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Abstract 
Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the 
mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from 
cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical 
data from our health system database of over 3,300 patients. Using a machine learning algorithm, we 
identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, HGF, IL-8, and G-
CSF, as the strongest predictors of critical illness. Neutrophil activation was present on the first day of 
hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding 
the onset of critical illness and predicting increased mortality. In the health system database, early 
elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, 
we define an essential role for neutrophil activation in the pathogenesis of severe COVID-19 and 
identify molecular neutrophil markers that distinguish patients at risk of future clinical decompensation. 
 
 
 
Main 
 
As the death toll from COVID-19 reaches over 830,000 worldwide, it remains a pressing concern to 
understand how the disease causes such a wide spectrum of clinical outcomes. For the majority of 
patients, COVID-19 manifests as an upper respiratory tract infection that is self-limited. However, the 
progression of COVID-19 in a large subset of patients to respiratory distress, multi-organ failure, and 
death has resulted in an enormous global impact. A number of studies to date have highlighted an 
important role for monocytes and macrophages in severe COVID-19,1,2 but our knowledge of the 
immunological drivers of critical illness are otherwise limited.  
 
To achieve a deeper understanding of the immunological phenotypes of COVID-19 across the 
spectrum of disease severity, we performed proteomic profiling of blood obtained from hospitalized 
patients with COVID-19 and used a machine learning algorithm to define the biomarkers that best 
discriminate between critically ill patients and those with more mild disease. We discovered a unique 
neutrophil activation signature composed of neutrophil activators (G-CSF, IL-8) and effectors (resistin 
(RETN), lipocalin-2 (LCN2), and hepatocyte growth factor (HGF)), which had the greatest power of all 
measured biomarkers to identify critically ill patients. The effector proteins strongly correlated with 
absolute neutrophil count and were highly transcriptionally enriched in a developing neutrophil 
population that was recently identified specifically in critically ill COVID-19 patients.3,4 To determine 
whether this neutrophil activation signature precedes the onset of critical illness, we performed 
longitudinal plasma analyses beginning on day 1 of patients’ hospitalization. We discovered that 
elevated neutrophil biomarkers at the time of hospital admission identified those patients who would 
later progress to critical illness and predicted increased in-hospital mortality. Finally, to determine 
whether the mechanistic implications of this study are generalizable, we analyzed clinical data from a 
cohort of over 3,300 patients and found that, at the earliest blood draw during hospitalization, high 
numbers of developing and mature neutrophils detected in patients’ blood also predicted increased 
mortality. This study identifies neutrophil activation as a defining feature of severe COVID-19 that 
occurs prior to the onset of critical illness, implicating neutrophils as a central player in the 
pathogenesis of severe COVID-19 and highlighting opportunities for clinical prediction and therapeutic 
intervention.  
 
Results 
 
Forty-nine adult patients (40 in the medical intensive care unit (ICU) and 9 in non-ICU units), as well as 
13 non-COVID-19, non-hospitalized controls, were included in our initial ‘cross-sectional’ cohort (Table 
1a). We performed multiplexed biomarker profiling on plasma obtained during the course of patients’ 
hospitalization, measuring concentrations of 78 circulating proteins with immunologic functions (Figure 
1a, Supp. Fig. 1). Principal component analysis (PCA) of this dataset showed separation of the control, 
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non-ICU COVID-19, and ICU COVID-19 samples, indicating that these circulating markers capture a 
spectrum of illness severity (Figure 1b). 
 
To assess if this profile of plasma biomarkers could distinguish between critically ill and non-critically ill 
patients, we applied a random forest machine learning prediction model. The model was trained on 
data from 2/3 of the subjects, and its ability to predict ICU status was tested on the remaining 1/3 of the 
subjects. The model accurately identified 14 out of 14 patients in the ICU and 7 out of 7 subjects not in 
the ICU (Figure 2a). To avoid introducing bias based on treatment, the random forest model and PCA 
analyses excluded IL-6 because most (38/40) ICU patients received tocilizumab, which is known to 
increase IL-6 levels.5 These results demonstrate that our proteomic profile provides a highly reliable 
circulating signature of critical illness in COVID-19. 
 
To gain insight into the specific plasma proteins that may affect disease severity, we next examined the 
importance of each feature in the random forest prediction model. Five of the top six features 
contributing to the model were proteins related to neutrophil activation (Figure 2b, 2c). Three of the top 
four features were RETN, LCN2, and HGF, each of which is produced by neutrophils, stored in 
neutrophil ‘specific’ or ‘secondary’ granules, and released upon neutrophil activation.6-11 The next two 
highest ranking features were IL-8 and G-CSF, which stimulate neutrophil chemotaxis and 
development, respectively.12,13   
 
Next, we assessed whether this neutrophil activation signature alone could discriminate between 
critically ill (ICU) and non-critically ill (non-ICU) patients. We repeated random forest modeling using 
only the markers of neutrophil activation (RETN, LCN2, HGF, IL-8, and G-CSF) and found that 
circulating levels of this selective panel also accurately classified all test subjects into ICU and non-ICU 
categories (Figure 2a). Interestingly, each of the neutrophil activation markers showed greater 
discriminatory power for critical illness than previously described monocyte/macrophage markers (with 
the exception of MIG/CXCL9) that were also included in our proteomic panel (Figure 1a, Figure 2b, 
Supp. Fig. 1),14,15 which suggests an essential role for neutrophils in the development of critical illness 
associated with COVID-19. 
 
