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We have studied the freezing ofa binary mixture of colloidal poly (methyl methacrylate) 

spheres of size ratio 0.31 and composition AB4 (here A refers to the larger spheres). When 

suspended in a suitable liquid these particles interact via a steeply repulsive (approximately 

hard sphere) potential. The structure of the colloidal crystals formed in this binary system has 

been established from a combination of small-angle neutron and light scattering measurements. 

We find that there is an almost complete size separation on freezing. The crystalline phase 

contains almost exclusively large spheres while the smaller spheres are excluded from the 

crystal into a coexisting binary fluid. This observation is in agreement with recent density 

functional calculations for the freezing of hard sphere mixtures. 

I. INTRODUCTION 

One of the most distinctive features of colloidal systems 

is their ability to form a very diverse range of ordered struc

tures with characteristic length scales which are much larger 

than atomic dimensions. This ordering is typically on a me

soscopic scale of 10--1000 nm. A well known example is the 

crystallization, at high densities, of strongly repulsive mono

disperse spherical colloids. I The long range order is readily 

apparent from the iridescent colors seen in white light which 

arise from Bragg reflections from the ordered arrays of 

spherical particles.2 Such colloidal systems can be consid

ered as a supermolecular fluid of particles in a continuous 

background.3 With this approach, thermodynamic proper

ties (phase behavior, structure, etc.) can be understood in 

terms of standard statistical mechanical results developed 

for simple atomic liquids. Because all distances are thereby 

scaled up, the crystal structures are most conveniently stud

ied by either light or small angle scattering techniques or 

imaged directly by microscopy. 

In recent years colloidal particles with a narrow distri

bution of sizes have been synthesized4 which interact only at 

closest approach through a steeply repulsive potential. 

When suspended in a liquid such systems,S with an appro

priate change of scale, closely resemble the classical models 

of hard spheres widely studied in liquid state physics. This is 

evidenced by the phase behavior,s,6 the eqUilibrium crystal 

structure,7 and the osmotic compressibilities.8 In particu

lar, suspensions show a first-order phase transition from col

loidal liquid to crystalline states with increasing volume 

fraction. The melting (lPm) and freezing (lPt) volume frac

tions are6 within a few percent of those values found from 

Monte Carlo simulations of hard spheres.9 Such colloidal 

systems offer the possibility of experimentally studying crys

tallization in an assembly of hard spheres, probably one of 

the simplest statistical systems to display a first-order fluid/ 

solid phase transition. Here we use a suspension of colloidal 

"hard spheres" to follow the freezing transition in a binary 

mixture of hard spheres. 

a) Author to whom correspondence should be addressed. 

It has recently become possible to predict theoretically 

the phase diagram of simple systems by viewing the solid as a 

highly inhomogeneous liquid. 1O Density functional argu

ments are used to approximate the properties of this dense 

liquid. Generally these approximate theories are quite suc

cessful in describing the freezing of systems with short range 

repulsive interactions (although the results for softer, long 

range potentials are less reliable lO 
). For example, the gener

alized effective liquid approximation of Lutsko and Baus II 

predicts almost quantitative agreement with the simulation 

data of Hoover and Ree9 for a system of identically sized 

hard spheres, namely, a freezing volume fraction of 

lPt = 0.495 and a melting value of lPm = 0.545. Binary mix

tures, however, present a much more demanding test of a 

freezing theory than does a one component system. In par

ticular a fluid mixture may freeze into a much greater range 

of crystal structures than a single component fluid. The most 

efficient packing of two different sized hard spheres is not 

known, but will most probably depend critically on the ratio 

of the diameters a = dB/dA , as well as the respective mole 

fractions. The simplest situation occurs when the hard 

sphere components are comparable in diameter. Here the 

stable solid phase is most likely a substitutionally disordered 

fcc or hcp crystal. With this assumption, both Zeng and Ox

tobyl2 and Denton and Ashcrofe 3 have described density 

functional theories for freezing in mixtures which are in very 

good agreement with the computer simulation results re

cently reported by Kranendonk and Frenkel14 for diameter 

ratios in the range 0.85<a< 1.00. However, for mixtures of 

hard spheres with a greater size disparity, a < 0.85 say, there 

are significant disagreements between different density func

tional theories.13.IS-17 These theories differ only in the point 

at which the free energy perturbation expansion is truncat

ed. 

The freezing of a hard sphere mixture of arbitrary diam

eter ratio containing an equal concentration of small and 

large spheres was first considered by Smithline and Hay

metlS and Rick and Haymet. 16 These early calculations 

found that the disordered fcc structure, in which both small 

and large spheres are placed almost randomly on a common 
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lattice, was stable at all size ratios. Different predictions 

come from the theory of Brami et al. 17 according to which 

the CsCI structure was stable for diameters O. 70<a<0. 75 

while the NaCI structure was stabilized at all ratios a<0.46. 

In the intervening gaps none of the solid phases investigated 

were found to be stable with respect to a binary fluid. Finally, 

the weighted density theory of Denton and Ashcroft, 13 

which is in excellent agreement with simulation results for 

both a one and two component (a>O.85) system of hard 

spheres, predicts that for a <0.76 the two components are 

completely immiscible in a disordered fcc solid. The stable 

structure was found to be a pure fcc solid composed entirely 

of large spheres. 

In an earlier studyls we investigated the freezing of a 

binary mixture of colloidal hard spheres of diameter ratio 

a = 0.61. The particles were sterically stabilized poly

(methyl methacrylate) spheres. If it is assumed that the fluid 

in which the colloidal particles were suspended plays no 

structural role then these experiments may be directly com

pared with results for hard sphere mixtures. This amounts to 

an assumption that the one-body "embedding" energies are 

constant, independent of the positions of the colloidal spe

cies. Suspensions containing approximately equal number 

densities oflarge and small spheres, froze into a close packed 

crystal composed almost entirely oflarge spheres (in agree

ment with the predictions of Denton and Ashcroft l3 ). How

ever, experiments demonstrated that the structure of the sta

ble solid phase was a strong function of the composition. 

Suspensions, richer in small spheres than large spheres, froze 

into either an AB2 or an AB\3 structure.
19 

In the present 

investigation we again consider a binary mixture oflarge and 

small colloidal spheres, but now one where the second com

ponent is sufficiently small (a = 0.31) so that it could be 

introduced into the interstitial sites in a crystal of large 

spheres. In this limit a fluid mixture may freeze, in principle, 

into anyone of a very diverse class of crystal structures based 

on either full or partial occupancy of the vacant octahedral 

and tetrahedral sites in an assembly of large spheres. The 

octahedral sites are the most obvious choice for the largest 

possible small sphere with a maximum diameter ratio of 

0.414 in a close-packed fcc lattice. Complete filling of the 

octahedral vacancies gives a structure equivalent to that 

found in NaCl. The question which motivated this study is 

whether, in a mixture of colloidal hard spheres of diameter 

ratio a = 0.31, freezing occurs into such an interstitial struc

ture or is there, as predicted by Denton and Ashcroft,13 a 

solid state phase separation. To answer this question we have 

studied the structure of the solid phase formed at high densi-

TABLE I. Characterization of the colloidal particles. 

ties by a mixture of hard sphere colloids with small-angle 

neutron and light scattering measurements combined with 

direct observation by electron microscopy. In particular, by 

studying the small-angle neutron scattering (SANS) from a 

mixture of hydrogenated and deuterated colloidal spheres at 

different medium contrasts we have unambiguously separat

ed the small-sphere structure from that of the larger spheres. 

