
energies

Article

A Never-Ending Learning Method for Fault
Diagnostics in Energy Systems Operating
in Evolving Environments

Maria Rosaria Termite 1, Piero Baraldi 1,* , Sameer Al-Dahidi 2 , Luca Bellani 3,

Michele Compare 3 and Enrico Zio 1,3,4,5

1 Energy Department, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy;
mariarosaria.termite@mail.polimi.it (M.R.T.); enrico.zio@polimi.it or enrico.zio@mines-paristech.fr (E.Z.)

2 Department of Mechanical and Maintenance Engineering, School of Applied Technical Sciences,
German Jordanian University, Amman 11180, Jordan; sameer.aldahidi@gju.edu.jo

3 Aramis Srl, Via pergolesi 5, 20121 Milano, Italy; luca.bellani@aramis3d.com (L.B.);
michele.compare@aramis3d.com (M.C.)

4 MINES ParisTech, PSL Research University, CRC, 06560 Sophia Antipolis, France
5 Department of Nuclear Engineering, College of Engineering, Kyung Hee University, Seoul 130-701, Korea
* Correspondence: piero.baraldi@polimi.it; Tel.: +39-02-2399-6372

Received: 13 October 2019; Accepted: 14 December 2019; Published: 16 December 2019
����������
�������

Abstract: Condition monitoring (CM) in the energy industry is limited by the lack of pre-classified
data about the normal and/or abnormal plant states and the continuous evolution of its operational
conditions. The objective is to develop a CM model able to: (1) Detect abnormal conditions and
classify the type of anomaly; (2) recognize novel plant behaviors; (3) select representative examples of
the novel classes for labeling by an expert; (4) automatically update the CM model. A CM model
based on the never-ending learning paradigm is developed. It develops a dictionary containing
labeled prototypical subsequences of signal values representing normal conditions and anomalies,
which is continuously updated by using a dendrogram to identify groups of similar subsequences
of novel classes and to select those subsequences to be labelled by an expert. A 1-nearest neighbor
classifier is trained to online detect abnormal conditions and classify their types. The proposed CM
model is applied to a synthetic case study and a real case study concerning the monitoring of the
tank pressure of an aero derivative gas turbine lube oil system. The CM model provides satisfactory
performances in terms of classification accuracy, while remarkably reducing the expert efforts for
data labeling and model (periodic) updating.

Keywords: condition monitoring; fault detection and diagnostics; energy systems; time series; clustering;
classification; never-ending learning

1. Introduction

As more and more data and information are being collected in the Industry 4.0 era, condition
monitoring (CM) of energy systems is becoming a very active research area [1]. CM is the process
of systematic data collection and elaboration to detect and classify abnormal conditions [2,3].
These two tasks, which are typically referred to as fault detection and diagnostics, are of paramount
importance since they allow timely and effectively planning the remedial actions needed to prevent
failures, with benefits in terms of increased equipment reliability, availability and production,
and reduced downtimes.

In the energy industry, CM is mainly applied to rotating and reciprocating machineries, such as steam
turbines, gas turbines that run at large firing temperatures [4–7], rotating electrical machineries [8,9],
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bearings [10,11], and to devices experiencing critical working conditions, such as high pressure and
temperature lube oil [12], choke valve designed to be operated in erosive conditions [13], steam recovery
heat generators [14], offshore wind farms [15]. One of the main objectives of CM in the energy industry
is to reduce the occurrences of faults that, albeit they do not cause catastrophic consequences, tend to
occur on a daily basis causing downtime, plant unavailability, and maintenance costs [16,17].

CM is based on the analysis of monitoring signals, such as temperatures, pressures, and flows
collected by sensors during system operation. The fault detection task is typically performed by
developing: (i) An empirical reconstruction model of the expected signal values in normal conditions
(ii) a decision model which infers the system (normal/abnormal) state considering the differences
(residuals) between the actual and reconstructed values of the signals [18].

