbre. The equivalence of pitch is the basis of how we recognize the same piece
of music played by different instruments. Pitch is also an important cue to group together harmonic
frequencies that often arise from the same vibration source and helps segregate sound sources.

The pitch of a pure tone is its tone frequency, which can be simply encoded as a place code in
the tonotopy. The pitch frequency of a complex tone, however, may not be present in the spectrum
of the tone. For example, the pitch of a harmonic complex is its fundamental frequency (F0), the
maximum common divisor of its frequency components, regardless of whether the F0 component
is present in the sound or not. This property suggests that the pitch of a sound is encoded as an
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integrated feature of all frequency components. The perceptual
phenomenon of identifying F0 as a sound’s pitch when the
F0 component is absent is called the “pitch of the missing
fundamental (MF)” and has been a benchmark in attempts to
seek neural correlates of pitch (Schwarz and Tomlinson, 1990;
Fishman et al., 1998; Bendor andWang, 2005). Bendor andWang
(2005) found pitch-selective neurons in the rostral region of
auditory cortex that respond to MF harmonics even when the
harmonic frequencies are outside the neuron’s receptive field.

Computational models in the pitch literature generally fall
under one of the two categories, spectral models and temporal
models (for a review, see de Cheveigné, 2005). Spectral pitch
models assume the existence of spectral templates of harmonics
that are associated with their F0s (Goldstein, 1973; Wightman,
1973a; Terhardt, 1979). The pitch of an MF complex can then
be decoded by finding the best matched template. Shamma
and Klein (2000) suggests that such templates can be generated
by across-frequency coincidence detection. The spectral models
work well for the pitch of resolved harmonics, harmonics that are
well separated in the cochlea, but not for the pitch of unresolved
harmonics.

On the other hand, temporal models utilize phase-locking
properties of the auditory nerve (AN) responses (Licklider,
1951; Lyon, 1984; Meddis and Hewitt, 1991a,b; Patterson, 1994;
de Cheveigné, 1998; Balaguer-Ballester et al., 2008). Many
temporal models use autocorrelation (AC) functions of spike
trains to extract periodicity of AN responses across frequency
channels. Then the AC functions over all frequency channels are
summed to extract the common periodicity across frequencies
as the pitch-related periodicity. Those temporal models are
supported by electrophysiological recordings from the AN fibers
in cat (Cariani and Delgutte, 1996a,b), for which it was found that
the largest peaks in the pooled AC histograms of all AN fibers
are related to pitch for a variety of pitch phenomena. However,
a biophysical implementation of a delay line to compute an
AC function remains an open problem (Shamma et al., 1989;
de Cheveigné and Pressnitzer, 2006).

Neurons of the cochlear nucleus have shown enhancement of
pitch representation in their first-order inter-spike interval (ISI)
distributions compared to the AN fibers (Joris et al., 1994a,b;
Rhode, 1995, 1998). Onset type units can strongly phase-lock at
both the F0 of harmonic complexes and the modulation rate of
amplitude-modulated tones. Neurons with sharp onset responses
followed by a short refractory period also show significant
improvement in envelope coding compared to AN fibers (Rhode,
1995, 1998). Neurons in those categories, such as bushy cells
and octopus cells, have high temporal precision in phase-
locking and in their transient onset responses. Based on in vitro
electrophysiology, Rothman and Manis (2003) characterized the
biophysical profile and developedmodels of phasic firing neurons
in the ventral cochlear nucleus. Such neurons and models are
good at monaural coincidence detection. We use a reduced
version of such models (Meng et al., 2012) as slope-detectors
to detect coincidence among AN fibers and to encode pitch
information. Our slope-detectors are exceptional at detecting
temporal coincidence. They differ from the simple coincidence
detector units used by previous temporal models, based on

multiplicative operations of two spike trains, in that our slope-
detectors are sensitive to the rising slope of input and do not
fire repetitively for steady input. The phasic property enables the
slope-detectors to typically fire one spike per cycle when receiving
half-wave rectified sinusoidal inputs (Meng et al., 2012) and have
a band-pass frequency tuning.

Our computational model encodes pitch by detecting
coincidence among frequency channels using biophysical slope-
detectors. The model consists of three stages: (1) transduction
of sound to neural activity in individual frequency channels
(AN model), (2) convergence of channel outputs to a neuronal
network of slope-detectors (SDs) that compute periodicity and
(3) pitch estimation from the first-order ISI distributions of the
SD units. Each SD unit receives a broad range of inputs from
the AN fibers and phase-locks at the F0 of the MF harmonic
complexes. Pitch frequency can then be estimated by choosing
the most frequently occurring first-order ISI in the pooled
histograms of all SDs. We test our model by demonstrating
its performance in several pitch perception scenarios. First, the
model can detect the F0 of the MF complexes and the decoded
pitch strength decreases with the lowest harmonic number.
Second, the estimated pitch varies with the shift frequency
of inharmonic complexes. Third, the model can account for
the phase sensitivity and insensitivity of pitch in examples of
the Schroeder phase, the alternating phase and random phase
relationships. Lastly, our model can also estimate the pitch of
iterated-ripple-noise stimuli generated by delay-add or delay-
subtract operations.

2. MATERIALS AND METHODS

2.1. Model Structure
The model consists of three stages: transduction of sound to
neural activity in individual frequency channels (AN model),
convergence of channels to compute periodicity by slope-
detectors (SD) and pitch frequency estimation (Figure 1). The
sound stimulus is first processed by an AN model, which
transforms the sound into spike trains from different frequency
channels. The AN fibers across frequency channels converge to
uncoupled SD units. The SD units can detect coincidence among
the spike trains from different frequency channels and phase-lock
at the fundamental frequency (F0) of the sound. The model is
strictly feedforward without explicit recurrent synapses before or
at the stage of the SD units. To estimate pitch from the temporal
patterns of the SD spike trains, we choose as the decoded pitch
the inverse of the most frequently occurring ISI of all SDs.

2.1.1. The Auditory Nerve Model
We generate AN spike trains using the Matlab Auditory
Periphery (MAP) software package (MAP1-14h) developed by
Meddis et al. (2013) andMeddis and O’Mard (1997) (the package
can be downloaded from http://www.essexpsychology.macmate.
me/resources/software/MAP1_14h-public.zip). This model
consists of a cascade of six stages from the auditory periphery
up to the auditory nerve: (1) middle ear filtering; (2) basilar
membrane modeled by dual-resonance nonlinear filters; (3)
inner hair cell receptor potential; (4) inner hair cell presynaptic

Frontiers in Computational Neuroscience | www.frontiersin.org 2 June 2016 | Volume 10 | Article 57

http://www.essexpsychology.macmate.me/resources/software/MAP1_14h-public.zip
http://www.essexpsychology.macmate.me/resources/software/MAP1_14h-public.zip
http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Huang and Rinzel Neuronal Network Model of Pitch

FIGURE 1 | Model schematic (details see Methods). Auditory nerve (AN)

fibers across frequency channels (20 AN fibers per BF channel) converge to a

layer of tonotopically organized, uncoupled slope-detector (SD) units with

one-sided footprint (σ = 2 octaves, Equation 7). First-order ISIs of the spike

trains from SD units at the same center frequency (CF) are pooled together to

generate an ISI histogram (10 SDs per CF). Pitch is decoded by choosing the

largest peak in the sum of ISI histograms across CF. To illustrate the model

mechanism, AN inputs are approximated as rectified sine-waves of

corresponding BFs and only channels of the frequencies that are present in

the sound are activated. When a missing fundamental with frequency

components {3F0, 4F0, 5F0} is delivered, AN fibers from BF channels 3F0,

4F0, and 5F0 are activated (red). Inputs traces (rectified sine-waves) within one

cycle of 1/F0 are shown above the AN units. Each SD unit (red) receives a

weighted sum of AN inputs from frequency channels above the SD unit’s CF

(total input shows one example trace of 3 cycles). SD units can phase-lock at

the fundamental frequency F0 (one example of membrane potential trace

shown above SD units), resulting in a peak at 1/F0 in their ISI histogram.