The remainder of this paper is as follows. Sample prep

aration, and the experimental aspects of the small-angle neu

tron and light scattering measurements are discussed in Sec. 

II. In Sec. III we describe the theory of scattering from both 

dilute and concentrated bimodal mixtures of colloidal poly 

(methyl methacrylate) spheres. We treat each different 

sized colloidal species in terms of a polydisperse core-shell 

model. Finally, we present our results in Sec. IV and summa

rize our conclusions in Sec. V. 

II. EXPERIMENTAL DETAILS 

A. Sample description and characterization 

Three different sets of colloidal poly(methyl methacry

late) spheres were used in the present study. All the particles 

had a common core-shell structure. The core, of either hy

drogenated or deuterated poly (methyl methacrylate) 

(PMMA), was surrounded by an outer hydrogenated stabi

lizing layer of a grafted comb copolymer with poly( 12-hy

droxystearic acid) (PHS) "teeth" and a poly(glycidyl 

methacrylate/methyl methacrylate) backbone. The largest 

spheres (component A), here labeled h-PBMl, were fully 

hydrogenated while the two sets of approximately equal

sized smaller spheres (component B) consisted of either hy

drogenated (h-PBMll) or deuterated cores (d-PBMI4) 

and hydrogenated stabilizers. The hydrogenated particles 

were synthesised by methods similar to those described pre

viously.4 While the deuterated sample (d-PBM 14) was pre

pared by repeating the synthesis of the hydrogenated latex, 

h-PBMll, with the hydrogenated monomer replaced by ful

ly deuterated methyl methacrylate.20 

The number average diameter d and polydispersity (7d 

(standard deviation of the diameter distribution divided by 

its mean) of each system was determined by electron micros

copy. The results are listed in Table 1. Comparable diameters 

were found from dynamic light scattering measurements. 

Table I also gives the results, for h-PBMI and d-PBMI4 

only, of a least squares fit of the measured form factors in cis 

hls-decalin to the polydisperse core-shell model, described 

in Sec. III A. These results will be described in greater detail 

Diameter (nm) Polydispersity Specific 

DLS SANS TEM TEM Volume 
System do 2(r+~) d U d (cm3 g- l

) 

h-PBMI 315 ± 2 311 ± 2 332 ± 17 0.05 0.853 ± 0.002 
h-PBMII llO± 2 124 ± 12 0.09 0.854 ± 0.002 
d-PBMI4 97 ± 2 93 ± 1 120 ± 12 0.13 0.791' 

• Estimated from the isotopic composition. 
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in Sec. IV. Combining these measurements the diameter ra

tio a = dBldA is approximately 0.31 ± 0.01, for a binary 

systemofh-PBM1 and d-PBMI4 and 0.36 ± 0.01 fortheh

PBMl/h-PBMII combination. 

Table I also quotes values for the specific volumes of the 

hydrogenated particles in decalin. The values refer to the 

suspension volume increase per unit mass of added (dried) 

colloidal material. The measured values differ slightly from 

that found for bulk PMMA ( :::::::0.842 cm3 g - I) as a result of 

the excluded volume of the PHS chains. Because of the, as 

yet, incomplete characterization of the stabilizing layer, it is 

impossible to calculate reliably the suspension volume frac

tion from this data. Here an alternative approach was used to 

fix the suspension volume fraction. As in previous studies, 5 

the interparticle potential was assumed to be "hard sphere" 

in character and the concentration at which crystallization 

first occurred was identified with the value found, from com

puter simulation,9 for the freezing point in a system of hard 

spheres, namely fPf = 0.494. All other concentrations were 

scaled by the same factor to provide effective hard sphere 

volume fractions (fP). 

The phase behavior of the large hydrogenated spheres 

(h-PBMl) was followed in cis-decalin. Using the experi

mentally determined density (Table I), freezing and melting 

was observed at core volume fractions (fPc) of 0.414 ± 0.005 

and 0.448 ± 0.005, respectively. The difference between the 

experimentally determined core freezing density and the 

known hard sphere freezing volume fraction of 0.494 was 

attributed to the thickness of the stabilizing layer. Using a 

value for the mean core radius of 147 nm (see Sec. IV A) the 

shell thickness /:::. was calculated as 8.9 ± 0.6 nm, in excellent 

agreement with the chain length expected4 for a fully ex

tended PHS molecule (-9 nm). The corresponding effec

tive volume fraction at melting was 0.534 ± 0.006 in reason

able agreement with the simulation result,9 for hard spheres, 

of fPm = 0.545. 

A different approach was necessary to determine the 

effective volume fraction for suspensions of the smaller 

spheres (h-PBMII or d-PBMI4). These suspensions re

mained amorphous at all concentrations with no sign of a 

fluid-solid phase transition. The reasons for the absence of a 

phase transition are not fully understood, but it seems likely 

that the significantly larger polydispersities (0' d - 0.13) 

found for the small spheres, as opposed to O'd -0.04 for the 

larger spheres, is important. Theoretical21 .22 results suggest 

that the fluid-solid phase transition is suppressed for poly

dispersities in excess of some critical value u*. Estimates for 

u* vary but typically lie in the range 0.05--0.11. In the ab

sence of freezing data, the effective volume fraction of the 

small spheres was determined by assuming the shell thick

ness /:::. was unchanged from the value found for the larger 

spheres (/:::.-8.9 nm). For the deuterated small sphere, 

where the core radius was 37.5 nm (see Sec. IV A) this gave 

the effective volume fraction (fP) as 1.90 ± 0.08 times the 

core volume fraction (fPc)' 

Table II gives the effective component volume fractions 

and compositions of the suspensions studied. All bimodal 

samples showed rapid crystallization within a few hours. Vi

sual observation showed that, at the time of both neutron 

and light scattering experiments, the samples contained a 

homogeneously nucleated powder of small (-10-30 f.1-m) 

randomly orientated Bragg reflecting crystallites. 

B. SANS measurements 

The neutron scattering experiments were carried out at 

the Institute Laue-Langevin, Grenoble on the diffractome

ter D 11. The particles were dispersed in a mixture of cis h 18 -

decalin and diS -octane. The coherent scattering length den

sity of the suspension medium was varied by altering the 

relative proportions of the hydrogenated and deuterated hy

drocarbons. The colloidal suspensions were contained in 1 

mm pathlength quartz cells thermostatted at 25°C. Mea

surements were made at a sample-detector distance of 35.7 

m and a source to sample distance ("collimation length") of 

approximately 40 m. The effective source was the exit of a 

neutron guide 3 cm wide and 5 cm high.23 Defining aper

tures were placed in front of the sample to collimate the 

incident neutron beam. At the sample position the beam was 

approximately rectangular with a vertical height of approxi

mately 1.5 cm and a width of 1 cm. The incident wavelength 

distribution was triangular23 and centered on the wave

length A = 1 nm with a full width at half-maximum 

(FWHM) of 0.09 nm. This gave an experimentally accessi

ble q range of 0.01 to 0.08 nm - I. The scattering intensity 

data was collected on a two-dimensional detector and aver

aged radially. Corrections for sample attenuation and scat

tering from the quartz cell were made by standard ILL pro-

TABLE II. Component volume fractions and number densities of the suspensions studied. Here A labels the larger and B the smaller species. 