With respect to (i), several methods, such as artificial neural networks (ANNs) [19], recurrent neural
networks (RNNs) [20], principal component analysis (PCA) [21], auto-associative kernel regression
(AAKR) [18,22,23], and fuzzy similarity (FS) [24], have been applied with success to the reconstruction
of the signals behavior in normal conditions (see Table 1).

Table 1. Summary of condition monitoring (CM) possible solution methods.

CM Possible Solution Methods

Fault detection

Empirical reconstruction models (e.g., artificial neural networks (ANNs),
recurrent neural networks (RNNs), principal component analysis (PCA),

auto-associate kernel regression (AAKR), fuzzy similarity (FS))
Decision models (e.g., threshold-based, sequential probability ratio test (SPRT))

Fault diagnosis
Supervised (classification) (e.g., support vector machines (SVMs),

Gaussian processes (GPs), ANNs)
Unsupervised (clustering) (e.g., spectral clustering)

With respect to (ii), the proposed models can be distinguished into: Threshold-based and
statistical-based (Table 1). In the former, an abnormal condition is detected when the residuals exceed a
predefined threshold [25]. In the latter, statistical techniques, such as the sequential probability ratio test
(SPRT) and Z-test, are employed to identify modifications of the residual probability distribution [26].

Once the abnormal condition is detected, fault diagnostics is used to identify (classify) the type
of the detected abnormal condition. This is typically performed by empirical classifiers developed
using machine learning (ML) methods (see Table 1), such as support vector machines (SVMs) [27,28],
Gaussian processes (GPs) [29], and ANNs [30].

Although CM methods are currently applied in the energy industry, they have some practical
drawbacks that limit their success. Firstly, the training of the reconstruction model requires the
availability of a large amount of data collected when the energy plant is operating in normal conditions.
Although large datasets containing signal values collected during long periods of time are typically
available in the energy industry, it is necessary to identify among the data those corresponding to
normal conditions. This activity, which is typically performed by plant experts who analyze the
signal evolutions and the maintenance reports, is very time consuming and error prone. Similarly,
the development of the fault diagnostic models requires the availability of datasets containing examples
of data subsequences observed during the different types of anomalies to be classified. Moreover,
in this case, the information on the type of anomalies that occurred in the past is typically missing
and the process of associating the type of anomaly (class) to the corresponding data subsequences,
which will be referred to as data labeling, requires the intervention of plant experts. The use of
unsupervised clustering methods [31,32] has been proposed to reduce expert efforts. For example,
in [33] a spectral clustering-based approach has been developed for grouping time series subsequences
and identifying the prototypes. In this way, the expert activity is limited to label one prototype for
each group of subsequences.

Another major challenge is that an energy system evolves during its life, due to deterioration of
components and sensors, maintenance activities, upgrading plan, and repowering schedules involving
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the use of new components and system architectures, and the modifications of the operational and
environmental conditions. This evolution reflects in modifications of the system behavior, which
are typically referred to as concept drifts or operations in an evolving environment (EE) [11,34,35].
To account for these, it is necessary to periodically update the models for signal reconstruction in normal
conditions for anomaly detection and classification. For example, in energy production plants, signal
reconstruction models are typically retrained each year using the data collected in the last 12 months.
The retraining process requires to perform the time consuming and error prone task of identifying the
subsequences collected when the plant was operating in normal conditions, while excluding those of
abnormal operation. Furthermore, the strategy of periodic retraining of an anomaly detection model
does not fully guarantee against false alarms caused by an EE and considering diagnostic models of
abnormal operation, a difficulty is that the training set of the classifier should be periodically updated
to include examples of those anomalies, which are rare and can occur for the first time after several
years of plant operation.