Responses of the full model with a detailed AN model is shown in Figure 2.

calcium currents; (5) transmitter release events at the inner
hair cell to AN synapse; and (6) AN spiking response including
refractory effects. Spike trains are generated independently
for each AN fiber of specified best frequency (BF), which is
the frequency generating the greatest response near hearing
threshold.

2.1.2. Slope-Detector Model
The second stage consists of uncoupled SD units that are
temporally precise coincidence detectors, sensitive to the rising

slope of input. An SD unit displays a “phasic” firing property,
meaning that it only fires once when an input rises fast enough
and does not fire repeatedly for slow or steady inputs (Meng et al.,
2012) (Figure 2A). Such behavior is generally due to a dynamic
subthreshold negative feedbackmechanism. Rothman andManis
(2003) found that a slowly-inactivating, low-threshold potassium
current (IKLT) was mainly responsible for the phasic firing and
developed a biophysical cellular model for neurons from the
auditory brain stem where temporal processing is important.
Here, for each SD unit, we use a reduced cellular model (Meng
et al., 2012) that successfully captures the main features of the
model of Rothman and Manis (2003). The differential equations
for each SD are

Cm
dV

dt
= −2

[

ḡNaab
−1m3

∞(V)U(V − ENa)

+ ḡKLT(a− aU)4z0(V − EK)

+ ḡKHT(0.85n
2
0 + 0.15p0)(V − EK)

+ ḡhr0(V − Eh)+ ḡL(V − EL)
]

+ I(t)

dU

dt
= 3

U∞(V)− U

τU(V)
. (1)

The steady-state function U∞(V) is given by

U∞(V) =
b
[

h∞(V)+ b
(

a− w∞(V)
)]

a(1+ b2)
, (2)

where a = 0.9, b = (a − w0)/h0 and τU(V) =

min
(

τw(V), τh(V)
)

. The variable U combines two negative-
feedback gating variables that have similar time scales: activation
(w) of IKLT and inactivation (h) of INa (Meng et al., 2012). The
constants, z0, n0, p0 and r0 correspond to “freezing” some gating
variables to their resting values. The expressions for h∞(V),
w∞(V), τw(V) and τh(V) are obtained experimentally from
voltage-clamp responses and are given in Rothman and Manis
(2003, for parameter values and functions see Table I, Type II).
I(t) is the total synaptic current each SD unit receives from AN
fibers (Equation 3). A spike is recorded when the membrane
potential, V , crosses our criterion level, −10mV. Numerical
integration is implemented with Matlab function ode45, which
uses use an explicit Runge-Kutta method of 4th order accuracy,
with error tolerance 10−5.

2.1.3. Connectivity from AN to SD
The total synaptic current I(t) that each SD unit at center
frequency (CF) fSD receives from the AN fibers is

I(t) = gsyn(t)(V − VE) (3)

where VE = 0 mV is the reversal potential of excitatory synapses.
Here the CF of an SD unit refers to the frequency of AN
fibers from which it receives the largest input. The total synaptic
conductance from AN, gsyn(t), is

gsyn(fSD, t) =
∑

fAN

ω(fAN, fSD)gAN(fAN, t). (4)
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FIGURE 2 | Slope-detector units can phase-lock at the fundamental frequency of a missing fundamental complex. (A) Response of a SD unit to ramping

input. An SD unit only fires once when input rises fast enough (red). No action potential is generated for slowly ramped input (blue). Left ordinate is for membrane

potential (mV) and right ordinate is for input current (pA). (B) Normalized waveform of an MF complex of harmonics {600, 800, 1000} Hz (F0 = 200Hz) in cosine

phase. (C) AN inputs, time courses of post-synaptic conductance, from representative BF channels in response to the MF tone shown in (B). The corresponding BFs

are shown on the left. Each trace is a combination of 20 AN fibers and is not weighted by the footprint function ω (Equation 7). AN spikes are generated using Matlab

Auditory Periphery package (MAP1-14h) developed by Meddis et al. (2013). (D) Total conductance input, gsyn (Equation 4), to an SD unit at center frequency (CF) 200

Hz from AN fibers shown in (A). This SD unit receives inputs from AN channels of BF 200Hz and above, weighted by the footprint function ω (Equation 7) with width

σ = 2 octaves. The weight on each AN input across BF is indicated by the height of a red bar to the right of the corresponding trace in (C) (arbitrary unit). (E) The SD

unit at CF = 200Hz phase-locks at the fundamental frequency F0. (F) The time-averaged input over period 1/F0 for the SD unit at CF = 200Hz, same trial as that

shown in (D). The summed input from AN channels of BF lower than 600Hz (blue) dominates the total input. The summed input from AN channels of BF from 600 Hz

to 1000Hz (green) and that from BF higher than 1000Hz (red) are modulated at 800 and 1000Hz, respectively. The total input (black) shows the steepest rising

portion at the first peak and two succeeding shallower bumps of inputs per cycle. Results are averaged over one trial of stimulus duration 100ms (20 cycles). (G) ISI

histograms of SD units across CF show peaks at 5ms (1/F0) (color plot). The summed ISI histogram over CF, therefore, has a peak at 5ms (bottom, area under the

curve is normalized to 1). The decoded pitch to this MF complex shown in B is 200Hz, same as its F0. Pitch strength is high (0.81), indicating salient pitch perception.

gAN(fAN, t) is the synaptic conductance fromAN fibers of BF fAN ,

gAN(fAN, t) = 6iḡEη(t − ti), (5)

where ti’s are the spike times of the AN fibers and η(t) is the
post-synaptic potential generated by a single AN spike,

η(t) =
t

τE
e(−t/τE), (6)

which is an alpha function with a maximum 1 at t = τE. We use
τE = 0.07ms and ḡE = 1.5 nS, unless otherwise stated.

The footprint from AN to SD, ω(fAN, fSD), is a one-sided
Gaussian of width σ = 2 octaves (Equation 7). Hence each SD

unit can integrate information and detect coincidence from the
AN fibers across BF channels. Use of a symmetric footprint would
lead to a broader CF range of SDs in response to sound, but it
would not change the results qualitatively.

ω(fAN, fSD) =

{

exp(−
|log(fAN )−log(fSD)|

2

σ 2 ), fAN > fSD

0, fAN < fSD
(7)

There are 20 CF sites for SD units, equally spaced in logarithmic
scale from 100 to 3000Hz, with 10 uncoupled SD units per CF
site. Each SD unit receives 20 independent AN fibers of high
spontaneous rate per BF channel. In the implementation of the
MAP program, there are 29 AN channels with BF equally-spaced
in logarithmic scale from 50 to 6400Hz, which is approximately 4
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AN channels per octave, unless otherwise noted. Since the width
of the footprint from AN to SD is 2 octaves (Equation 7), each SD
unit receives AN input from approximately 8 BF sites with 20 AN
fibers per site.

2.1.4. Pitch Frequency Estimation
Pitch is decoded by choosing the largest peak in the pooled first-
order ISI histograms of all SD units. The ISIs from the SD units at
the same CF site are pooled together to generate an ISI histogram
with a bin width of 0.1ms. To estimate an overall pitch, the ISI
histograms of all CF are summed and the ISI of the highest peak
is chosen as the inverse of the decoded pitch (possible neuronal
computation see Discussion). The strength of pitch is computed
by dividing the number of ISIs near the highest peak (between the
two nearest dips) by the sum of total ISIs. A similar definition was
used by Cariani and Delgutte (1996a,b) to estimate pitch salience
from all-order interval histograms of AN spike trains. We use
vector strength (Equation 8) to quantify how well a spike train
{ti}

N
i=1 is phase-locked with respect to period T.

vs =
1

N

√

6N
i=1 cos

2(2π ti/T)+ 6N
i=1 sin

2(2π ti/T) (8)

2.2. Auditory Stimuli
Audio files of some representative sound stimuli can be found in
the Supplementary Material.

2.2.1. Harmonic Complex
In a harmonic complex, frequency components are integer
multiples of its fundamental frequency F0. The harmonic number
index n corresponds to a frequency fn = nF0. The general
waveform equation is

s(t) =

N
∑

n=1

cos
(

2π fnt + φn

)

(9)

A harmonic complex is called a missing fundamental (MF)
harmonic complex when it does not contain the F0 component (a
waveform example see Figure 2B). We choose φn = 0 for cosine
phase and φn = π/2 for sine phase. Sound duration is 100ms
with a 5ms cosine ramp at onset and offset, unless otherwise
noted. A silence of 50ms is added before and after each stimulus
in the implementation of the MAP program. The overall sound
level is 65 dB. The sampling rate is 50 kHz.