Sample 

2 

3 

4 

5 

Component 

A 

h-PBMI 

h-PBMI 

Component Suspension 
B medium tpA 

d-PBM14 cis h 18 -decalin 

dlB-octane 0.540 ± 0.007 

h-PBMII cis h l8 -decalin 0.538 ± 0.007 

CS2 

0.538 ± 0.007 

0.545 ± 0.007 

0.534 ± 0.007 
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tpB nB/nA 

0.067 ± 0.003 4.2 ± 0.4 

0 0 

0.035 ± 0.002 1.4±0.1 

0.051 ± 0 .. 002 2.0 ± 0.2 

0.070 ± 0.003 2.8 ± 0.3 
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FIG. 1. A schematic illustration of the scattering geometry used in the 

SANS experiments. The plane of the paper corresponds to the scattering 

plane. For the calculation ofthe smearing corrections the source and sample 

apertures are assumed circular of radii r, and r2 , respectively. The distance 

between apertures is Lo and the distance from the sample to the plane of the 

detector is L. At the detector the beam intensity is trapezoidal in section 

with coIlimation shadows at distances r. and rp' 

cedures. At 35.7 m the incoherent scattering was ofvery low 

intensity and was neglected. Using the measured scattering 

from water, at a sample-detector distance of 5 m, the data 

was further corrected for detector sensitivity and converted 

into absolute units. 

The experimentally measured scattering data is expect

ed to differ from theoretical curves as a result of two instru

mental factors: first, the limited resolution of the diffractom

eter and second, the influence of multiple scattering. Here it 

is assumed that these two corrections can be treated indepen

dently of each other. 

With an instrument set to detect radiation with a mean 

scattering vector ij (here the bar denotes the average value of 

a parameter), radiation with scattering vector q in a range 

around ij also contributes as a result of the finite divergence 

ofthe incident beam, the spread in neutron wavelengths, and 

the positional resolution of the 2D detector. Here for simpli

city, we ignore the rectangular shape of the incident beam. 

Instead it was assumed that resolution effects could be de

scribed in terms of, a suitably averaged, circular geometry. 

Figure I shows a schematic representation of an approxi

mately equivalent aperture geometry. The source and defin

ing apertures are circular with radii r l and r2 , respectively, 

and are uniformly illuminated. For such a geometry, the 

image of the source on the detector is trapezoidal in shape 

with the radius, at the detector, of the beam umbra and pen

umbra shadows as 

r" =..!::...... rl - (1 + ..!::......)r2' 
Lo Lo 

rp = ..!::...... r1 + (I + ..!::......)r2' 
Lo Lo 

(1) 

respectively. Here Lo is the source-sample and L the sam

ple-detector distance. For the present geometry, the sizes of 

the apertures were fixed at r l = 2 cm and r2 = 0.5 cm, inter

mediate between the horizontal and vertical dimensions of 

the actual instrument apertures. Calculations showed that 

the resolution corrections were little changed if a slightly 

different choice of aperture sizes was used. 

The importance of making such resolution corrections 

is shown by a simple calculation. The full width at half-maxi

mum (FWHM) IJ.q of the resolution function is approxi

mately 

IJ.q = [(~)2 + lJ.iJ~ ]112, (2) 
q A 4 tan2iJ /2 

where IJ.A and lJ.iJ are the corresponding (FWHM) widths 

of the wavelength and intensity distributions respectively. 

lJ.iJis the angle where the intensity of the source image on the 

detectoris reduced to half its maximum value, which is given 

as lJ.iJ = 2rl/L. Equation (2) predicts that for the current 

geometry, IJ.q/q varies between -0.6 for the smallest scat

tering vector to -0.1 for the largest scattering vectors. 

Hence resolution corrections can be expected to have a sig

nificant effect on the scattering data, particularly at low q. 

The accurate treatment of instrumental smearing in cir

cularly symmetric small-angle scattering experiments has 

been described in detail by several authors. 2~26 Here we fol

low the approach suggested by Ramakrishnan.25 The ob

served intensity IJ.I°bs, scattered within the solid angle IJ.w, at 

an apparent scattering vector ij from a primary beam of in

tensity 10 is given by the expression 

a:.:s 

(ij) = 10 TD J II (~ ij)S(A )dA, (3) 

where S(A) is the normalized wavelength distribution, Tis 

the sample transmission, and D is the sample thickness. The 

effective differential scattering cross section per unit volume 

II (q) is a two-dimensional convolution of the theoretical 

cross section d'~/dw with W( q), the intensity distribution of 

the incident beam on the detector, and R(q) the detector 

resolution function. For isotropic scatterers with symmetric 

illumination the functions d~/ dw, W, and R depend only on 

the magnitude of the scattering vector q = Iql and the analy

sis is considerably simplified. In such a case, the smeared 

intensity II (q) is given by the one-dimensional integral 

i
oo {df - - } II(q) = 0 dw (r)'W(r)'R(r) rJo(qr)dr, (4) 

where fer) denotes the Hankel transform of the function 

!(q), which is given by the expression 

fer) = 100 

!(q)qJo (qr)dq. (5) 

Resolution corrections were made using the triangular 

wavelength distribution SeA) described by Ibel,23 a trape

zoidal beam profile,24 and a Gaussian detector resolution 

function R (q) with a FWHM equal to the detector cell size 

of I cm. 

MUltiple scattering effects will also distort the observed 

scattering patterns. For example, in dilute samples multiple 

scattering fills in the minima in the particle form factors and 
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increases the measured differential cross section above the 

theoretical (Born) value. Although the general treatment of 

multiple scattering is a delicate problem, analytic expres

sions for the distortion of the scattering have been derived by 

Schelten and Schmatz27 under the assumption, fulfilled 

here, that scattering occurs only at small angles. In their 

analysis mUltiple scattering is analyzed in terms of Hankel 

transforms of the relevant functions. The transform of the 

measured cross section (d~/dm)ms' determined from a ex

periment in which multiple scattering occurs, is given by the 

expression 
,...., -

( d~) (r) = ~ exp(s(r)/k 2). 

dm ms D 
(6) 

Here k is the mean wave number of the incident neutron 

beam (217'/A), and s(r) is the transform of the theoretical 

scattering probability seq) = D d~/dm. 