To interrogate the source of neutrophil granule proteins RETN, LCN2, and HGF within our patient 
cohort, we analyzed the correlation of the absolute neutrophil count (ANC) at the time of blood draw 
with all of the circulating markers that we had measured. We found that RETN, HGF, and LCN2 were 
the three proteins that most strongly correlated with ANC (Spearman's r = 0.633, p < 0.001; 0.555, p < 
0.001; and 0.492, p < 0.0001, respectively) (Figure 3a). To gain further insight into the cellular source 
of these proteins in COVID-19, we analyzed data from a single cell RNA sequencing (scRNAseq) study 
of peripheral blood mononuclear cells (PBMCs) from patients with COVID-19.3 We found that RETN 
and LCN2 transcripts were highly enriched in a circulating cell population designated as “developing 
neutrophils” (p < 10e-300 for each), which was detected almost exclusively in severely ill patients with 
acute respiratory distress syndrome (ARDS) (Figure 3b, Supp. Fig. 2).3 Another highly enriched 
marker (p < 10e-300) for this population was matrix metallopeptidase 8 (MMP8), or neutrophil 
collagenase (Figure 3b). Notably, constituents of neutrophil granules, like RETN, LCN2, and MMP8, 
are transcribed at earlier stages of neutrophil development, packaged into granules, and later released 
from mature neutrophils upon degranulation.16 These observations provide additional support for the 
conclusion that neutrophils are the primary source of the circulating markers of critical illness in COVID-
19 that we identified. 
 
In our initial cross-sectional cohort, blood was collected after patients had been hospitalized for a 
variable length of time (between 2 and 45 days after admission), limiting our capacity to determine 
whether the observed neutrophil signature was a consequence of critical illness or whether it preceded 
its onset. To address this, we established a second, longitudinal cohort of patients. Proteomic plasma 
profiling was conducted on blood samples collected serially starting on day 1 (within 24 hours of 
hospital admission) from 23 consecutive patients admitted for treatment of confirmed COVID-19 who 
remained hospitalized for at least 4 days (Figure 4a, Supp. Fig. 3, 4). To broaden our assessment of 
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neutrophil activation, we included a panel of matrix metalloproteinases (MMPs) and tissue inhibitor of 
metalloproteinases (TIMPs), including MMP8, a marker of the ‘developing neutrophil’ population 
(Figure 3b).17 Consistent with our findings in the cross-sectional cohort, RETN, HGF, and LCN2 in the 
day 1 samples of the longitudinal cohort showed strong correlations with ANC (Spearman's r = 0.76, p 
< 0.0001; 0.60, p =0.0031; and 0.73, p = 0.0001, respectively), and MMP8 was the protein most highly 
correlated with ANC (r = 0.86, p < 0.0001), further supporting a neutrophilic source of these proteins in 
COVID-19 (Supp. Fig. 5). 
 
Sixteen patients in the longitudinal cohort were initially admitted to lower-acuity non-ICU units, and 
seven patients were admitted directly to the ICU (‘ICU-Admit’) (Table 1b). Of the patients admitted to 
non-ICU units, nine remained in those units until discharge (‘non-ICU’), while seven required transfer to 
the ICU during their hospital stay (‘ICU-Transfer’) (six patients were transferred due to worsening 
respiratory failure (Supp. Table 1), and one patient was transferred due to hypotension in the setting of 
gastrointestinal bleeding). Consistent with our observations in the cross-sectional cohort, ICU-Admit 
patients had significantly higher levels of all neutrophil activation markers than non-ICU patients on day 
1 of hospitalization (Figure 4b, Supp. Fig. 3b). As predicted, the same pattern was observed for MMP8 
which, like RETN, HGF, and LCN2, is stored and released from secondary granules of neutrophils.18,19  
 
Remarkably, the levels of the neutrophil activation markers on day 1 of hospitalization were also 
significantly elevated in the ICU-Transfer patients, at levels comparable to ICU-Admit patients and well 
above the levels in non-ICU patients (Figure 4b). In both ICU-Transfer and ICU-Admit patients, the 
neutrophil activation markers remained elevated from the day of admission to day 7 of hospitalization 
and did not change appreciably over time, while these levels in non-ICU patients remained stably low 
(Supp. Fig. 3b). Thus, despite the fact that patients in the ICU-Transfer group were not critically ill at 
the time of the day 1 blood draw, evidence of neutrophil activation was already present in these 
patients. The neutrophil activation signature identified patients who were primed for eventual transfer to 
the ICU, prior to the onset of critical illness. 
 

Previously reported markers of macrophage activation, including IL-6, IL-10, TNF-α, and MIG/CXCL9 
were also elevated in ICU-Admit and ICU-Transfer patients compared to non-ICU patients on day 1 of 
hospitalization (Supp. Fig. 4). Notably, most of these markers (as well as IL-8 and G-CSF) were also 
significantly elevated in non-ICU patients compared to controls, whereas the neutrophil granule proteins 
(RETN, LCN2, HGF, MMP8) that directly reflect neutrophil activation were not elevated in non-ICU 
patients compared to controls and were only significantly different in patients who would go on to 
develop critical illness (Figure 4b, Supp. Fig. 4). Altogether, these data indicate that both neutrophil 
activation and monocyte/macrophage activation precede the onset of critical illness. They also suggest 
that neutrophil degranulation may be a more specific feature of severe COVID-19. 
 
To further validate our findings, we conducted additional analyses using RETN, the factor that was 
most important in distinguishing critical illness in our random forest prediction model. Among patients 
who did not require direct ICU admission (non-ICU, ICU-Transfer), those with day 1 RETN levels above 
the median value were much more likely to later require ICU transfer (Figure 4c). Moreover, among all 
patients in this cohort, those with day 1 RETN levels above the median were significantly less likely to 
survive (Figure 4d). In addition to RETN, we found that higher levels on hospital day 1 of LCN2, G-