2.2.2. Inharmonic Complex
An inharmonic complex is generated by shifting the frequency
components of a harmonic complex by the same amount1f . The
inharmonic complexes used in this paper contain frequencies
nF0 + 1f in cosine phase, where F0 = 100Hz and n =

1, 2, . . . , 6.

2.2.3. Schroeder Phase Complex
Schroeder phase is a specially designed phase relationship
(Equation 10) for harmonic complexes to create a relatively flat
temporal envelope (Schroeder, 1970).

φn = cπn(n+ 1)/N, (10)

where N is the total number of harmonics. A positive Schroeder
phase (m+) complex has c = 1 (Figure 6A1) and a negative
Schroeder phase (m−) complex has c = −1 (Figure 6A2). In this
paper, we use F0= 100Hz and harmonic number 2–50.

2.2.4. Alternating Phase Harmonics
An alternating phase harmonics sound (ALT) is a harmonic
complex with cosine phase (φn = 0) when n is even and
sine phase (φn = π/2) when n is odd. The stimuli were
generated by filtering a complex of 80 harmonics (F0 = 125Hz)
using a Butterworth filter in one of the three frequency regions
(Figure 7A1): (1) LOW, 125–625Hz; (2)MID, 1375–1875Hz; (3)
HIGH, 3900–5400Hz (Shackleton and Carlyon, 1994). Overall
sound level is 50 dB. To fully represent the high frequency region,
37 BF channels from 50 to 25600 Hz are used in the MAP
program and 40 CF sites from 100 to 10000Hz are used for the
SD units. The unitary synaptic strength is ḡE = 3 nS.

2.2.5. Iterated Ripple Noise (IRN):
An IRN stimulus is generated by a cascade of delay and add
operations of white noise (Yost et al., 1998). The procedures are
the following: (1) create a segment of white noise X(t) and make
a copy X1(t) = X(t). (2) Delay X(t) by d ms and add to the
copy of the original noise with a gain factor g, obtaining the
next iterate X(t) = X1(t) + gX(t − d). This is considered as one
iteration. (3) Repeat step 2 to obtain n iterations. This procedure
creates spectral ripple and temporal regularity in the noise. In
this paper, we use d = 4ms, g = 1 (addition) or g = −1
(subtraction) and n = 2, 4, 8. The addition and subtraction
operations give distinct spectral peaks, yet very similar temporal
envelopes (Figures 9A,B). The sound has duration of 300ms
with 20ms ramp on and off and overall level of 70 dB. Parameter
values are similar to that in Yost et al. (1998).

3. RESULTS

We apply our model to a range of pitch-evoking sound stimuli
which have been commonly used in the psychoacoustic literature
of pitch and to assess pitch models. The pitch of a sound is
related to both its spectral content, such as the fundamental
frequency of a harmonic complex, and its waveform envelope.
Many complex sound stimuli have been designed to dissect these
two cues of pitch and to elucidate the principle mechanisms of
pitch.We first illustrate themodel’s mechanism using themissing
fundamental (MF) harmonic complex.We compare the tuning of
pitch frequency for MF complexes and pure tones (Section 3.1).
When the harmonics of F0 are shifted by the same amount, the
sound is called an inharmonic complex and the pitch is shifted
linearly from F0. It suggests that the pitch is not determined
by the difference between adjacent frequency components. Our
model reproduces the linear shift in pitch for such inharmonic
complexes (Section 3.2). Further, we test the model’s sensitivity
to the phase relationship among harmonics, using Schroeder
phase, alternating phase and random phase (Section 3.3). By
changing the phase relationships of a harmonic complex, we can
change the waveform envelope of the complex without changing
its spectral content. In general, the pitch of resolved harmonics
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is F0 and does not depend on the phases while the envelope
cue is dominant for unresolved harmonics. Lastly, we test one
kind of pitch-evoking stochastic stimulus, iterated ripple noise
(IRN), which has peaks in spectra but little waveformmodulation
(Section 3.4). IRN stimuli can have multiple pitches depending
on the number of iterations. More details of the various sound
stimuli can be found in reviews Plack and Oxenham (2005) and
Schnupp et al. (2011, see Sections 3.2, 3.3).

3.1. Detecting the Missing Fundamental
We first consider estimating the pitch of a missing fundamental
(MF) harmonic complex. To understand the essential
mechanism, we first use an idealized AN model for illustration
and later a more detailed AN model to compare with
psychophysical and physiological data. The pitch of a complex
of harmonics is its fundamental frequency (F0), regardless of
whether F0 is present in the sound or not (Schouten, 1938;
Licklider, 1954). The pitch information is present implicitly in
the harmonic relationship among frequency components; F0
is the largest common factor of harmonics. Since the resolved
harmonics excite distinct places on the basilar membrane (Plack
and Oxenham, 2005, see Figures 2.3), each AN fiber is modulated
only by the frequency component of the sound that is close
to its best frequency (BF). For example, in response to an MF
harmonic complex of frequencies {3F0, 4F0, 5F0}, AN fibers
of BFs 3F0, 4F0 and 5F0 are stimulated primarily. The mean
excitatory current from AN fibers of BF can be approximated
as a half-wave rectified sinusoidal wave of the same frequency
(Figure 1), which is referred to as an idealized AN model.
The half-wave rectification approximates hair cell transduction
and the idealized AN model assumes sharp frequency filters.
Therefore, the pitch (F0) is not explicit in the firing patterns of
the AN fibers. Information from different frequency channels of
AN needs to be combined to compute F0.

In our model, an SD unit in the second stage receives a
weighted sum of AN inputs from a broad range of frequency
channels (Figure 1, details see Methods). Since the common
divisor of the harmonic frequencies is F0, the sum of AN
inputs has a periodicity of 1/F0 with a fast-rising, high-peaked
component followed by two smaller peaked components in each
cycle (Figure 1, total input trace). The SD units can phase-lock
to these fast, large transient input components and fire with the
same frequency as the pitch of the sound. Hence, the regular
firing pattern of SD units can serve as a neural representation
of pitch.

We use a biophysical cellular model (Meng et al., 2012)
for the SD units, a reduced version of the Type II model in
Rothman and Manis (2003) that was originally designed for
neurons in the ventral cochlear nucleus. An SD unit only fires
once when input rises fast enough and does not fire repetitively
for slow or steady input (Figure 2A). This phasic firing property
is due primarily to a low threshold potassium current (IKLT)
that activates with a time constant that is comparable to that of
the resting membrane potential. If a neuron depolarizes slowly,
IKLT will be activated and effectively increase the threshold of
firing. If the membrane potential changes fast, on the other hand,
and crosses the threshold before IKLT has time to activate, an

action potential is generated. After an action potential, IKLT is
strongly activated and prevents further spiking. Due to its phasic
property, an SD unit has a band-pass frequency tuning for half-
wave rectified-sinusoidal inputs (Meng et al., 2012, see Figure
5A). The amplitude threshold for low frequency sinusoidal inputs
is much higher since the rising part within each cycle of low
frequency inputs is too slow. On the other hand, an SD unit also
does not respond to high frequency inputs due to the lack of
resting period (with no input) for the SD unit to recover from
the activated IKLT . Further, an SD unit fires only one spike per
cycle with high vector strength (Equation 8), except for inputs at
high frequencies when the SD unit starts skipping cycles and its
firing rate declines steeply with frequency.