In cases where both mUltiple scattering and smearing 

corrections are significant then, to a firSt approximation, the 

intensity is given by Eqs. (3) and (4) with the transform of 

the theoretical scattering cross section replaced by the multi

ple scattering result [Eq. (6)]. In the current experiments, 

with sample path lengths of 1 mm, slight multiple scattering 

occured in strongly scattering samples. We have, neverthe

less, used this path length so as to ensure sufficient scattering 

into the detector at all medium contrasts. The multiple scat

tering corrections required, as calculated from Eq. (6), were 

fairly minor. Their inclusion was however found necessary 

to achieve a detailed agreement between theory and experi

ment. 

C. Light scattering measurements 

The limited resolution of small-angle neutron scattering 

experiments becomes very apparent when highly correlated 

structures with large repeat distances, such as colloidal crys

tals, are studied. In such cases light scattering measurements 

are particularly valuable because the typical resolution 

(t:..q/q) of light scattering experiments may be an order of 

magnitude smaller, for the same scattering vector q, as a 

SANS measurements. Note, however, that SANS provides a 

much wider range of scattering vectors. 

As a result of the significant refractive index mismatch 

between the PMMA particles (n-l.49) and cis-decalin 

(n-1.48) the pure hydrocarbon suspensions used show 

strong multiple scattering of light. Hence light and neutron 

scattering measurements could not be made on the same ex

perimental sample. Almost index matched samples were 

prepared using a mixed suspension medium of carbon disul

phide (mass fraction - 0.25) and cis-decalin. Previous stud

ies have shown that changing the suspension medium in this 

way has no significant effect on the suspension microstruc

ture. 

Light scattering measurements were made on mixtures 

of h-PBMI and h-PBMII. The scattered intensity was mea

sured at scattering angles between {} = 20· and 140·, in angu

lar steps of 0.25·, using an automated light scattering diffrac

tometer described elsewhere.7 This gave a range of 

scattering vectors between 0.005 and 0.04 nm -1; overlap

ping with the q range of the SANS measurements. The in-

strument had an angular resolution (FWHM) of approxi

mately OS. The fractional q resolution (t:..q/q) improved 

from -0.02 at q-0.005 nm -1 to a figure in excess of 0.002 

at q-O.04 nm -1. 

III. SCATTERING THEORY 

A. The form factor of polydisperse core-shell spheres 

The theory of small-angle neutron scattering from a sus

pension of colloidal particles has been described by, e.g., 

Hayter.28 In the absence of multiple or incoherent scatter

ing, the measured intensity is proportional to the coherent 

portion of the differential cross section per unit volume 

~! (q)= ~(~bib1exp[iq.(ri-rj)])' (7) 

where bi is the (bound) coherent scattering length of the 

chemical species at the position ro V is the sample volume 

and the brackets describe a thermal average over all possible 

eqUilibrium configurations. The scattering vector q is the 

difference between the wave vectors of the incident and scat

tered radiation with the magnitude iqi = (41T/,.t)sin({) /2), 

where {} is the scattering angle at which the neutron radi

ation of wavelength ,.t is observed. For a suspension of mono

disperse noninteracting particles, there is no phase coher

ence between waves scattered from different particles so that 

Eq. (7) becomes 

~ (q) = n(1 I bi exp(iq-r i ) 1

2

), (8) 
dm i(u) 

where n is the number density of particles, and the sum is 

over all atoms in the particle volume v. At the small scatter

ing vectors typically explored in a SANS experiment, the 

intensity is insensitive to details on the atomic scale so that 

we can replace the atomic scattering lengths b i by the locally 

averaged scattering length density defined as 

(9) 

where b i is the scattering length of the atom at the position 

riO Replacing the sum in Eq. (8) by an integration yields an 

expression for the scattering from a suspension of noninter

acting spheres 

~ (q) = nF(q)2, (10) 
dm 

where the single particle amplitude is defined by the Fourier 

transform 

F(q) = f [per) - Pm ] exp (iq-r) dr. (11 ) 

Here Pm is the scattering length density of the suspension 

medium. In the case of a spherically symmetric profile P (r), 

the expression for the single particle amplitUde reduces to 

f _2 sin qr 
F(q) = 417' r [per) - Pm] -- dr. 

qr 
(12) 

In previous work20 it has been shown that the PHS-PMMA 

spheres used in the present study may be, at least approxi

mately, described by a two-shell model, e.g., an inner

PMMA core and an outer shell of solvated PHS stabilizing 
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chains. For such a model, the scattering profile has the ap

proximate form 

fPc 
per) = iPs 

r<rc 

rc <r<rc + tl.' 
(13 ) 

where the spherical core of radius rc and scattering length 

density Pc is surrounded by a shell of thickness tl. and scatter

ing length density Ps' The corresponding particle scattering 

amplitude follows from Eq. (12) as 

F(x) = 4~ (Ps -Pc){yj(x + 8x) -j(x)}, 
q 

(14) 

where x is the dimensionless variable qrc' 8 = tl.lrc' and the 

functionj(x) = sin x - x cos x. y is the scaled medium con

trast, y = (Pm - Ps )/(pc - Ps)' and determines the relative 
proportion of the scattering from the core or shell. For y = 0 

only the core scatters (Pm = P s ), while for y = 1 the shell 

alone contributes to the total intensity (Pm =Pc)' At the 
match point, where the scattered intensity at q = 0 vanishes, 

r = (1 + 8) - 3. 

Colloidal particles are never identical in size. There is 

always a distribution of particle diameters. To treat this size 

polydispersity, Eq. (10) must be averaged over the particle 

size distribution. Here we assume that there is a distribution 

only of the particle core sizes while the shell thickness tl. is 

fixed for all spheres by the molecular geometry of the grafted 

PHS chains. In this case the single particle form factor 

F2(qrc) is replaced by the size average 

F2( -) 16,r ( )2{ - -2( Z + 2) x =-- Ps -Pc C! +C2X+C3 X ---
~ Z+1 

(15) 

where GCrc ) is the normalized probability of finding a parti

cle with a core radius between rc and rc + drc ' and rc is the 
mean core radius. Equation (15) has been evaluated nu

merically for a wide range of distribution functions. 29 Here 

we choose the Schulz distribution,30 which is both physical

ly realistic as well as mathematically tractable. The normal

ized form of this distribution is 

~ (Z+ 1 )Z+! 
G(rc ) = rcZ + 1) ~ 

xexp [ - ;: (Z + 1) ] , ( 16) 

where rc is the mean core radius and Z is related to the 

normalized second moment (or polydispersity) O'c of the 

particle core radius distribution by the expression 

0:=(";_1)=_1_. (17) 
c ~ Z+ 1 

For finite Z the Schulz distribution has the realistic feature 

that it is skewed towards large sizes. With increasing Z, Eq. 

(16) asymptotically approaches a Gaussian and, in the limit 

of Z --+ 00, tends to a delta function at rc' 
The size-averaged scattering function for a Schulz dis

tributed system of core-shell spheres follows from Eqs. 