CSF, IL-8, and MMP-8, as well as IL-6, IL-10, TNF-α, IL-1RA, and M-CSF, were significantly associated 
with mortality (Supp. Fig. 6). Meanwhile, we found that the neutrophil to lymphocyte ratio (NLR), which 
has been reported as a prognostic indicator in COVID-19,20 was not significantly different between non-
ICU and ICU-Transfer patients on the first day of hospitalization (Supp. Fig. 7), suggesting that this 
measure of cell count ratio may not distinguish critical illness as clearly as the molecular markers of 
neutrophil activation. Interestingly, neither NLR nor D-dimer, another well-established marker of 
disease severity in COVID-19, were significantly different between patients who did and did not survive 
their hospitalization, unlike the neutrophil and macrophage activation markers (Supp. Fig. 6). 
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Lastly, we explored whether these mechanistic insights regarding the role of neutrophils in severe 
COVID-19 could be validated in a large patient population hospitalized with COVID-19. Using an 
extensive database of laboratory and clinical data from 3,325 patients admitted to Yale-New Haven 
Health System who tested positive for SARS-CoV-2 (DOM-CovX cohort; Table 1c), we examined the 
first recorded values of immature granulocyte (IG) and neutrophil counts during the course of their 
hospitalization. We used these early values in order to avoid potential confounding effects of 
hospitalization, such as therapeutic interventions and secondary infections. We found that in-hospital 
mortality was significantly higher among patients with elevated initial IG absolute count (Figure 5a), IG 
percent (Figure 5b), and ANC (Figure 5c). Interestingly, we did not find that initial absolute monocyte 
count was associated with increased mortality (Figure 5d). While our molecular markers of neutrophil 
activation are not available in this large cohort, these findings confirm that early signs of neutrophil 
development are associated with future mortality in one of the largest COVID-19 patient cohorts 
assessed to date.  
 
Discussion 
 
Our analyses of multiple hospitalized patient cohorts with COVID-19 reveal a consistent protein-level 
signature of neutrophil development and activation in critically ill patients with COVID-19. Moreover, we 
demonstrate for the first time that elevations in circulating markers of neutrophil and macrophage 
activation precede the onset of critical illness, identifying non-critically ill patients who are at risk of 
becoming critically ill. Based on our machine learning prediction algorithm, markers of neutrophil 
activation had greater discriminatory power for detecting critical illness than other cytokines previously 
shown to be associated with severe COVID-19,14,15 most of which were also included in our proteomic 
profile. Furthermore, in one of the largest cohorts of hospitalized patients with COVID-19 analyzed to 
date, we find that increased immature granulocyte and neutrophil counts early in hospitalization are 
associated with increased mortality. The presence of conspicuous neutrophil activation in critically ill 
patients with COVID-19 may not have been detected in prior analyses of circulating biomarkers and 
flow cytometry because neutrophil granule proteins are not included in standard cytokine panels and 
because neutrophils tend to be excluded during routine preparations of peripheral blood mononuclear 
cells. By identifying a consistent signature of neutrophil development and activation that anticipates the 
onset of critical illness, our findings suggest that neutrophils may play a central role in the pathogenesis 
of severe COVID-19. 
 
The host response to infection can be understood as a balance between resistance (the ability to 
eliminate a pathogen) and tolerance (the ability to maintain essential biological functions in the 
presence of a pathogen).21 The immune response is essential for pathogen resistance, but it can also 
cause costly tissue injury, leading to a failure of tolerance. Neutrophils and macrophages are critical 
arms of the innate immune system and are often the first responders to infection and injury. However, 
neutrophils can also cause significant collateral damage to tissues.22 While an important role for 
monocytes and macrophages in severe COVID-19 has been well described,2 a potential role for 
neutrophils has been suggested by the prognostic value of the neutrophil to lymphocyte ratio,20 and 
recent studies have identified a population of immature neutrophils present in the blood of critically ill 
COVID-19 patients, as well as increased numbers of neutrophils in the bronchoalveolar lavage.1,3,4,23 
However, it has remained unclear whether there is heightened neutrophil activation in severe COVID-
19, and whether the observed innate immune response is a consequence or potential cause of critical 
illness.  
 
In this study, we first used plasma proteomics and an unbiased machine-learning analysis, which 
revealed that the factors that best discriminated between critically ill and non-critically ill patients were 
neutrophil-related proteins. Two members of this neutrophil signature, G-CSF and IL-8, stimulate 
neutrophil development and chemotaxis and have previously been associated with severe COVID-19.5 
It was recently reported that IL-8 levels predict survival in a large cohort of hospitalized patients.5 The 
mechanistic significance of these findings, however, was not clear. In this study, together with G-CSF 
and IL-8, we identify four proteins that are released from neutrophils upon activation, which are among 
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the strongest predictors of critical illness. Elevated HGF levels have previously been reported in severe 
COVID-19 but were not associated with neutrophil activity, while RETN, LCN2, and MMP8 are all novel 
markers of critical illness in COVID-19.24 Focusing our attention on this neutrophil activation signature, 
we found that a machine learning model based only on these markers was also able to accurately 
classify patients according to their disease severity, indicating that neutrophil activation is a consistent 
feature found in critically ill patients with COVID-19.   
 
We reasoned that if neutrophil activation plays a causal role in the development of critical illness, then 
evidence of neutrophil activation should be present prior to the onset of critical illness. To address this 
question, we analyzed plasma collected longitudinally from a separate cohort of hospitalized patients 
with COVID-19. We found that the neutrophil activation signature was already elevated on day 1 of 
hospitalization in patients who were not critically ill at that time but would go on to develop critical illness 
and require transfer to the ICU. Among all patients, day 1 elevations in neutrophil activation markers 
were also associated with increased mortality during hospitalization. Interestingly, levels of the 
neutrophil activation markers within each group were relatively stable when sampled over time. These 
findings indicate that neutrophil activation precedes the onset of critical illness and suggest, 1) that 
neutrophils may play an essential role in driving critical illness, which could be targeted therapeutically, 
and 2) that this neutrophil activation signature has the potential to provide a powerful clinical tool for 
early detection of the need for higher-level care or targeted therapies. 
 
The neutrophil markers we identified suggest a model of neutrophil development and activation in 
severe COVID-19: We hypothesize that high levels of the growth factor G-CSF stimulate neutrophil 
production and that the chemokine IL-8 (CXCL8) drives neutrophil migration into the lung and perhaps 
other tissues.12,13,25 Among neutrophils’ key effector mechanisms is the release of granules containing 
proteins with antimicrobial and other functions in inflammation. RETN, LCN2, HGF, and MMP8 are well-
established products of neutrophil secondary granules,7-10,26,27 and detection of these proteins at high 
concentrations in the circulation of critically ill COVID-19 patients strongly suggests neutrophil activation 
and degranulation. The high degree of correlation between these markers and ANC further supports 
that model. 
 