To compare with psychophysical results of pitch perception,
we use a detailed AN model developed by Meddis et al. (2013)
to generates spike trains of AN fibers from multiple BF channels
simultaneously (details see Methods). Temporal patterns of the
AN spike trains reflect individual harmonics within the MF
complex. Since lower-order harmonics are well separated in the
cochlear, the AN fibers are modulated mainly by the harmonic
frequency close to their BF, similar to the simple approximation
of AN activities as rectified sine-waves (Figure 1). In response
to an MF complex of frequencies {600, 800, 1000} Hz (F0 =

200Hz), for example, the AN fibers of BFs lower than 600Hz
have repetition rates at about 600Hz, those of BF = 800Hz have
repetition rate at 800Hz and those of BFs higher than 1000Hz
have repetition rate at about 1000Hz (Figure 2C). There is little
interaction between harmonics in the activities of AN fibers from
the same BF channel for this stimulus in the AN model that we
use (Lopez-Poveda and Meddis, 2001).

The SD units can phase-lock at F0 by detecting the
coincidence among the AN spike trains across frequency
channels. The total synaptic input to one of the SD units at
CF = 200Hz, from the AN fibers of BF at 200Hz and above
(Equation 7), has a large peak followed by two smaller peaks in
each cycle of 1/F0 (Figure 2D), similar to the sum of rectified
sine-waves (Figure 1, total input trace). Note that the CF of
an SD unit refers to the frequency of AN fibers from which it
receives the largest input; this CF should not be confused with
the characteristic frequency as commonly used. The majority of
the input to this SD unit is modulated at 600Hz (3F0), reflected
as three peaks in the averaged inputs within a cycle of 1/F0
(Figure 2F, blue), from BF channels lower than 600Hz. This is
due to the larger weights (Figure 2C, red bars) on AN inputs
of low BFs that converge on this SD unit. The component of
800Hz, from BF channels 600 to 1000Hz, coincides with the
first peak of the 600Hz component in each cycle (Figure 2F,
green), thus making the rising part of the first peak steeper.
The phase of the 1000Hz component, from BF channels higher
than 1000Hz, is slightly in advance to the other two components
(Figure 2F, red). The components of 800 and 1000Hz are out
of phase with the following two peaks of the 600Hz component
input, making their rising parts shallower and rendering it more
difficult for the SD unit to respond to the following two peaks
of input in each cycle. As a result, the SD unit fires precisely
and reliably almost once every cycle of 1/F0 to the MF complex
(Figure 2E).
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Consequently, the summed ISI histogram over CF has a large
peak at 1/F0, corresponding to a decoded pitch of F0 for the MF
complex (Figure 2G). In particular, the SD units across CF sites
generally show a large peak at 1/F0 (Figure 2G), which means
that pitch is represented by SD units across a broad range of CFs.
In contrast to most autocorrelation (AC) models (Meddis and
Hewitt, 1991a,b) which sum over all AC functions of AN spike
trains across BF to decode pitch, each SD unit combines inputs
from AN fibers across BF and extracts the shared periodicity
among those AN fibers. Note the reduced peak around CF of
500Hz in Figure 2G. It results from comparable amplitudes of
the 1000Hz component of the input with those of the 600 and
800Hz components to SD units. The difference in phase results
in a shallower rising part of the first peak of input in each cycle,
resulting in some skipped cycles.

3.1.1. The Pitch Strength Decreases with the Lowest

Harmonic Number
The pitch perception of anMF complex depends on the harmonic
number indices. Resolved harmonics generally give stronger
pitch sensation. Pitch salience is weaker if the MF complex
contains only higher-order harmonics (Moore andMoore, 1982).
The waveform of an MF complex of harmonic number {6, 7,
8} (Figure 3A, black) is modulated more gradually than an MF
complex of harmonic number {3, 4, 5} (Figure 2B) with the same
F0. In response to the MF complex of harmonic number {6, 7, 8},
the AN inputs, gAN (Equation 5), from high BFs are modulated
by the temporal envelope of the MF complex. The spike times are
distributed broadly in phase within each cycle of 1/F0 (Figure 3A,
blue). The fine structures of the AN inputs are of high frequency,
which reflect the frequency components within the MF complex.
The total conductance input, gsyn (Equation 4), to each SD is
slowly-modulated at the F0 (Figure 3B). The SD units fail to fire
at many cycles (Figure 3C), since their AN inputs do not rise
fast enough in those cycles. Moreover, the spreading of the AN
inputs keeps IKLT partially activated, which effectively raises the
threshold of firing for the SD units.

The decoded pitch strength decreases with the lowest
harmonic number (Figure 3F), which qualitatively agrees with
the decrease in pitch salience in listeners’ reports (Moore and
Moore, 1982). There are two factors contributing to the decrease.
First, the firing rates of the SD units across CF are lower when the
lowest harmonic number is higher (Figure 3D). A lower firing
rate results in more ISIs that are longer than the period of 1/F0.
The pitch-selective neurons from auditory cortex measured by
Bendor and Wang (2005) also show a decrease in firing rates to
higher-order harmonic complexes. Second, the vector strength
(Equation 8) (with respect to the period of 1/F0) of the SD units
at low CF deteriorates for higher-order harmonics (Figure 3E).
The SD units at high CF can maintain high vector strength, since
the AN fibers of high BF are better modulated by the envelope of
the stimulus.

3.1.2. Tuning Curves for Pure Tones and the MF

Complexes
The model can estimate pitch frequency accurately for both
pure tones and the MF complexes of low pitch frequencies. The
estimated pitch of a pure tone is identical to the tone frequency

up to about 500Hz (Figure 4A, blue) with high pitch strength
(Figure 4B, blue) and that of the MF complexes is the same as
the missing fundamental (F0) up to about 300Hz (Figures 4A,B,
green). The summed ISI histograms of the SD units across CF
show a dominant peak at the period (1/F0) for tones of low
F0s. As F0 increases, the SD units are more likely to skip cycles,
resulting in more ISIs at multiples of the period (Figures 4C,D).
For an MF complex of low F0 (around 100Hz), some SD units
can respond to the two smaller peaks in the summed AN input
that they receive in each cycle of F0 (Figure 2F) and fire more
than once in some cycles, resulting in ISIs that are less than a
period (Figure 4C, dark blue). As F0 increases, it becomes harder
for the SD units to fire more than once within a cycle, hence the
magnitudes of the two small peaks at ISIs less than a period are
reduced.

The firing rates of the SD units show band-pass and low-pass
tuning for the MF complexes and only band-pass for pure
tones. For the MF complexes, the SD units at intermediate CF
(about 300–800Hz) show low-pass tuning for F0 (Figure 4E
inset, orange curve), while the SD units at lower and higher
CFs show band-pass tuning (Figure 4E). For pure tones, most
SD units across CF show band-pass tuning of firing rates for
tone frequencies (Figure 4F). The firing rate of a band-pass SD
unit increases with F0 near linearly until it reaches maximum
(Figures 4E,F, insets), since it is entrained to fire at the pitch
frequency F0. Band-pass SD units peak around F0 = 200Hz
for MF complexes and mostly around 400Hz for pure tones.
The firing rate drops at higher F0 since the SD unit needs time
to recover from IKLT . The frequencies where these peaks occur
reflect intrinsic resonant properties of such SD units (Meng et al.,
2012, see Figure 5A) (Remme et al., 2014) and these frequencies
depend on the temporal profile of the input. The band-pass
peak’s location for higher-CF SD units shifts toward higher
tone frequency for pure tones (Figure 4F), since the frequency
region of activated AN neurons increases with tone frequency.
The SD units entrain better (i.e., over a large F0 range) to pure
tones than MF complexes since the total AN input in response
to a pure tone has only one peak within a cycle rather than
multiple peaks as the case for the MF complexes (Figure 2F).
Note that the SD units can respond to MF complexes with
frequency components outside their response tuning curves
of pure tones. In other words, these SD units respond to the
pitch rather than the frequency components of some MF
complexes. For example, an SD unit at CF = 205Hz fires almost
maximally to the MF complex of F0 = 200Hz, but fires little
to the individual frequency components, {600, 800, 1000} Hz,
when presented alone as pure tones (Figures 4E,F). Hence our
SD units satisfy the criteria for pitch-selective neurons used by
Bendor and Wang (2005). Those pitch-selective neurons are
also mainly found in the low-frequency region with preferred
fundamental frequencies around 200Hz (Bendor and Wang,
2005, see Figure 3b).