(14), (15), and (16) as 

+B(x)(z+!)/2(C
4 

cos[(Z+ I)D(x)] +c
7 

sin[(Z+ 1)D(x)]) 

+ xB(x) (z+ 2)/2(C
S 

cos[ (Z + 2)D(x)] + Cs sin[ (Z + 2)D(x)]) 

+(~:~)x2B(X)(Z+3)/2(C6 cos[(Z+3)D(x)] +c9 sin[(Z+3)D(X)])}, (18) 

where the functions B(x) and D(x) are defined as 

B(x) = (Z + 1)2 ,D(x) = tan -!(~), 
(Z + 1)2 + 4x2 Z + 1 

(19) 

with x = qrc and the coefficients Ci are given by the expres

sions 

C 1 =!-y(cosy+ysiny) + r (1 +y), 
2 

C2 = yy(y - cosy), 

r+ 1 
C3 =----ycosy, 

2 

c4 = r(y cosy - siny)2 - C 1 , 

Cs = 2ysiny[ 1 - y(y siny + cosy)] + C2' 

c6 = C 3 - r sin2 y, 

C7 = ysiny - r (1 + yl)sin 2y - cs, 
2 

Cg =C4 -!+ycosy- r (1 +y2)cos2y 
2 

C9 = rsiny(1 - ycosy). 

(20) 

with y = qtl.. For y = 0, where the shell is effectively trans
parent, this result reduces to that given by Aragon and Pe
cora3

! for the scattering from a Schulz distribution of homo

geneous spheres. 

B. The scattering from a concentrated multicomponent 

suspension 

In a concentrated suspension the positions of the centers 

of each particle are correlated so that interparticle interfer

ence effects appear in the scattered intensity. The general 

expression for the scattering from a multicomponent system 
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of such interacting particles has been given by Guinier and 

Fournet.32 Here, for completeness, we repeat the principal 

equations before considering, in Sec. III C, the specific case 

of a bimodal suspension. Labeling the different sized colloi

dal species as a, p .. " and the component particles of each 

species by N, M"', etc., the position vector r i of the ith 

nucleus may be written as rfN + R~, where R~ is the center 

of mass ofthe Nth particle of species a and rfN is the position 

vector of the ith nucleus relative to this point. With this sub

stitution the scattered intensity from a system of v different 

sized colloidal species may be separated into terms describ

ing separately the intraparticle and interparticle correlations 

dI. (q) = i i (nanp )1I2Fa (q)Ft(q)SaP(q)· 
d(J) a=lp=l 

(21) 

Here Fa (q) is the single particle scattering amplitude of spe

cies a defined following Eq. (12), na is the number density 

of species a and Sap(q) is the structure factor which de

scribes the correlations between the centers of species a and 

p. SaP is essentially the Fourier transform of the radial dis

tribution function gaP (R), which measures the probability 

of finding a particle of species p at a vector distance R from a 

reference particle of species a. Following Kirkwood and 

Buff33 
Sap is defined by the ensemble average 

S ( ) _ 1 
aP q - [(N

a
)(Np )]1/2 

XC~1 M~l exp[iq'(R~ - R~)])' (22) 

which may be rewritten in terms of the partial radial distri

bution function gaP as 

Sap(q) =Dap + (nanp) 112 f exp(iq·R) [gaP(R) -l]dR 

(23) 

We shall ignore the delta function in Eq. (23) which corre

sponds to pure forward scattering from the suspension. In 

the particular case where all interactions are spherically 

symmetric Sap (q) is a function only of q = I q I and Eq. (23) 

simplifies to 

(24) 

For an isotropic binary suspension (i.e., V= 2), Eq. (21) 

reduces to the expression 

dI, (q) = naF~ (q)Saa (q) + 2(na np) 112Fa (q) 
d(J) 

c. Bimodal suspensions 

A bimodal suspension consists of a mixture of two sets 

of very differently sized colloidal spheres, here distinguished 

as A and B. Provided the difference in the mean sizes is 

greater than the combined width of each diameter distribu

tion, then the scattering from such a bimodal suspension 

can, to a first approximation, be treated in terms of a purely 

binary mixture of spheres. For an exact calculation of the 

scattering from a bimodal suspension we proceed by rewrit

ting Eq. (21) in a form analogous to Eq. (25) 

dI, --
- (q) = nA F;" (q)SAA (q) 
d(J) 

where the SUbscripts identify the parent colloidal system, A 

or B, and the system number densities, polydisperse form 

factors and partial structure factors are given by the expres

sions 

VA VB 

nA = L naA , nB = L naB' 
aA = 1 as= 1 

PI = a% 1 naAF~A /.~ 1 naA , 

Here v A and VB are the number of particle species compris

ing each colloidal system (so that VA + VB = v) and the 

positive value of the square root is to be taken. 

To treat a completely polydisperse suspension the sum

mations in Eq. (27) should be replaced by integrations over 

the component particle size distributions. In the case of van

ishing size polydispersity (i.e., UA' U B --+0) it is apparent 

from Eq. (27) that the polydisperse self-structure factors 

SAA (q) and SBB (q) approach asymptotically the correct bi

nary limiting functions Saa (q) and Spp (q), where a and p 
are the species of mean diameters dA and dB' However, by 

contrast the polydisperse cross structure factor SAB (q) re

duces, in this limit, to ± SaP (q) rather than the expected 

limiting form Sap(q). The sign is determined by the relative 

phases of the scattering amplitudes from particles of type a 
and p [i.e., the sign of the product Fa (q)Fp(q)]. For a 

spherically symmetric scattering profile p(r) the scattered 

amplitude F( q) changes sign at the position of the minima 

qmin in the form factor F(q). Hence in the limit U A' U B -+0, 

the polydisperse cross structure factor SAB (q) shows a sin

gularity at qmin' Although other polydisperse structure fac

tor definitions are possible which ensure that SAB (q) ap

proaches Sap(q) at all q. The present choice has the 

advantage that information can be obtained directly from 
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experiment without the need for additional assumptions 

about the the relative phase of the individual form factors. 

Note that the polydisperse structure factors, defined in 

Eq. (27), are not independent of the scattering amplitudes 

F(q) as is the case for a pure binary mixture. However, as 

will become apparent later, the dependence of the derived 

structure factors on Pm is negligible in most cases and may 

normally be ignored. 

Finally, the differential scattering cross section given in 

Eq. (26) is an experimentally observable quantity, and 

hence must always be positive for all values of nA PI (q) 

and nB F~ (q). From the theory of quadratic forms it fol

lows that the polydisperse structure factors must satisfy the 

conditions 

SAA(q»O, SBB(q»O, 

- - -2 
SAA (q)SBB (q) - S AB (q);;..O 

at each value of q. 

IV. RESULTS AND DISCUSSION 

A. Dilute samples 

(28) 

An understanding of the dependence of the polydisperse 

form factors F'f(q) and F~ (q) upon the medium contrast 

Pm is an essential first step to evaluating the partial structure 

factors Sij (q). For a single component suspension with a 

sufficiently low number density so that interparticle interac

tions are negligible, the scattered intensity is simply propor-

tional to the form factor F2 (q). Knowledge of the number 

density n gives the polydisperse form factor directly. 