Three of these proteins, RETN, LCN2, and MMP8, were also among the top transcriptional markers of 
a developing neutrophil population that has been identified specifically in the blood of severely ill 
COVID-19 patients.3,4 Although these cells could in principle be the direct source of the proteins we 
detect in circulation, it is more likely that the genes are transcribed in the developing neutrophils and 
subsequently packaged into granules and released from mature neutrophils, a sequence of events that 
is well-described in the neutrophil literature. Constituents of secondary granules, including RETN, 
LCN2, and MMP8, are known to be transcribed specifically in the myelocyte stage of development by 
the transcription factor C/EBPε, whose expression is essentially restricted to this phase.8,16,27-29 C/EBPε 
was also highly enriched in the observed developing neutrophil population,3 suggesting that these cells 
are largely myelocytes that have entered the circulation. Typically, neutrophil development takes place 
in the bone marrow, and immature forms like myelocytes are not detected in the blood. However, 
during emergency granulopoiesis, neutrophil development accelerates, and immature granulocytes exit 
the bone marrow and enter the circulation. This process is thought to be driven by high levels of G-
CSF, which we detect in the blood of severely ill patients in this study.12 Furthermore, in our analysis of 
a hospital-wide dataset, we find that the earliest counts of immature granulocytes (which include 
myelocytes) predict mortality. Altogether, a model of emergency granulopoiesis followed by neutrophil 
activation is beginning to emerge as a key feature of critical illness in COVID-19.  
 
Components of our neutrophil activation signature have effector functions that may be detrimental to 
patients with COVID-19. RETN regulates production of multiple cytokines, including IL-6, IL-8, and 

TNF-α,30 and is associated with increased endothelial permeability and risk of thrombosis.31 LCN2, 
while initially described to have antimicrobial activities,32 is highly upregulated in autoimmune diseases 
such as systemic lupus erythematosus,33 Kawasaki disease,34 and inflammatory bowel disease.35 
Elevated levels of MMP8 were associated with worsening clinical outcomes in pediatric patients with 
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ARDS.36 Inappropriate release of these and other components of neutrophil granules may drive key 
aspects of critical illness in COVID-19, as suggested by previous studies investigating the contribution 
of neutrophils to acute lung injury.37 
 
The signature of neutrophil activation that we identify is accompanied by monocyte and macrophage 
activation that has previously been described in severe COVID-19. Cytokines produced by both 
activated neutrophils and macrophages were elevated on day 1 of hospitalization in patients who would 
ultimately develop critical illness and in patients who did not survive, suggesting that these cell types 
may function together in the pathogenesis of severe disease. Neutrophil and macrophage responses 
are highly coordinated with one another in infection and injury. For instance, neutrophil granule proteins 
stimulate monocyte chemotaxis, macrophages are responsible for phagocytosing apoptotic neutrophils, 
and macrophage-derived proteins, including IL-8, G-CSF, and TNF, stimulate neutrophil chemotaxis 
and survival.38 Interestingly, whereas macrophage-derived cytokines are also markedly increased in 
non-ICU patients compared to controls, the release of neutrophil-derived granule proteins appears to 
be more restricted to patients who are or will become critically ill, suggesting that neutrophil activation 
and degranulation may be a key event in the progression to severe disease. 
 
Neutrophils classically respond to bacterial infection or tissue injury; whether SARS-CoV-2 induces a 
specific type of cellular or tissue damage that promotes neutrophil activation will require further 
investigation. Moreover, the specific cell types that express G-CSF and IL-8 in COVID-19 will need to 
be elucidated. It is possible that there is a threshold of injury to the lungs, and perhaps the vascular 
beds, that triggers neutrophil activation,39,40 setting in motion the cascade of events that propagate 
critical illness in COVID-19. This might explain the observation that many patients in the hospital initially 
appear clinically stable and then rapidly deteriorate, requiring ICU care and mechanical ventilation. 
Directly testing the causal role of neutrophil activation in COVID-19 will require animal models that 
recapitulate the activation of neutrophils and allow for manipulation, or targeted therapeutic intervention 
in patients. However, it is notable that neutropenic patients who have received exogenous G-CSF show 
increased mortality, providing further support for a potential causal relationship between neutrophil 
development and activation and adverse clinical outcomes.41,42 
 
Our study suggests several potential therapeutic strategies, including inhibition of G-CSF, IL-8, or other 
drivers of neutrophil activation, but the potential benefit of such strategies will need to be weighed 
carefully against the risks of modulating a key aspect of the innate immune system. The recent finding 
that dexamethasone improves mortality in COVID-19 offers strong support for the model that 
immunopathology plays an important role in COVID-19 pathogenesis,43 but it does not identify the key 
immune components involved in this process. It is notable, however, that one of the oldest recognized 
effects of corticosteroid treatment is the inhibition of neutrophil binding to endothelial cells, preventing 
infiltration into tissues (and paradoxically increasing their numbers in circulation).44 It will be essential to 
continue to close the gap in our understanding of how the host immune response determines clinical 
outcomes in COVID-19 and how this response can be selectively targeted to provide safer and more 
effective immunomodulatory treatments. 
 
In summary, we demonstrate that increased circulating levels of neutrophil activators (G-CSF, IL-8) and 
neutrophil effectors (RETN, LCN2, HGF, and MMP8) are hallmarks of critical illness in COVID-19 and 
that they identify high risk patients upon initial admission to the hospital, prior to the onset of critical 
illness. We also demonstrate, in one of the largest cohorts of COVID-19 patients to date, that early 
rises in immature granulocyte and neutrophil counts are associated with increased mortality, suggesting 
that our mechanistic insights are generalizable to broader COVID-19 patient populations. These 
findings represent key advances toward understanding the mechanisms of COVID-19 pathogenesis, 
developing more accurate prognostic indicators, and most importantly, guiding the next generation of 
therapeutic strategies for COVID-19. 
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Materials and Methods 
 
Study Design and Participants. We first conducted a study of 49 adult patients admitted to Yale-New 
Haven Hospital between April 13, 2020 and April 24, 2020 with a confirmed diagnosis of COVID-19 via 
polymerase chain reaction (designated ‘cross-sectional’ cohort). The protocol was approved by the 
Yale University Institutional Review Board (IRB #2000027792). Plasma samples were analyzed from 40 
patients who were treated in a medical ICU and 9 patients in a non-ICU COVID-19 unit in our hospital. 
Admission to the ICU was based on established ICU admission guidelines (Supp. Table 1). For this 
cohort, blood was collected at a single timepoint during the course of hospitalization (Supp. Fig. 8). 
Blood samples collected from an additional 13 asymptomatic, non-hospitalized, presumed SARS-COV-
2 negative controls were also analyzed after signed consents were obtained for a separate approved 
IRB protocol (IRB #1401013259).   
 