3.2. Pitch Shift of Equally Spaced
Inharmonics
An equally-spaced inharmonic complex with spacing F0 consists
of harmonics of F0 shifted by 1f (see Methods); it evokes a pitch
that is shifted away from F0. Interestingly, the shift in pitch from

Frontiers in Computational Neuroscience | www.frontiersin.org 7 June 2016 | Volume 10 | Article 57

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Huang and Rinzel Neuronal Network Model of Pitch

FIGURE 3 | Pitch strength is lower for higher-order harmonic complexes. (A–C) Model response to a harmonic complex of harmonic number {6, 7, 8} and

fundamental frequency F0 = 200Hz. (A) AN conductance inputs (blue), gAN (Equation 5), from representative BF channels are modulated by the stimulus envelope

(black). (B) Total conductance inputs, gsyn (Equation 4), AN inputs as shown in (A) weighted by the footprint ω (Equation 7), to SD units at different CFs (left). (C) SD

units phase-lock to the stimulus, but fail to fire at every cycle. (D,E) Responses to harmonic complexes with 3 consecutive harmonics of F0 = 200Hz. The lowest

harmonic number varies from 1 to 6. (D) Firing rates of SD units across CF decrease for higher-order harmonics. (E) Same as D for vector strength (Equation 8). (F)

Pitch strength decreases as the lowest harmonic number increases.

F0 is linearly related with 1f (Schouten, 1940; de Boer, 1956;
Patterson, 1973; Patterson and Wightman, 1976). Specifically,
when the first component of the inharmonic complex was above
the closest harmonic frequency, i.e., mod (1f , F0) < F0/2,
the matched pitch was higher than F0. Conversely, when the
first component of the inharmonic complex was below the
closest harmonic frequency, i.e., mod (1f , F0) > F0/2, the
decoded pitch was lower than F0. When 1f was a multiple
of F0, the complex became harmonic and the pitch was the
fundamental frequency F0. When the inharmonic complex was
shifted about halfway between harmonics, i.e., mod (1f , F0) ≈
F0/2, listeners perceived an ambiguous pitch, which was reflected
in a bimodal or multi-model distribution of pitch matches.
Moreover, the slope of the pitch dependence on Deltaf decreases
as the lowest frequency increases. (Patterson, 1973; Patterson and
Wightman, 1976).

Our model reproduces similar pitch dependence on the
frequency shift 1f as that observed in their psychophysical
experiments. The shift in pitch from F0 varies linearly with
the frequency shift from the closest harmonic (Figure 5A, black
lines are fitted lines). The slope of the linear dependence of
pitch on 1f (Figure 5A, black) decreases as the lowest harmonic
number increases (Figure 5D, blue). The result is quantitatively
consistent with that measured in the psychophysical experiments
(Patterson and Wightman, 1976, see Figure 3).

The decoded pitch strength also varies with frequency shift
1f . Pitch is the strongest when 1f is a multiple of F0, in which

case the complex is harmonic (Figure 5C). The inharmonic
complexes shifted half-way between harmonics give the lowest
pitch strength. Those 1f s with lowest pitch strengths are where
pitch perception changes discontinuously, consistent with the
ambiguity in pitch perception in listeners’ reports (Patterson,
1973). Hence, the model can qualitatively account for the trend
in pitch strength reported.

With an idealized ANmodel, where the average synaptic input
currents from the AN fibers are approximated with rectified sine-
waves, the SD units can also estimate the pitch of the inharmonics
with a similar dependence on frequency shift (Figure 5B). A
frequency shift in an inharmonic complex results in a slight
temporal difference in the rising phase within each cycle of
input. By phase-locking to the rising part of the input with
high temporal precision, the SD units can encode the small
pitch difference for different frequency shifts. Pitch strength
computed with the idealizedmodel (Figure 5C, green) also varies
linearly with the frequency shift 1f as that computed with the
detailed model (Figure 5C, blue). Moreover, slopes of the fitted
lines (Figure 5B, black) also decrease with the lowest harmonic
number (Figure 5D, green), though the slopes at low harmonic
numbers are slightly higher than those computed with the
detailed AN model. Note that there is no frequency bandwidth
in the idealized model, which means that all frequencies are
resolved. Hence the decrease in slopes computed with the
idealized model is not due to the degradation in resolvability
of higher order harmonics. This suggests that the temporal
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FIGURE 4 | Pitch frequency estimation and firing rate tuning of SD units for pure tones and MF complexes. Harmonic numbers for MF complexes are {3, 4,

5} with fundamental frequency, F0, varying logarithmically from 100 to 1000Hz. For pure tones, F0 refers to tone frequency. (A) Estimated pitch is the same as tone

frequency for pure tones (blue) up to about 500Hz and F0 for MF complexes (green) for F0 up to 300Hz. Dotted black line indicates equality with F0. (B) Same as (A)

for pitch strength. (C) The summed ISI histograms of SD units over CF in response to MF complexes of different F0 (color coded). The x−axis is ISI normalized by the

period (1/F0) of the MF complexes. (D) Same as (C) for pure tones. (E) Firing rates of SD units across CF in response to MF complexes as a function of F0. The x−

and y− axes are on a logrithmic scale. Inset: representative firing rate tuning curves as a function of F0 for SD units of CFs 143Hz (blue), 205Hz (green), 501Hz

(orange), 1466Hz (red). The positions of these four CFs are shown as white horizontal lines in the heat plot. (F) Same as (E) for pure tones. Inset: representative firing

rate tuning curves as a function of F0 for SD units of CFs 143Hz (blue), 205Hz (green), 293Hz (orange), 419Hz (red). Results are averaged over 50 runs with

independent AN inputs. Pitch and pitch strength are set to zero when the mean firing rate of all SD units is below 15Hz.

interaction of equally spaced frequencies can account, to a large
degree, for the observed pitch shift pattern, with minimum
nonlinearity in AN processing.

3.3. Phase Sensitivity
In this section, we test the model’s performance on different
phase relationships of harmonic complexes. Earlier temporal
models that use waveform fine structures (de Boer, 1956;
Schouten et al., 1962) were criticized for producing greater phase
sensitivity than was observed (Wightman, 1973b). Listeners are
insensitive for most phase variations in resolved harmonics,
however, relative phase in unresolved harmonics can affect pitch
perception (Mathes and Miller, 1947; Houtsma and Smurzynski,
1990; Shackleton and Carlyon, 1994) The spectral models are
phase-insensitive since they only make use of the spectral
content of sound. AC models are insensitive to phase variations

within a frequency channel but depend on phase relationships
among channels and these models can predict some phase-
sensitivity as observed in experiments (Meddis and Hewitt,
1991b; Meddis and O’Mard, 1997). We test our model in the
following three phase relationships: Schroeder phase, alternating
phase and random phase. A Schroeder phase relationship reduces
the envelope modulation, thus reducing temporal cues of the
stimulus; an alternating phase stimulus makes the repetition
rate of the envelope different from the fundamental frequency;
random phases in resolved harmonics have little effect on pitch
perception.