SANS measurements were made on dilute (<p<0.03) 

suspensions of the larger hydrogenated (h-PBM1) and, sep

arately, the smaller deuterated spheres (d-PBMI4) at var

ious scattering length densities Pm between 

Pm = -0.03xto- 4 nm- 2 and 1.24Xto- 4 nm- 2
• The 

suspension medium was a mixture of cis h l8 -decalin and d 18 -

octane. Under these conditions the large hydrogenated 

spheres are only weakly scattering with the match point, 

where the extrapolated q = 0 intensity vanishes, at approxi

mately Pm -1.04 ± 0.02 X 10 - 4 nm - 2. Conversely, the 

small deuterated spheres are far from match and are strong 

scatterers at all the medium contrasts used here. 

The experimental form factors were modeled in terms of 

an internal core-shell structure. Polydispersity was treated 

as described in Sec. III A. The polydispersity o"c of the core 

radius distribution was chosen so that the variation in the 

TABLE III. Coherent scattering length densities (p). 

= 

Material 

h-PMMA 

d-PMMA 

h-PHS 

cis h 18 -decaIin 

d,.-octane 

1.07 

7.02 
-0.06 
-0.03 

6.42 

overall (core plus shell) radius was as found by transmission 

electron microscopy. This gave an effective core radius poly

dispersity 0" co for component A and B, as 0.04 and 0.16, re

spectively. The core was taken as either hydrogenated or 

deuterated PMMA with an associated scattering length den

sity Pc given in Table III. The thickness of the shell 6. was 

fixed for both sets of particles at the value found above of 

6. = 8.9 nm. The remaining parameters were determined 

from a least squares fit of the experimental form factors to 

the polydisperse core-shell model [Eq. (18)]. Corrections 

for instrumental smearing and multiple scattering were in

cluded by the methods described in Sec. II B. 

The mean core radius rc was determined from measure

ments in cis h 18 -decalin. In this solvent the shell is virtually 

matched and so gives practically no contribution to the scat

tered intensity. Fits to the experimental form factors gave 

the mean core radii, for component A and B, as 146.6 ± 0.3 

and 37.5 ± 0.2 nm, respectively. With the core radius deter

mined, the scattering length density of the shellp. was found 

by matching the calculated and measured scattering curves. 

All comparisons were made in absolute units. The least 

squares fitted values of P. for components A and B are plot

ted as a function of the medium contrast in Fig. 2. All other 

parameters were fixed at the values described above. The 

observation that the fitted values of P. are not constant but 

vary, almost linearly, with the medium contrast Pm strongly 

supports the hypothesis that the shell contains solvated sta

bilizing chains. Since the scattering length densities of both 

PHS and cis hlS-decalin are close to zero, the values of Ps 
directly measure the average volume fraction of diS -octane 

within the shell. For the data given in Fig. 2 this diS -octane 

fraction varies between 0.05 and 0.25. 

Figures 3 and 4 show a comparison between the calcu

lated and experimental scattering curves for h-PBM 1 and d

PBM14 at five different medium contrasts. The agreement is 

generally very good with all experimental form factors ade

quately modelled by a simple core-shell structure. However, 

the relatively poor fit to the form factor of the large spheres 

at Pm = 1.24 X to - 4 nm - 2, just above the intensity match 

point, suggests that a more sophisticated model for the graft-

2.0 
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C> 
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sf " ." 