We also analyzed blood samples obtained longitudinally on day 1 (within 24 hours), day 4, and day 7 of 
hospitalization from a separate cohort of 23 consecutive adult patients who were admitted for treatment 
of laboratory-confirmed COVID-19 between May 23, 2020 and May 28, 2020 and remained hospitalized 
until at least day 4 (designated ‘longitudinal’ cohort).  
 
Lastly, we used the Yale Department of Medicine Covid Explorer (DOM-CovX) database to evaluate 
blood count data from a total of 3,325 deidentified COVID-19-positive patients admitted to the six 
hospitals within the Yale New Haven Health System (IRB #2000028509) (designated ‘CovX’ cohort). 
Patients with a confirmed positive COVID-19 test within 14 days preceding their hospitalization were 
included in the cohort. This dataset combines all clinical variables extracted from the electronic medical 
record (Epic, Verona WI) including demographics, comorbidities, procedures, and all laboratory 
recorded during the hospitalization.  
 
Procedures.  Blood was collected in 3.2% sodium citrate tubes and centrifuged at 2000 g for 20 
minutes at room temperature, and the resulting plasma supernatant was frozen at -80�°C and used for 
further testing. The biomarker profiling analyses were conducted at Eve Technologies (Calgary, 
Alberta, Canada). For the cross-sectional cohort, the following assays were performed: Human 
Cytokine 71-Plex, Human Complement Panels 1 and 2, Human SAA & ADAMTS13, and Human 
Adipokine 5-Plex.  For the longitudinal cohort, the following assays were performed: Human Cytokine 
48-Plex, Human Complement Panel 1, Human Adipokine 5-Plex, and Human MMP 9-Plex and TIMP 4-
Plex.  Five of the control samples were evaluated concurrently with the longitudinal cohort samples 
(Table 1b).  Heatmaps were generated using the concentrations of circulating biomarkers obtained 
from biomarker profiling analyses using Heatmapper as described.45 
 
Principal component analysis and random forest classifier. Values for biomarker profiles of 
patients in the cross-sectional cohort were log transformed. A pseudocount of half the minimum 
observed non-zero value per biomarker was added to each observed zero value before log 10 
transformation. IL-6 was excluded from modeling, as most subjects (38 out of 40) in the ICU subset of 
the cross-sectional cohort had received IL-6 receptor blockade prior to blood collection. The remaining 
biomarker values were used in a principal component analysis and a random forest classifier using the 
scikit-learn python package.46 Data were partitioned into 66-33 train-validation split (training cohort: 26 
ICU patients, 7 non-ICU patients, 3 controls; validation cohort: 14 ICU patients, 2 non-ICU patients, 5 
controls), and all biomarkers were then used to predict the ICU status. A maximal tree depth of 10 was 
used and the minimal cost-complexity was set to 0.02, otherwise all other parameters were set to their 
defaults. Feature importance was assessed using mean decrease in impurity. Data restricted to five 
biomarkers of interest with high feature importance were then used in a separate random forest 
classifier, using the same methods.  
 
Single cell analyses. Processed count matrices with de-identified metadata and embeddings from a 
single-cell RNAseq dataset published by Wilk et al were downloaded from the COVID-19 Cell Atlas 
(https://www.covid19cellatlas.org/#2iki20) hosted by the Wellcome Sanger Institute.3 This dataset was 
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further analyzed using Seurat (version 3.0, https://satijalab.org/seurat). The clusters in this object were 
renamed based on cell type, using the UMAPs and heat maps provided. A new metadata column, 
"ARDSstatus" was added to the object, which grouped the samples into the categories “Control", 
"COVID19-non-ARDS", and "COVID19-ARDS". Violin and Feature Plots were generated to examine 
specific genes of interest. The cells identified as “Developing Neutrophil'' were subsetted from the 
overall object to examine this population more closely. 
 
Statistical Analyses. To evaluate differences in mean age across the groups we used one-way 
ANOVA with post-hoc Tukey's multiple comparisons tests in the cross-sectional cohort and Kruskal-
Wallis test in the longitudinal cohort, as the samples in the former cohort but not the latter conformed to 
the normal distribution. For the comparisons of proportions of men and women in the cohorts we used 
Chi-square tests in the cross-sectional cohort and Fisher’s exact test in the longitudinal cohort.  In both 
cross-sectional and longitudinal cohorts, we examined differences in proportions of patients with 
comorbidities using Fisher’s exact test.  
 
To compare biomarker values, we used two-sample tests. As most sample distributions did not satisfy 
Anderson-Darling and D'Agostino-Pearson tests of normality, we used the unpaired two-tailed Mann-
Whitney u-test. For samples that conformed to the normal distribution we used unpaired two-sided t-
tests with Welch correction for unequal variances, where applicable; where appropriate, p values were 
corrected for multiple comparisons using the false discovery rate procedure with the discovery rate Q of 
5%.  P values of less than 0.05 were considered significant. 
 