3.3.1. Schroeder Phase
An harmonic complex with Schroeder phase has a relatively
flat temporal envelope using a constant curvature (second
derivative) in phase with respect to frequency (Equation 10)
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FIGURE 5 | Pitch varies with the amount of frequency shift of inharmonic complexes. The tones are generated by shifting all harmonic components (F0 =

100Hz, harmonic # 1–6) by the same amount 1f (see Methods). (A,B) The decoded pitch shifts linearly with the frequency difference from the closest harmonic (fitted

lines are in black), consistent with psychophysical results (Patterson and Wightman, 1976, see Figures 1, 2). The decoded pitch is discontinuous at half-way between

harmonics, suggesting ambiguous pitch. (A) With a detailed AN model, we use the matlab package (MAP1-14h) developed by Meddis et al. (2013) to generate AN

spike trains (details see Methods). For each 1f , one trial was run with stimulus duration 100ms. (B) With an idealized AN model, AN inputs were approximated by

rectified sine-waves. Specifically, the AN input current to an SD unit of CF fSD is I(t) = A
∑6

n=1 ω(nF0+ 1f, fSD )[sin(2π (nF0+ 1f )t)]+, where [·]+ = max(·, 0). The

footprint function ω is the same as that in the detailed model (Equation 7) and the amplitude is A = 500pA. White noise with intensity 100 nA was added to the input

current in simulations. For each 1f , one trial was run with stimulus duration of 200ms. The increment in 1f was 20Hz in both (A,B). (C) The pitch strength is

strongest when the frequency shift 1f is a multiple of F0, in which case the complex becomes harmonic, and pitch strength weakest when 1f is half-way between

harmonics. Both the detailed AN model (blue) and the idealized AN model (green) give similar results. (D) The slopes of the fitted lines (black) in (A) (blue) and (B)

(green) decrease monotonically with the lowest harmonic number in a complex.

(Schroeder, 1970). Schroeder phase complexes have been
used to investigate how important the cue of waveform
envelope is in pitch perception. F0 discrimination of Schroeder
phase complexes is similar to that of harmonic complexes
with sine phase for resolved harmonics but poorer for
unresolved harmonics (Houtsma and Smurzynski, 1990),
suggesting that the temporal envelope is not a determining
cue for resolved harmonics. A positive Schroeder phase
complex (m+) (Figure 6A1) has a monotonically decreasing
instantaneous frequency within each period. A negative
Schroeder phase complex (m−) (Figure 6A2) is similar to an
m+ complex but reversed in time. Although an m+ complex
has the same long-term spectral power and similar temporal
envelope as an m− complex, it produces less masking in tone
detection tasks (Kohlrausch and Sander, 1995; Lentz and Leek,
2001).

The model estimates the pitch of bothm+ andm− complexes
as their fundamental frequency. The total AN input to a
representative SD unit is modulated at F0 for the Schroeder phase
complexes despite their flat temporal envelope (Figures 6B1,B2).

One reason is that the AN input to the SD unit only contains
information of a small number of harmonics due to the
limited footprint width (σ = 2 octaves in Equation 7). Another
reason is that the phase dispersion of the basilar membrane
can change the phase relations in AN fibers, resulting in a
higher modulation amplitude. It has been shown that the
basilar membrane has a negative phase curvature which would
give a peakier output to an m+ than to an m− complex
(Kohlrausch and Sander, 1995; Rhode and Recio, 2000). In
our model, the AN input to the SD unit is also peakier for
the m+ than for the m− complex (Figure 6B). Therefore, the
SD unit fires more precisely in each cycle to the m+ complex
(Figure 6C1), but has double spikes in some cycles to the m−

complex (Figure 6C2). The double spikes of the SD units at
low CF in response to the m− complex result in two small
peaks at ISIs that are shorter than 1/F0 in the ISI histograms
(Figure 6D2). Overall, the model decodes F0 as the pitch
for Schroeder phase complexes with a larger pitch strength
for the m+ complex than for the m− complex (Figure 6D,
bottom).
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FIGURE 6 | Pitch frequency estimates of harmonic complexes with positive Schroeder phase (m+, A1–D1) and negative Schroeder phase (m−, A2–D2)

(F0 = 100Hz). (A) Stimulus waveforms (normalized). Schroeder phase relationships result in relatively flat envelopes. An m+ complex has decreasing instantaneous

frequency within each period while an m− complex is a time reversal of m+ with increasing instantaneous frequency within each period (details see Methods). (B) Total

synaptic input gsyn generated from convergent AN fibers to a representative SD unit at CF = 205Hz (Equation 4) is modulated at F0. gsyn is peakier to an m+ than to

an m− complex (Kohlrausch and Sander, 1995). (C) The SD unit phase-locks at F0, in response to input shown in (B). (D) First order ISI histograms of SD units

across CF. Sums of ISI histograms over CF are shown at bottom. Decoded pitch for both m+ and m− complexes are their fundamental frequency F0 = 100Hz. Two

small peaks at shorter ISIs for m− (D2) are due to double spikes within a cycle, as can be seen in (C2). This results in a weaker pitch strength for an m− complex than

for an m+ complex.

3.3.2. Alternating Phase Harmonics
The spectral cue of pitch (the F0) is dominant for resolved
harmonics, while the envelope cue of pitch is often dominant for
unresolved harmonics. This was demonstrated in pitch matching
experiments by Shackleton and Carlyon (1994) using harmonic
complexes with alternating phase (ALT), where odd harmonics
are in sine phase and even harmonics are in cosine phase.
The envelope repetition rate of an ALT harmonic complex is
twice that of its F0 (Figure 7A1). The stimuli were generated
by filtering a complex of 80 harmonics (F0 = 125Hz) in one
of the three spectral regions: (1) LOW, 125–625Hz; (2) MID,
1375–1875Hz; (3) HIGH, 3900–5400Hz. The matching stimuli
were harmonic complexes in sine phase (SIN) filtered in the
same spectral region as the test stimuli. They found that in
the LOW region the ALT complex was matched by the SIN
complex of fundamental frequency F0, while in the HIGH
region the ALT complex was matched to the SIN complex of
fundamental 2F0.

We tested our model using the same stimuli as that used in
Shackleton and Carlyon (1994) (seeMethods). The decoded pitch
of the SIN complex is F0 in all spectral regions (Figures 7B2–D2).
The ALT complex in the LOW region has a pitch at F0 while that
in the HIGH region has a pitch at 2F0 (Figures 7B1,D1). Both

the ALT and the SIN complexes in the MID region have very low
firing rate and weak pitch strengths (Figures 7C1,C2), consistent
with the dispersed pitch matching histogram in Shackleton and
Carlyon (1994, see Figure 2E).

3.3.3. Random Phase
Phase changes in resolved harmonics have little effect on pitch
perception (Patterson, 1973; Wightman, 1973b; Lundeen and
Small, 1984). Since resolved harmonics are separated in the
cochlea, there is little interaction between frequency components.
Hence, the pitch of resolved harmonics only depends on the
spectral content and is insensitive to phases. Since phase changes
affect temporal fine structure as well as temporal envelope, as
shown in the Schroeder phase and the alternating phase examples
above, temporal models that rely on temporal fine structure will
be sensitive to phase changes in resolved harmonics (de Boer,
1956; Schouten et al., 1962).