0.5 ~~ 

~~~t , , 
0.00 

0.5 1.0 1.5 2.0 

P 110-4 nm-2 
m 

FIG. 2. Results from fitting the measured form factors of (a) h-PBMI and 

(b) d-PBMI4 spheres to the poJydisperse core-sheli model. The best-fit 

values for the scattering length density of the sheli (p,) are given as a func

tion of the medium scattering length density (Pm)' The dashed lines are 

drawn as guides to the eye. 
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FIG. 3. The scattering intensities (points) measured from dilute 

(9' = 0.03) suspensions of the large hydrogenated spheres (h-PBM1) at 

medium scattering length densities of, from top to bottom, - 0.03, 0.63, 

0.78, 1.02, and 1.24 X 10 -. nm - 2. The solid lines are the results of a least

squares fit to the polydisperse core-shell model described in the text. 
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FIG. 4. Comparison of the experimental form factor (points) of the small 
deuterated spheres (d-PBMI4) with the results (solid lines) calculated 

from the polydisperse core-shell model. The scattering length density of the 

suspension medium was (in unitsoflO- 4nm -2) (a) - 0.03, (b) 0.64, (c) 

0.79, (d) 0.95, and (e) 1.17. The curves have been scaled so that the intensi
ty levels are for the same colloid number density as the data of Fig. 3. For the 

sake of clarity each curves has been shifted by (a) + 0.5, (b) 0.0, (c) 
- 0.5, (d) - 1.0, and (e) - 1.5 units vertically. 

ed layer structure may be necessary to accurate reproduce 

data both above and below match. Nevertheless, for the con

trasts considered here the simple core-shell model is seen to 

be adequate. 

B. SANS measurements 

The structure of the colloidal crystals formed by a bina

ry mixture of spheres of diameter ratio a - 0.31 (suspension 

1 in Table II) was studied by contrast variation techniques. 

Large protonated spheres were mixed with smaller deuterat

ed spheres (B) in the proportions AB4 in a suspension of 

total volume fraction 0.61. Within a few hours the binary 

mixture showed a significant degree of crystallization, and 

after a day the sample volume was completely filled with 

small crystallites. SANS measurements were made on five 

such samples, with nominally identical component volume 

fractions and medium scattering length densities of - 0.03, 

0.63, 0.79, 1.02, and 1.24 X 10 - 4 nm - 2. 

The scattered intensity from each of the five different 

contrast measurements may be concisely written in a matrix 

notation as 

I(q) = P(q) 'S(q) (29) 

following Eq. (26). Here I(q) is a five-dimensional column 

vector consisting of the individual scattering intensities 

tIT,/dOJ(q), P(q) is a 5X3 matrix ofform factors with the 

(A) 

1 

0 

"\ 
(B) 

1 

--" 

... , ... 
0 

(e) 

0 

2 4 6 8 

q/10-2 nm-1 

FIG. 5. The experimentally determined partial structure factors (a) SAA' 
(b) SBB' and (c) SAB of the (partially) crystalline mixture of composition 

AB. and total volume fraction 0.61. Here A refers to the large hydrogenat

ed spheres (h-PBMl) and B labels the smaller deuterated component (d
PBM14). The solid lines are guides to the eye. 
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rows {nA FT (q), 2 [nA nB Ff (q) n (q) ] 112, 

nB ~ (q)}, and the vector of structure factors is given by 

ST(q) = [SAA (q),SAB (q),SBB (q)]. Inversion of this ma

trix equation, at each value of q, gives the corresponding 

partial structure factors. Here the solution is overdeter

mined with five equations for the measured intensities ex

pressed in terms of just three unknown structure factors. 

Attempts to solve these matrix equations by standard 

least-squares techniques were, however, unsatisfactory. 

There was a significant amplification of experimental errors, 

particularly in the derived S AA' and to a lesser extent, the 

S AB structure factors. As one might physically expect, the 

least squares estimates of S AA and S AB were most sensitive to 

errors near the minima in the large sphere form factors 

(q-0.03 and 0.05 nm - I) and at high q. This sensitivity, in 

severe cases, resulted in unphysical values for the large 

sphere self structure factor. To avoid these difficulties, par

tial structure factors were chosen34 which minimized the 

weighted sum of the squares of the discrepancy between cal

culated and measured intensities and satisfied the conditions 

ofEq. (28). This ensured that the calculated intensities were 

always positive at all medium contrasts. The corresponding 

constrained structure factors differed from the least-squares 

estimates only in the particular case of SAB (q) for q>0.045 

nm - I and S AA (q) for q>0.03 nm - I. There was no notice

able change in SBB (q). The resulting partial structure fac

tors are plotted in Fig. 5. The internal consistency of the 

measured data is illustrated in Fig. 6 by the close agreement 
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FIG. 6. Comparison of the experimental scattered intensities (points) with 

the results calculated (solid lines) from the partial structure factors given in 

Fig. 5. The curves correspond to the scattering from a bimodal mixture of 

composition AB. and volume fraction 0.61 at medium contrasts of, from 

top to bottom, - om, 0.63, 0.79, 1.02, and 1.24 X 10 -. nm - 2. 

between the intensities calculated from the fitted structure 

factors (solid lines) and those measured (points). The fact 

that the data may be adequately represented in terms of just 

three functions supports our assertion (Sec. III C) that the 

contrast dependence of the polydisperse structure factors 

may be ignored. 

To understand these findings, consider first the form of 

S AA' the self-structure factor of the large spheres. S AA pre

sents a classical shape with a low value approaching q = 0 

and peaks at q - 2.5 X 10 - 2 and 4.6 X 10 - 2 nm - 1, which 

reflect the strong spatial correlations between the large 

spheres in the crystalline structure. The origin of these peaks 

is clearly seen from light scattering measurements on the 

same samples. Light scattering experiments (which were 

sensitive only to the positions of the large spheres, i.e., SAA) 

showed sharp Bragg reflections typical of single component 

hard sphere colloidal crystals.7 The most intense peak was 

the interplane (001) reflection, indexed on a hexagonal ba

sis, which occured at a wave vector of - 2.29 X 10 - 2 nm - I. 

Reflections were also expected at approximately 3.74 X 10 - 2 

nm- I (110), 4.39x1O- 2 nm- I (l11), and 4.58X1O- 2 

nm - I (002). These Bragg reflections are broadened into the 

peaks observed by SANS at q-2.5 and 4.6X1O- 2 nm- I 

because of the much lower resolution of neutron as com

pared to light scattering measurements (cf. Secs. II Band 

II C). Finally, we note that the measured asymptotic value 

of SAA was nearly 0.3, which differs from the theoretical 

value 1. This disagreement is probably due to a systematic 

experimental error. As is often done in the literature, we 

could have corrected our values of SAA by a multiplicative 

constant. 
In comparison the small sphere structure factor SBB is 

very different. First, it displays no strong interference peaks 

and secondly rather than a low value at q = 0 Sss shows a 

rise which suggests a long range clustering among the 

smaller spheres. The absence of Bragg reflections demon

strates that the small spheres were not present in any appre

Ciable numbers in the crystallites which were apparent to the 

eye. With, for example, a NaCl structure present strong cor

relation peaks would be expected in SSB at the same scatter

ing vectors as found in SAA' i.e., 2.3 X 10- 2, 3.7X 10- 2, and 

4.4 X 10- 2 nm - I, etc. The form of SSB and the cross struc

ture factor S AB can, however, be understood in terms of the 

structures expected for a fluid assembly of very differently 

sized large and small spheres. 

Within the Percus-Yevick (PY) approximation, Biben 

and Hansen35 have shown that when uB/uA -+0, the small 

sphere structure factor SSB (q) approaches the limiting form 

S S
• 6 qJAqJB £ 

BB (q) = BB (q) + u(q). (30) 
1Tifo 1 - qJA 

Here S:B (q) is the PY structure factor for a homogeneous 

one-component fluid of small spheres with an effective vol

ume fraction qJ: = qJB/(l - qJA)' which is just the small 

sphere volume fraction once the volume occupied by the 
larger spheres has been subtracted. The delta function 8(q) 

describes the confinement of the small spheres within the 

interstities of the neighboring shell of large spheres. This 

expression, although valid in the limit uB/uA -+0, describes 
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the salient features of the observed small sphere structure 

factor rather well. For an inhomogeneity on the scale of the 

large sphere (i.e., 311 nm) we expect a sharp peak at the 

origin, of width 21T/311- 0.02 nm - 1, as observed. In addi

tion away from q - 0, SBB should approach the effective one

component structure factor S;B' which has a maximum at a 

scattering vector of 21T/aB -0.065 nm - \ as is evident in the 

experimental data. 

A full comparison between theory and experiment re

quires calculations for mixtures with both finite diameter 

ratios and size polydispersity. For the hard sphere interac

tion analytic expressions have been derived by Vrij36 for the 

scattering functions in an arbitrary multicomponent mix

ture within the PY approximation. These results are readily 

generalized to treat a bimodal mixture of hard spheres repre

sentative of h-PBMI (dA = 311 nm, a A = 0.04) and d
PBM14 (dB = 93 nm, a B = 0.13). The inherent size poly

dispersity of each component has been modeled by taking a 

Schulz distribution of hard sphere diameters with the same 

mean and polydispersity as the experimental system. It was 