Correlation coefficients between absolute neutrophil count and each biomarker was computed using 
Spearman’s rank method. For Kaplan-Meier survival analyses we used median values of evaluated 
variables as cut points to classify patients into two groups, high and low, based on whether patients’ 
values for a particular biomarker or cell count were above or below the cut point.  We then used log-
rank test to compare the two groups of patients for each evaluated variable. To determine p-values for 
cell-type-specific enrichment of genes in single-cell RNAseq data, we used Wilcoxon Rank Sum test. 
All statistical analyses were carried out using GraphPad Prism (v8.4.3, GraphPad Software, San Diego, 
CA), Stata (v16, StataCorp. College Station, TX), and R (v4, R Core Team, 2020). 
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Table 1. Demographics of patients in the cross-sectional (a), longitudinal (b), and DOM-CovX (c) 
cohorts. *Obesity is defined as BMI>30. �One-way ANOVA with ±post-hoc Tukey's multiple 

comparisons tests. χGroup-wise Chi2 test; ⊗individual Chi2 tests. †Kruskal-Wallis test. ‡Fisher's exact 
test. Abbreviations: SD, standard deviation; CHF, congestive heart failure; CAD, coronary artery 
disease; MI, myocardial infarction; TIA, transient ischemic attack, CKD, chronic kidney disease. 
 
(a) 

 ICU Non-ICU Controls p values 

Subjects N=40 N=9 N=13  

Mean age in years (SD) 62 (16) 69 (21) 48 (10) 

0.0062
� 

ICU vs non-ICU, 0.4559
±
 

ICU vs Controls, 0.0196
±
 

non-ICU vs Controls, 0.0089
±
 

Sex 

Male 30 (75%) 3 (33%) 5 (39%) 0.0112χ   

ICU vs non-ICU, 0.043⊗ 

ICU vs Controls, 0.022⊗ 

non-ICU vs Controls, 0.806⊗ 
Female 10 (25%) 6 (67%) 8 (61%) 

C
o

m
o

rb
id

it
ie

s
 

Obesity* 23 (58%) 3 (33%)  0.27
‡
 

CHF 4 (10%) 0 (0%)  1.0
‡
 

Hyperlipidemia 11 (28%) 1 (11%)  0.42
‡
 

Hypertension 24 (60%) 6 (67%)  1.0
‡
 

Diabetes 12 (30%) 1 (11%)  0.41
‡
 

CAD, MI, or heart disease 6 (15%) 0 (0%)  0.58
‡
 

Atrial fibrillation 3 (8%) 0 (0%)  1.0
‡
 

Stroke or TIA 3 (8%) 2 (22%)  0.22
‡
 

CKD 6 (15%) 0 (0%)  0.58
‡
 

Active malignancy 3 (8%) 0 (0%)  1.0
‡
 

 
 
(b) 

 Controls Non-ICU ICU-Transfer ICU-Admit P values 

Subjects N=5 N=9 N = 7 N=7  

Mean age in years (SD) 48 (11.5) 63.6 (10.6) 70.1 (17.5) 62.6 (9.8) 0.09
†
  

Sex 
Male 2 (40%) 5 (56%) 3 (43%) 6 (86%) 

0.403
‡
 

Female 3 (60%) 4 (44%) 4 (57%) 1 (14%) 

C
o

m
o

rb
id

it
ie

s
 

Obesity*  4 (44%) 4 (57%) 3 (43%) 1.0
‡
 

CHF  2 (22%) 1 (14%) 1 (14%) 1.0
‡
 

COPD or asthma  2 (22%) 3 (43%) 2 (29%) 0.84
‡
 

Hyperlipidemia  4 (44%) 5 (71%) 3 (43%) 0.58
‡
 

Hypertension  6 (67%) 4 (57%) 3 (43%) 0.86
‡
 

Diabetes  3 (33%) 4 (57%) 2 (29%) 0.64
‡
 

CAD, MI, or heart disease  2 (22%) 2 (29%) 2 (29%) 1.0
‡
 

Stroke or TIA  1 (11%) 0 2 (29%) 0.46
‡
 

CKD  0 3 (43%) 1 (14%) 0.07
‡
 

Active malignancy  0 1 (14%) 1 (14%) 0.50
‡
 

(c) 

Subjects N=3,325 

Mean age in years (SD) 63.2 (19) 

Sex 
Male 1665 (50%) 

Female 1660 (49 %) 

C
o

m
o

rb
id

it
ie

s
 Obesity 1096 (33%) 

CHF 803 (24%) 

Chronic pulmonary disease 1112 (33%) 

Hypertension 2199 (66%) 

Diabetes 1360 (41%) 

CKD 803 (24%) 

Active malignancy 382 (11%) 

 
 
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.20183897doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.01.20183897


 11

1. Liao, M., et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-
19. Nat Med 26, 842-844 (2020). 

2. Merad, M. & Martin, J.C. Pathological inflammation in patients with COVID-19: a key role for 
monocytes and macrophages. Nat Rev Immunol 20, 355-362 (2020). 

3. Wilk, A.J., et al. A single-cell atlas of the peripheral immune response in patients with severe 
COVID-19. Nat Med (2020). 

4. Schulte-Schrepping, J., et al. Suppressive myeloid cells are a hallmark of severe COVID-19. 
medRxiv, 2020.2006.2003.20119818 (2020). 

5. Del Valle, D.M., et al. An inflammatory cytokine signature predicts COVID-19 severity and 
survival. Nat Med (2020). 

6. Jiang, S., et al. Human resistin promotes neutrophil proinflammatory activation and neutrophil 
extracellular trap formation and increases severity of acute lung injury. J Immunol 192, 4795-
4803 (2014). 

7. Bostrom, E.A., Tarkowski, A. & Bokarewa, M. Resistin is stored in neutrophil granules being 
released upon challenge with inflammatory stimuli. Biochim Biophys Acta 1793, 1894-1900 
(2009). 

8. Chumakov, A.M., Kubota, T., Walter, S. & Koeffler, H.P. Identification of murine and human 
XCP1 genes as C/EBP-epsilon-dependent members of FIZZ/Resistin gene family. Oncogene 
23, 3414-3425 (2004). 

9. Crestani, B., et al. Differential role of neutrophils and alveolar macrophages in hepatocyte 
growth factor production in pulmonary fibrosis. Lab Invest 82, 1015-1022 (2002). 

10. Grenier, A., et al. Presence of a mobilizable intracellular pool of hepatocyte growth factor in 
human polymorphonuclear neutrophils. Blood 99, 2997-3004 (2002). 