Ourmodel is robust to phase variations in resolved harmonics.
The estimated pitch is always the fundamental frequency for
MF complexes in random phase (Figure 8). The pooled ISI
histograms have a predominant peak at 1/F0 in all trials of phase
variations. Although phase can vary among AN channels due to
both the random phase relationship in the stimuli and the phase
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FIGURE 7 | Comparison of harmonic complexes with an alternating phase (ALT) (A1–D1) and those with a sine phase (SIN) (A2–D2) in different

frequency regions. (A) Normalized stimulus waveforms of ALT (A1) and SIN (A2) complexes (F0 = 125Hz) filtered in LOW (125–625Hz), MID (1375–1875Hz) and

HIGH (3900–5400Hz) frequency regions (extended frequency ranges for AN and SD units are used, for details see Methods). Envelope repetition rate of an ALT

complex is one octave higher than its fundamental frequency, while envelope repetition rate of a SIN complex is the same as its F0. (B–D) Sums of ISI histograms of

SDs over CF for complexes filtered in LOW (B1,B2), MID (C1,C2) and HIGH (D1,D2) frequency regions. Both ALT and SIN complexes have a pitch at F0 in the LOW

frequency region, while the ALT complex has a pitch one octave higher than the SIN complex in the HIGH frequency region. Complexes in the MID frequency range

have low pitch strength and low firing rates. Our modeling results are consistent with the psychophysical results in Shackleton and Carlyon (1994).

dispersion effect of the basilar membrane, the convergence of AN
input across channels still results in coincidence at a period of
1/F0. Therefore the model is robust to most phase variations.
The pitch strength does vary with the phases, with a mean
strength slightly lower than that with cosine phase (Figure 2G).
For human listeners, a random-phase harmonic complex also
has a slightly weaker pitch strength than a cosine-phase complex
(Lundeen and Small, 1984; Shofner and Selas, 2002).

3.4. Iterated Ripple Noise
In this section, we test the model’s performance for pitch-
evoking stochastic stimuli, iterated ripple noise (IRN), that are
generated by a cascade of delay and add (gain g= 1) or delay
and subtract (g= − 1) operations on a segment of white noise
(see Methods) (Yost et al., 1998). Waveforms of IRN stimuli
generated by delay-add and that generated by delay-subtract
are indistinguishable and do not have pronounced envelope
modulation (Figures 9A1,A2), however, their spectra have peaks
at different locations and evoke different pitches. IRN with g = 1
and delay dms has peaks at harmonics of 1/d kHz (Figure 9B2),
while IRN with g= − 1 has spectral peaks half-way between
harmonics of 1/d kHz, or equivalently odd integer multiples of

1/2d kHz (Figure 9B1). IRN stimuli generated by delay-add and
that generated by delay-subtract evoke different pitch perception.
The pitch of IRN with g= 1 is 1/d kHz for any iteration number
n. In contrast, the pitch of IRN with g= − 1 depends on n;
pitch is 1/2d kHz for n > 4, while ambiguous having two values
approximately 1/(1.1d) and 1/(0.9d) kHz for n 6 4 (Bilsen
and Wieman, 1980; Raatgever and Bilsen, 1992; Yost, 1996).
Temporal regularity of an IRN stimulus increases with n, so does
the salience of its pitch sensation (Patterson et al., 1996).

The estimated pitch of IRN stimuli by our model is
consistent with the behavioral results (Yost, 1996). The pooled
ISI histograms of SD units in response to IRN stimuli with
g=−1 have three peaks near 0.9d and 1.1d and 2d (Figure 9C1),
consistent with the three peaks shown in pitch-matching
histograms of human listeners (Yost, 1996).When n = 2 or 4, the
heights of the three peaks are comparable, suggesting ambiguous
pitch perception. When n = 8, the peak at 2d is higher than
the other two peaks, suggesting a dominant pitch at 1/2d for
large n (Figure 9C1). In contrast, the pooled ISI histograms for
IRN stimuli with g= 1 have only one dominant peak at d for
all n’s, corresponding to a pitch at 1/d kHz (Figure 9C2). All
ISI histograms show an increase in peak amplitudes with the
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FIGURE 8 | Pitch frequency estimates of MF complexes with random

phase. The first-order ISI histogram pooled over all SD units across CF shows

a major peak at 1/F0 (F0 = 200Hz). The harmonic frequencies of the MF

complexes for all trials are {600, 800, 1000} Hz. Phases for the three

harmonics are randomly sampled from [−π, π ] independently. The decoded

pitch is the same as that for an MF complex in cosine phase with lower

strength (Figure 2G). The decoded pitch for all trials is 200Hz. Pitch strength

has a mean 0.54 and standard deviation 0.13. A total of 50 trials were run and

the shaded area is within one standard deviation.

iteration number n, consistent with the increase in pitch salience
with n (Patterson et al., 1996).

4. DISCUSSION

We developed a neuronal network model for pitch frequency
representation as a basis for pitch estimation. Our networkmodel
is a type of temporal pitch model, but in contrast to previous
models (Licklider, 1951; Meddis and Hewitt, 1991a,b) it does
not involve the computation of autocorrelation functions that
require delay lines. The circuit is feedforward, consisting of a
network of biophysically-based slope-detectors (SD) that encode
the shared periodicity among the convergent AN inputs. The SD
units can phase-lock at a rate that corresponds to the sound’s
pitch. Hence, the pitch frequency can be estimated from their
first-order ISI histograms. The SD units are temporally precise
due to their phasic firing properties; they do not fire repetitively
within each pitch-related period. Our model can estimate the
pitch of the missing fundamental, reproduce the pitch variation
with respect to the frequency shift of inharmonic complexes and
also account for a large degree the pitch sensitivity/insensitivity
to phase relationships in various harmonic complexes. Moreover,
the model can also estimate multiple pitches in the case of the
iterated-ripple-noise stimuli, with the same dependence on the
iteration number as observed in pitch-matching experiments
(Yost, 1996).

4.1. Physiological correlates
The biophysical model for our slope-detectors was originally
developed to account for the phasic discharge pattern of bushy
cells of the cochlear nucleus (Rothman and Manis, 2003). The
bushy cells show onset response and have better phase locking

and entrainment for both on-CF and off-CF pure tones than
those of the AN fibers (Joris et al., 1994a,b). Many cochlear
nucleus neurons show enhanced representation of pitch-related
period in their first-order intervals compared to that of the
AN responses (Rhode, 1995). Similar to our SD units, octopus
cells receive a broad range of AN input in their long dendrites
and show extraordinary temporal precision (Oertel et al., 2000).
They show especially strong phase-locking to the F0 of harmonic
complexes (Rhode, 1998). Our model shows that neurons with
high phase-locking capability are suitable to extract shared
periodicity among AN fibers across CF and can encode pitch
in their first-order ISIs for a variety of sound stimuli. Other
mechanistic models that have phasic or onset properties can also
be used as slope-detectors. The particular model (Meng et al.,
2012) that we use has demonstrated phasic properties common
in auditory brain stem neurons. The time constants of the slope-
detectors determine the frequency range of phase-locking. When
input rising slopes are shallower, i.e., when synaptic currents are
slower (larger τE in Equation 6), a low-CF SD fires less and the
pitch is extracted by the SD units from high CF sites where AN
inputs are modulated by the sound’s envelope (Supplementary
Figure 1F). Besides, the footprint from AN to SD (Equation 7)
does not need to be one-sided. A symmetric footprint would
activate a broader range of SD units. The footprint only needs to
be broad enough to combine information of multiple harmonics.

Moreover, our SD units satisfy the pitch-selective criterion
used by Bendor and Wang (2005) to characterize pitch-selective
neurons in auditory cortex, in that they respond to the MF
complexes of frequencies outside their receptive fields. Since the
amplitude threshold for an SD unit to phase-lock for higher
frequency input increases dramatically (Meng et al., 2012), the SD
unit does not respond to the individual frequency components of
a harmonic complex when presented alone (Figures 4E,F).When
multiple harmonics are presented together, the common divisor,
F0, is within the phase-locking range of the SD units. Hence, the
SD units can phase lock at the F0 although not responsive to the
individual harmonics. As most neurons in the auditory cortex,
those pitch-selective neurons fire asynchronously, which is a
major difference from our SD units. Our SD units are, therefore,
likely to be upstream neurons to those pitch-selective neurons in
auditory cortex.