assumed that each particle had an internal core-shell struc

ture with the scattering parameters determined in Sec. IV A. 

The resulting polydisperse PY structure factors for a suspen

sion of partial volume fraction lP A = 0.45 and lPB = 0.053 
(composition AB4 ) is plotted in Fig. 7. In order to ensure 
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-1 
o 2 

(AI 

4 6 8 

FIG. 7. Polydisperse structure factors (a) SAA' (b) SBB' and (c) SAD calcu

lated from the Percus-Yevick approximation for a fluid mixture of hard 

spheres of composition AB. and total volume fraction O.S1. The larger 

spheres (A) have a mean diameter of 311 nm and a size polydispersity of 

0.04 while the smaller spheres (B) are 93 nm in diameter with a polydisper

sity of 0.13. 

the calculated structure factors are directly comparable with 

the measured data in" Fig. 5, the theoretical results have been 

smeared by the procedures described in Sec. II B. 

The qualitative agreement between the small sphere 

structure factors (SBB and SAB) in Figs. 5 and 7 is particu

larly striking. Evidently, in the experimental sample the 

small spheres are present in a fluid rather than a crystalline 

environment. 

c. LIght scattering measurements 

Independent evidence for the size separation of big and 

small spheres was obtained from light scattering under con

ditions in which the scattering from the large spheres pre

dominated. This is readily achieved since, away from match, 

the small sphere scattering is lower by a factor of approxi

matelya6 (I.e., - 2 X 10 - 3) as compared with a large sphere 

of the same profile. Hence light scattering experiments are 

sensitive, in the main, only to the large sphere correlations 

(I.e., SAA)' Such measurements are complementary to the 

neutron scattering results where experimental conditions 

were deliberately chosen so as to reveal the structures 

formed by the smaller component. 

Light scattering measurements were made on four col

loidal samples (labeled 2-5 in Table II) with a large sphere 

volume fraction (nominally) fixed at lPA = 0.539 and differ

ing amounts of a second smaller component B. Overall sus

pension compositions were A, AB1.4' AB2.0 , and ABa. The 

hard sphere diameter ratio was estimated as a -0.36. When 

left undisturbed, all four samples crystallized. Crystalliza

tion was nucleated homogeneously throughout the samples 

and small crystallites of size 10-30 !lm formed and com

pletely filled the available volume. 

The measured scattering intensities are plotted in Fig. 8, 
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FIG. 8. The measured light scattering intensity from mixtures of composi

tion A, ABI.4' AB2.0' and ABa (top to bottom) as a function of the scatter

ing vector q. The partial volume fraction of the large spheres (A) was the 

same in all mixtures, tpA = 0.54. The dashed lines denote the positions of 

the first two sharp Bragg reflections in the pure single component crystal of 

large spheres. 
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displaced for ease of comparison. All four diffraction pat

terns are similar in form. Two sharp Bragg reflections, at 

q(OOI) -2.3 X 10 - 2 nm -I andq(llO) -3.7X 10- 2 nm -I, are 

evident together with a broad background of diffuse scatter

ing. Similar diffraction patterns have been observed in single 

component colloidal crystals and have been interpreted in 

terms 7 of a random stacked crystal of close packed planes of 

spheres. As is evident from Fig. 8 the crystalline order of the 

large spheres is relatively unaffected by the addition of the 

second smaller component. The large spheres even in the 

presence of the small spheres remain at the vertices of a ran

dom stacked crystal which is structural very similar to that 

formed in the absence of small spheres. Indexing the reflec

tions in Fig. 8 on this basis gives the length of the equivalent 

face centred cubic unit cell (equal to '\12 times the large 

sphere separation) as 490,480,477, and 475 nm in the crys

tals formed by the suspensions of composition A, ABI.4' 

AB2.o , and AB2.8' It is apparent that the large sphere inter

particle spacing in the the solid phase contracts as the 
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FIG. 9. Phase diagrams calculated from the immiscible hard sphere model, 

described in the text, for binary mixtures of diameter ratio 0.4 (solid lines), 

0.3 (dotted lines), and 0.2 (dashed lines). In the upper part the mole frac

tion of small spheres X B in the initial suspension is given as a function of the 

osmotic pressure, in units of kT /d~, wheredA is the diameter of the larger 

spheres. The lower figure gives the density of the larger spheres in the coex

isting fluid and crystal of large spheres (in units of d;:: 3) in terms of the 

osmotic pressure. 

smaller component is added. The effect is, however, pretty 

small with the unit cell shrinking by at most 3.2%. As one 

might physically guess, this suggests that the smaller spheres 

are not present to any significant degree in the crystal of 

large spheres. To see this we consider results from two sim

ple analytical models for hard sphere freezing. 

Ermak et al. 37 have demonstrated that if the smaller 

component is soluble in the large sphere crystal the unit cell 

of the coexisting solid lattice expands as small particles are 

introduced. The expansion is greater the bigger in size the 

small component is. However, the effect is fairly small. For 

example, when the small component is present at about a 

mole fraction of 0.5 in both coexisting phases, the unit cell 

expansion is a little bit less than 1 % for point particles and 

slightly more than 1 % for spheres of diameter ratio a = 0.1. 

In this model the fluid phase is enriched in small spheres 

while the coexisting solid is correspondingly depleted. Simi

lar conclusions have been reached by Xu and Baus38 from a 

density functional treatment of hard sphere freezing within 

the PY approximation. For diameter ratio in the range 

0.2 < a < 0.5 where both the PY approximation is expected 

to hold and their model is still meaningful the presence of a 

finite concentration of small spheres lowers the density of 

the large sphere lattice. 

If conversely spheres of the smaller component are in

soluble in the large sphere crystal then the unit cell of the 

coexisting solid lattice is expected to contract. This increase 

in the density of the large sphere lattice has been both pre

dicted39 and confirmed experimentally. IS A detailed discus

sion of the immiscible sphere model has been described pre

viously39 for a = 0.65 and 0.85. Here, however, the fluid

solid phase eqUilibria is presented for mixtures of very differ

ent sized spheres. Utilizing simulation results for hard 

spheres in the fluid and solid phases40 and equating the pres

sure and chemical potential of the larger component in both 

phases leads to the phase diagrams plotted in Fig. 9. The 

addition of small particles is seen to increase the density of 

1 pm 

FIG. 10. Scanning electron micrograph of the colloidal crystal formed in a 

mixture of composition AB2.0 • Note that most of the interstitial sites in the 

crystal of large spheres are vacant. 
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the coexisting solid phase. This increase in density is most 

striking for mixtures of hard spheres with small diameter 

ratios and a high proportion of small spheres. For a diameter 

ratio of a-0.36, when each component is present in equal 

numbers in the fluid phase (Le., X B = 0.5) the unit cell of the 

large sphere lattice contracts by approximately 4%. 

On the basis of these calculations it seems reasonable to 
assume that the spheres of the smaller component are not 

soluble to any significant degree in the large sphere crystals. 

This observation correlates well with the SANS measure

ments described in Sec. IV B. The immiscible hard sphere 

model predicts both the direction of the large sphere lattice 

parameter change as well as furnishing a reasonable estimate 

of its magnitude. This simple model is, however, only in 

qualitative, rather than quantitative, agreement with the 

data. Detailed calculations predict lattice parameter reduc

tions of 5.3%, 7.0%, and 7.6% for the three binary suspen

sions. The corresponding experimental values are 2.1 %, 

2.8%, and 3.2%. It is possible that this behavior is either a 

result of inaccuracies in the present model or may suggest 

there is a small, but significant, degree of mutual solubility. 

Scanning electron micrographs of dried-down colloidal sam
ples, reproduced in Fig. 10, suggest only a very limited de

gree of small sphere solubility in the crystal oflarge spheres. 

V. CONCLUSIONS 

The present experiments demonstrate that a binary sus

pension of colloidal spheres of diameter ratio a = 0.31 do 

not form interstitial crystals although such structures are 
geometrically feasible. Instead on freezing, there is a size 

separation with the large spheres forming a crystalline struc

ture while the smaller spheres are excluded from the crystal 

into a second (coexisting) fluid phase. Partial structure fac

tors have been determined from small-angle neutron scatter

ing measurements. These may be qualitatively described by a 

hard sphere model for the interaction potential between all 

colloidal components. A simple analytical model for the 

phase equilibria predicts that the interparticle spacing in the 

large sphere crystal should contract as further small spheres 

are added. This has been confirmed by light scattering mea

surements. Scanning electron microscopy on dried colloidal 

crystals show that the small spheres are predominantly in

soluble in a crystal of large spheres. 
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