11. Bundgaard, J.R., Sengelov, H., Borregaard, N. & Kjeldsen, L. Molecular cloning and expression 
of a cDNA encoding NGAL: a lipocalin expressed in human neutrophils. Biochem Biophys Res 
Commun 202, 1468-1475 (1994). 

12. Manz, M.G. & Boettcher, S. Emergency granulopoiesis. Nat Rev Immunol 14, 302-314 (2014). 
13. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. 

Nat Rev Immunol 13, 159-175 (2013). 
14. Vabret, N., et al. Immunology of COVID-19: Current State of the Science. Immunity 52, 910-941 

(2020). 
15. Huang, C., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, 

China. Lancet 395, 497-506 (2020). 
16. Lawrence, S.M., Corriden, R. & Nizet, V. The Ontogeny of a Neutrophil: Mechanisms of 

Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 82(2018). 
17. Hasty, K.A., et al. Human neutrophil collagenase. A distinct gene product with homology to 

other matrix metalloproteinases. J Biol Chem 265, 11421-11424 (1990). 
18. Dorweiler, B., et al. Subendothelial infiltration of neutrophil granulocytes and liberation of matrix-

destabilizing enzymes in an experimental model of human neo-intima. Thromb Haemost 99, 
373-381 (2008). 

19. Khanna-Gupta, A., et al. Human neutrophil collagenase expression is C/EBP-dependent during 
myeloid development. Exp Hematol 33, 42-52 (2005). 

20. Liu, Y., et al. Neutrophil-to-lymphocyte ratio as an independent risk factor for mortality in 
hospitalized patients with COVID-19. Journal of Infection (2020). 

21. Medzhitov, R., Schneider, D.S. & Soares, M.P. Disease Tolerance as a Defense Strategy. 
Science 335, 936-941 (2012). 

22. Bardoel, B.W., Kenny, E.F., Sollberger, G. & Zychlinsky, A. The balancing act of neutrophils. 
Cell Host Microbe 15, 526-536 (2014). 

23. Zhou, Z., et al. Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 
Patients. Cell Host Microbe 27, 883-890.e882 (2020). 

24. Liu, Y., et al. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral 
load and lung injury. National Science Review 7, 1003-1011 (2020). 

25. Lacy, P. Mechanisms of degranulation in neutrophils. Allergy Asthma Clin Immunol 2, 98-108 
(2006). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.20183897doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.01.20183897


 12

26. Cramer, E.P., et al. Lipocalin-2 from both myeloid cells and the epithelium combats Klebsiella 
pneumoniae lung infection in mice. Blood 129, 2813-2817 (2017). 

27. Serwas, N.K., et al. CEBPE-Mutant Specific Granule Deficiency Correlates With Aberrant 
Granule Organization and Substantial Proteome Alterations in Neutrophils. Frontiers in 
Immunology 9(2018). 

28. Cowland, J.B. & Borregaard, N. Granulopoiesis and granules of human neutrophils. 
Immunological Reviews 273, 11-28 (2016). 

29. Gombart, A.F., et al. Regulation of neutrophil and eosinophil secondary granule gene 
expression by transcription factors C/EBPε and PU.1. Blood 101, 3265-3273 (2003). 

30. Zhang, Z., et al. Resistin induces expression of proinflammatory cytokines and chemokines in 
human articular chondrocytes via transcription and messenger RNA stabilization. Arthritis 
Rheum 62, 1993-2003 (2010). 

31. Jamaluddin, M.S., Weakley, S.M., Yao, Q. & Chen, C. Resistin: functional roles and therapeutic 
considerations for cardiovascular disease. Br J Pharmacol 165, 622-632 (2012). 

32. Devireddy, L.R., Hart, D.O., Goetz, D.H. & Green, M.R. A mammalian siderophore synthesized 
by an enzyme with a bacterial homolog involved in enterobactin production. Cell 141, 1006-
1017 (2010). 

33. Rubinstein, T., Pitashny, M. & Putterman, C. The novel role of neutrophil gelatinase-B 
associated lipocalin (NGAL)/Lipocalin-2 as a biomarker for lupus nephritis. Autoimmun Rev 7, 
229-234 (2008). 

34. Biezeveld, M.H., et al. Sustained activation of neutrophils in the course of Kawasaki disease: an 
association with matrix metalloproteinases. Clin Exp Immunol 141, 183-188 (2005). 

35. Nielsen, B.S., et al. Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia 
and inflammatory bowel diseases. Gut 38, 414-420 (1996). 

36. Kong, M.Y., Li, Y., Oster, R., Gaggar, A. & Clancy, J.P. Early elevation of matrix 
metalloproteinase-8 and -9 in pediatric ARDS is associated with an increased risk of prolonged 
mechanical ventilation. PLoS One 6, e22596 (2011). 

37. Grommes, J. & Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol Med 17, 293-
307 (2011). 

38. Prame Kumar, K., Nicholls, A.J. & Wong, C.H.Y. Partners in crime: neutrophils and 
monocytes/macrophages in inflammation and disease. Cell and Tissue Research 371, 551-565 
(2018). 

39. Goshua, G., et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a 
single-centre, cross-sectional study. Lancet Haematol (2020). 

40. Varga, Z., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417-1418 
(2020). 

41. Morjaria, S., et al. The Effect of Neutropenia and Filgrastim (G-CSF) in Cancer Patients With 
COVID-19 Infection. medRxiv, 2020.2008.2013.20174565 (2020). 

42. Nawar, T., et al. Granulocyte-colony stimulating factor in COVID-19: Is it stimulating more than 
just the bone marrow? American Journal of Hematology 95, E210-E213 (2020). 

43. Group, R.C., et al. Dexamethasone in Hospitalized Patients with Covid-19 - Preliminary Report. 
N Engl J Med (2020). 

44. Nakagawa, M., et al. Glucocorticoid-induced granulocytosis: contribution of marrow release and 
demargination of intravascular granulocytes. Circulation 98, 2307-2313 (1998). 