4.2. Comparison with Autocorrelation
Models
Many temporal pitch models involve computing the
autocorrelation (AC) functions of AN spike trains (Licklider,
1951; Meddis and Hewitt, 1991a,b; Slaney and Lyon, 1993;
de Cheveigné, 1998; Balaguer-Ballester et al., 2008, 2009). The
AC function of each AN fiber often reflects both the frequency
components near its CF and the F0 of the sound (Cariani, 1999,
see Figure 4), suggesting that the pitch-related periodicity is
shared among AN fibers across CF. The peak at the inverse of
the pitch frequency emerges when the AC functions from all AN
frequency channels are pooled together (Meddis and Hewitt,
1991a,b; Cariani and Delgutte, 1996a,b). Our SD units extract
the shared periodicity among AN frequency channels. The pitch
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FIGURE 9 | Iterated-ripple-noise (IRN) stimuli generated with delay-subtract (A1–C1) and delay-add (A2–C2) operations. (A1) Waveform of an IRN

stimulus generated by delay-subtract operations (gain g = −1, delay d = 4 ms and iteration number n = 8). (A2) Waveform of an IRN stimulus generated by delay-add

operations (g = 1, d = 4ms, and n = 8). (B1,B2) Spectra of the IRN stimuli shown in (A1,A2), respectively. (C1) IRN stimuli generated with delay-subtract have three

peaks near 0.9d, 1.1d, and 2d in the ISI histograms summed over CF (d = 4ms). The three peaks are of comparable heights for n = 2 (blue) and n = 4 (green), while

the peak at 2d is higher for n = 8 (red). Each ISI histogram is an average of 10 realizations of IRN stimuli (shaded area is within one standard deviation). (C2) Same as

C1 for IRN generated with delay-add. Only one peak at d is dominant in the ISI histograms with amplitude increasing with iteration number n (Bilsen and Wieman,

1980; Raatgever and Bilsen, 1992; Yost, 1996).

representation in the first-order ISI histogram is, hence, greatly
enhanced compared to that of AN responses. Since most of the
SD units that are activated by the stimulus phase-lock at F0, pitch
can, in principle, be decoded from only a few SD units.

The pitch representation in the first-order ISI histograms of
the SD units is robust to sound level, although that of AN
responses is sensitive to sound level (Cariani and Delgutte, 1996a;
Figure 9). The pooled ISI histograms of SDs at different sound
levels invariably show a major peak at 1/F0 (Figure 10). A first-
order interval histogram is generally sensitive to firing rate due
to added spikes, while an all-order interval histogram is more
robust. However, since the activated IKLT suppresses further
spikes immediately after an action potential (see Methods), the
SD units typically fire only once in each pitch-related period.
Besides, the threshold for the SD units to phase-lock at high
frequency increases dramatically (Meng et al., 2012, see Figure
5A). Therefore, fewer SD units have additional spikes within a
pitch-related period for stimuli of higher pitch.

The model has a narrower frequency range of pitch
representation than AC models. The range of frequency
representation depends on the phase-locking capability of the
SD units and the synaptic strengths of the AN inputs. Stronger
synapses from AN to SD (larger ḡE in Equation 6) can extend
the tuning curve to higher pitch frequencies for both pure tones
and the MF complexes (Supplementary Figure 1A). However,
frequency doubling may occur for low F0 when synapses
are too strong such that the SD units respond to the other
coincidences within a cycle and shorter ISIs become more
prevalent (Supplementary Figures 1A,B). A gradient of increasing

synaptic strengths of AN inputs with increasing BF can help
better drive the SD units for high F0 tones while maintaining
to moderate levels the drive from low F0 tones. Another reason
that an SD unit fails to respond to high F0 tones is that the
total AN input each SD unit receives are dispersed within a
cycle, giving the SD unit less time to recover from IKLT . A tonic
inhibition combined with higher input strength can, in principle,
serve a modulatory effect on encoding by helping an SD unit to
phase-lock to higher frequency. Another possible way to improve
entrainment and synchronization is by using a cascade of
convergent feedforward SD layers. Although the frequency range
is restricted compared to human pitch perception (up to 4 kHz),
pitch range of complex tones, such as the MF and amplitude-
modulated tones, are generally restricted to low frequencies as
well, up to a few hundred hertz (Plack and Oxenham, 2005,
Section 3.5.1). Besides, physiological recordings of brain stem
neurons also generally show a decrease of entrainment for
frequency higher than 500 Hz (Recio-Spinoso, 2012; Joris, 2016).
The pitch of a pure tone of higher frequency can be encoded by
its spectral content.

4.3. Pitch Extraction Mechanisms
The SD units in our model enhance the pitch representation
in the first-order ISIs compared to the AN fibers. Nevertheless,
encoding by the model is temporally based. In the current
model formulation, we do not model mechanistically how
pitch is extracted from a first-order ISI histogram. When
entrainment is perfect, the firing rate of an SD unit can be
taken as the pitch frequency. In this case, the pitch frequency

Frontiers in Computational Neuroscience | www.frontiersin.org 14 June 2016 | Volume 10 | Article 57

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Huang and Rinzel Neuronal Network Model of Pitch

FIGURE 10 | Pitch frequency estimates are invariant to sound level. The

pooled first-order ISI histograms have a major peak at 5ms (1/F0) for sound

level from 50 to 80dB (bottom to top). The harmonic frequencies of the MF

complex are {600, 800, 1000} Hz with fundamental frequency F0 = 200Hz.

The lower amplitude of the peak at sound level 50 dB (bottom) is due to the

lower input rate from AN fibers.

estimate is a monotonic function of firing rate and the range
of pitch frequency representation depends on the phase-locking
capability of the neuron. Joris (2016) also propose that entrained
phase-locking of neurons in the brain stem can serve as a
representation of pitch, as an alternative to the autocorrelations
of AN spike times.

Another possible representation of pitch is a rate-place code
of band-pass tuning for pitch frequency. An oscillator with
a narrowly-tuned resonant frequency for periodic forcing can
presumably select the ISI that corresponds to its resonant
frequency. The first-order ISI histogram in the third stage of our
model can then be transformed into a rate code; neurons that
prefer the most frequently occurring ISI fire the most. Modeling
of the chopper units of the ventral cochlear nucleus has been
suggested to underlie a temporal place code due to the intrinsic
oscillations of the chopper units (Wiegrebe and Meddis, 2004;
Meddis and O’Mard, 2006). The modulation transfer function of
a sustained chopper unit exhibits preferential firing at the unit’s
chopping rate as well as at the harmonics of its chopping rate.
Therefore, a sustained chopper unit can entrain either to the rate
of the waveform envelope when it receives unresolved harmonic
inputs, or to the fundamental frequency when it receives a
resolved component input which is a harmonic of its chopping
rate. However, such models with chopper units are not adequate

to quantify a pitch accurately due to the broad modulation
transfer functions of chopper units. The pitch is represented
implicitly as a profile of firing rates of units across chopping rates.

These models cannot replicate the linear relationship between
pitch and shift frequency for inharmonic complexes as well as
the multiple pitch phenomenon of the IRN stimuli. Moreover,
these models are also limited to low pitch frequencies (a few
hundred Hz) since the observed band-pass modulation transfer
functions of the sustained chopper units as well as of the inferior
colliculus neurons are peaked at low frequencies (Hewitt and
Meddis, 1994). A biophysical implementation of a narrowly
tuned oscillator is a future direction.

On the other hand, since most psychophysical experiments
of pitch involve pitch-matching rather than pitch identification,
it is not necessary to derive an exact pitch value. It is possible
that the brain uses the temporal information directly to compare
pitch representations of two successive tone stimuli, rather than
transforming to a rate code for an exact value of pitch. The regular
firing pattern of the SD units in our model may be stored in
working memory and utilized later to compare with the temporal
pattern invoked by the second matching stimuli.

5. CONCLUSIONS

We developed a computational model for pitch frequency
estimation with biophysically-based slope-detector neurons.
The slope detectors receive AN inputs from a broad range
of frequency channels and phase-lock at the pitch-related
periodicity by detecting coincidence among the convergent AN
inputs. The pitch representation is, therefore, greatly enhanced
in the first-order inter-spike intervals of the slope-detectors
compared to that of the AN fibers. The regular firing pattern
of the slope-detectors, invariant with respect to stimulus type,
can serve as a neural representation of pitch that may be
further transformed into a rate code or utilized directly for pitch
discrimination.
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