The problems of anomaly detection and classification of time series streams in EE have been recently
addressed by developing passive and active incremental learning approaches [36]. Passive approaches
adapt the empirical model every time new batches of data become available. Therefore, they require
labeled subsequences of the time series for model retraining. On the contrary, active approaches
allow adjusting a model only when the occurrence of a concept drift is detected. They are typically
classified into the following categories [37]: (1) Sequential analysis-based, (2) data distribution-based,
and (3) learner output-based. Sequential analysis-based approaches analyze the newly acquired
subsequences one by one, until the probability of observing the subsequence under a new distribution
is significantly larger than that under the original distribution [38]. Data distribution-based drift
detection approaches typically consider distributions of raw data from two different time windows:
A fixed window containing information of the past time series behavior and a sliding window
containing the most recent acquired data [39]. Learner output-based drift detection approaches are
based on the development of a learner (classifier) and the tracking of its error rate fluctuations [40].

In this context, the objective of the present work is to develop a new condition monitoring (CM)
model able to:

• Classify the types of anomaly occurring in an energy system (fault diagnostic task);
• recognize novel plant behaviors (novelty identification);
• select representative data to be labeled by an expert;
• update automatically the CM model for the tasks in (1).

The same CM model should be able to continuously classify the upcoming data stream and to
continuously learn the novel types of anomalies, in a way to guarantee a satisfactory trade-off between
the minimization of the number of expert interventions for labeling the novel subsequences, which
represents a direct cost for the plant owners, and the maximization of the number of subsequences
correctly classified in real time, which allows increasing plant availability, reliability, and production.

The developed CM model is built on the never-ending learning (NEL) paradigm [41]. The developed
model is based on the use of a dictionary containing prototype subsequences representing classes of
normal conditions and anomalies. The dictionary is continuously updated by using a dendrogram,
which identifies groups of similar subsequences of novel classes and selects those to be labeled by an
expert and added to the dictionary. Differently from the method proposed in [41], whose objective is
limited to the identification of rare subsequences, the proposed method exploits the knowledge-base
of the dictionary for fault diagnostics.

The proposed method has been tested using a synthetic case study containing a Mackey–Glass
(MCG) series with artificially simulated anomalies. Then, it has been applied to a real case study
concerning the monitoring of the tank pressure of an aero derivative gas turbine lube oil system.

The novel contributions of this work are two-fold:
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• The adoption of the never-ending learning (NEL) paradigm, which has been proposed for other
application domains, to fault detection and diagnostics. This has required to adapt the NEL
paradigm by introducing the use of the dynamic time warping (DTW) similarity measure and of a
1-nearest neighbor classification algorithms;

• The development of a unified and integrated approach for fault detection and diagnostics in
evolving environments. It differs from the current approaches, which are based on the sequential
application of algorithms for context drift detection, data labeling, data classification, and empirical
model updating. Furthermore, the traditional approaches exploit the same information contained
in the time series data stream for different purposes and at different times.

The remaining of this paper is organized as follows. In Section 2, the problem is formally stated.
In Section 3, the proposed approach is described. In Sections 4 and 5 the application of the proposed
approach to a synthetic case study concerning the MCG dataset and to a real case study concerning the
tank pressure of the aero derivative gas turbine lube oil system are presented, respectively. Finally,
some conclusions and further developments are given in Section 6.

2. Problem Statement

We consider a time series stream
→
x (t) = [x1(t), . . . , xn(t)] containing the measurements of n plant

signals from an initial time t0 until the current time t. A generic subsequence is a segment (time
window) XS

ti, fi
=
[→
x (t− fi + 1), . . . ,

→
x (ti)

]

of the time series stream
→
x (t) = [x1(t), . . . , xn(t)] formed by

fi consecutive signal measurements collected in the time interval [ti − fi + 1, ti] (Figure 1). Time series
subsequences can be of different types, i.e., it is possible to associate to XS

ti, fi
a class represented by a

label c(ti) ∈ N.
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Figure 1. Visual representation of the data stream and its partition in subsequences.

We assume that c(τ) = 1 indicates that the plant is in normal conditions at time τ, whereas
c(τ) > 1 indicates that an anomaly caused by a specific plant component/system undergoing a given
degradation or failure process is occurring. Notice that the number of possible types of anomaly in an
energy plant is not a-priori known and anomalies can have different durations.