45. Babicki, S., et al. Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res 44, W147-
153 (2016). 

46. Hazan, H., et al. BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in 
Python. Front Neuroinform 12, 89 (2018). 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.09.01.20183897doi: medRxiv preprint 

https://doi.org/10.1101/2020.09.01.20183897


Control Non-ICU

-5       0        5

Row Z score

Figure 1

Neutrophil

Complement

Macrophage Differentiation and Chemotaxis

Macrophage Effector

Lymphocyte Differentiation and Chemotaxis

T Cell Effector

Others

a

b

P
C
2

PC1

ICU

https://doi.org/10.1101/2020.09.01.20183897


Figure 1. Circulating biomarkers separate COVID-19 patients according to disease

severity. (a) Heatmap of proteomic data from the cross-sectional cohort, indicating relative

protein levels detected in each subject (columns) for all biomarkers tested (rows). Proteins

are categorized by biological function. (b) Visualization of the first two principal components

(PC) of a principal component analysis of all biomarker data for each subject.
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Figure 2
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Figure 2 . Markers of neutrophil activation accurately identify patients with critical

illness. (a) Performance of a random forest (RF) model trained on data from two thirds of

the study subjects in the cross-sectional cohort, predicting ICU status for the remaining

one third of subjects not included in the training set. Perfect classification as depicted is

achieved when using data from all biomarkers or from only the top 5 neutrophil markers

(highlighted in red in 2b). (b) Feature importance ranked by proportion of feature

contribution to the RF model. Members of the neutrophil activation signature are

highlighted in red. (c) Comparisons of circulating levels of neutrophil markers in: 1)

controls, 2) non-ICU COVID-19, and 3) ICU COVID-19 patients in the cross-sectional

cohort. Asterisks denote statistically significant differences between groups (*p < 0.05, **p

< 0.01, ***p < 0.001, ****p < 0.0001). ICU: intensive care unit.
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Figure 3

a b

Figure 3. Circulating neutrophil granule proteins are likely derived from neutrophilic

source in COVID-19 patients. (a) Correlations of circulating biomarkers with absolute

neutrophil count (ANC) in the cross-sectional cohort. Neutrophil granule proteins, which show

the highest correlation with ANC, are highlighted. R, Spearman’s rank correlation coefficient;

p, p-value. (b) Violin plots of resistin (RETN), lipocalin-2 (LCN2), and matrix metallopeptidase

8 (MMP8) mRNA, showing enrichment in a ‘developing neutrophil’ population, based on re-

analysis of single-cell RNAseq data published by Wilk et al of peripheral blood mononuclear

cells from patients with COVID-19.3

Biomarker Correlation with ANC

Biomarkers R p

Resistin 0.633 0.000

HGF 0.555 0.000

Lipocalin-2 0.492 0.000

IL-6 0.442 0.001

TGFa 0.434 0.002

IL-18 0.369 0.009

MIP-1b 0.363 0.010

IL-1RA 0.329 0.021

SCF 0.322 0.024

MIP-1d 0.297 0.038

IL-8 0.266 0.065

IL-10 0.259 0.072

IL-16 0.254 0.078

MIG/CXCL9 0.234 0.105

IL-15 0.210 0.148

IL-17E/IL-25 0.190 0.190

TPO 0.180 0.216

C5a 0.176 0.226

BCA-1 0.154 0.292

IL-27 0.152 0.296

I-309 0.138 0.344

SDF-1a+b 0.135 0.356

MCP-1 0.128 0.381

G-CSF 0.110 0.451

Eotaxin-2 0.104 0.476

TNFa 0.099 0.498

CTACK 0.057 0.699

IL-33 0.055 0.706

M-CSF 0.053 0.717

Eotaxin 0.044 0.764

IL-17F 0.041 0.778

CCL21 0.041 0.781

IL-9 0.033 0.823

C1q 0.032 0.827

Leptin 0.029 0.845

IL-5 0.028 0.848

SAA 0.019 0.895

Adipsin 0.006 0.969

Factor 1 0.002 0.989

IP-10 0.002 0.989

MIP-1a -0.008 0.959

GROa -0.016 0.913

IL-1a -0.029 0.844

HB-EGF -0.033 0.820

IL-7 -0.036 0.804

C3 -0.043 0.772

Fractalkine -0.053 0.720

TSLP -0.077 0.600

IL-2 -0.083 0.573

IL-23 -0.088 0.546

C4 -0.101 0.492

Factor B -0.101 0.490

MCP-2 -0.109 0.457

RANTES -0.114 0.434

Factor H -0.120 0.411

IL-21 -0.133 0.361

MCP-4 -0.139 0.340

TARC -0.140 0.338
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Figure 4. Elevation of the neutrophil activation signature precedes the onset of critical

illness. (a) Heatmap indicating relative protein levels detected on day 1 in each subject in

the longitudinal cohort (columns) for all biomarkers tested (rows). Proteins are categorized by

biological function. (b) Comparisons of circulating levels of neutrophil markers in subjects

categorized as: 1) controls, 2) non-ICU, 3) ICU-Transfer, and 4) ICU-Admit. ‘Non-ICU’

indicates patients who remained in a non-ICU unit until discharge; ‘ICU-Transfer’ indicates

patients who were admitted to a non-ICU unit and were transferred to an ICU unit during

hospitalization; ‘ICU-Admit’ indicates patients who were admitted directly to an ICU unit.

Asterisks denote statistically significant differences between groups (*p < 0.05, **p < 0.01,

***p < 0.001, ****p < 0.0001). (c) Kaplan-Meier curve depicting the likelihood of ICU admission

depending on resistin (RETN) levels on day 1, using the median of the group (non-ICU and

ICU-Transfer) as the cut-off value. (d) Kaplan-Meier curve depicting the likelihood of survival

depending on resistin levels on day 1, using the median of the group (entire longitudinal

cohort) as the cut-off value.
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Figure 5

a

Figure 5. Early elevations in developing and mature neutrophil counts predict increased

mortality. Kaplan-Meier curves depicting likelihood of survival based on patients’ first recorded

values in the DOM-CovX cohort of (a) absolute immature granulocyte count, (b) immature

granulocyte percent, (c) absolute neutrophil count, and (d) absolute monocyte count, using the

median value as the cut-off.
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c d
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