The objective of the present work is to classify the plant state at the current time t using the signal
measurements collected in the time window [t−m + 1, t], i.e., to assign the correct class c(t) to the
subsequence XS

t,m. Notice that although the plant can be in different states during the time window
[t−m + 1, t], the objective of the work is the identification of the plant state at the last time instant t.
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The CM model is expected to start operating at time t0, when no historical data about the energy
plant behavior are available. Moreover, the characteristics of the classes change due to the presence of
EE and novel classes of anomalies may occur during the plant lifetime. Therefore, the CM model should
be able to provide an “I do not know” outcome when asked to classify subsequences of new classes and
to incrementally learn from the EE. An expert can be asked to classify historical subsequences XS

t j, m j

with t j ≤ t, for an associated cost.
The objectives of the CM model are: (1) To maximize the classification accuracy, i.e., the fraction of

correctly classified subsequences; (2) to minimize the number of “I do not know” outcomes; (3) to minimize
the number of times the expert is asked to classify subsequences.

Figure 2 shows:

1. The input to the model, i.e., the current subsequence acquired in a short time interval ending at
the present time t;

2. the data used to develop the model, i.e., the signal values collected in the past and the labels
assigned to some subsequences by an expert;

3. the outcome of the model, i.e., the classification of the current subsequence into one of the classes
of the anomalies already labeled or in the “I do not know” class

             

  𝑡 𝑚 𝑡                                  
  𝑡  
                    𝑡                

                             
                                 

                                   
                               

 𝑋     𝑡 𝑡          
                               

                                 
                       

       

                                 
      𝑡  
                                   

               
                                 
                         

 
                   

       

                   

      
      

Figure 2. Inputs and outputs of the proposed CM model.

3. The Proposed Method

The proposed CM model is based on (see Figure 3):

• A classification module;
• a clustering module;
• a labeling module.
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The three modules continuously interact with a dictionary D =
{

V1, . . . , ViVOC

}

formed by a list of
iVOC ∈ N words, which constitutes the living heart of the model and contain the knowledge base of
the model. A generic word ViVOC

of the dictionary represents a group of similar subsequences and is

defined by the triplet ViVOC
=
{

XS
tiVOC

,m, TiVOC
, c
(

tiVOC

)

}

formed by:

(i) A subsequence prototype XS
tiVOC

,m, which shows the main characteristics of the group of

subsequences represented by the word and therefore it can be used to represent the word.
(ii) A boundary of the word defined by means of a maximum distance, TiVOC

, between the
subsequences and the prototype, XS

tiVOC
,m; the boundary is used to define which subsequences

belong to the word.
(iii) The class c

(

tiVOC

)

of the word.

The classification module uses the dictionary as a training set, whereas the clustering and labeling
modules create the words to be added to the dictionary. In particular, the clustering module identifies
novel groups of similar subsequences, their prototypes and boundaries, and the labeling module
assigns a class to these groups. Notice that at time t0, when no information on the energy system to be
monitored is available, the dictionary is empty and it is progressively populated by words as time
passes. The number of words in the vocabulary will be indicated by nVOC.
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Figure 3. Scheme of the proposed model.

At the present time t, the test subsequence XS
t,m, formed by the last m collected measurements

[→
x (t−m + 1), . . . ,

→
x (t)
]

, is given in an input to the classification module. If the test subsequence is
within the boundary of at least one word of the dictionary, it is classified; otherwise, the module
provides an “I do not know” outcome and the test subsequence is sent to the clustering module. Once
enough examples of similar subsequences are collected, the clustering module creates a new word,
ViVOC

, by identifying the cluster prototype XS
tiVOC

,m and its boundary, defined by the maximum distance,

TiVOC
. Then, the labeling module provides the class of the group c

(

tiVOC

)

and the word formed by the

triplet prototype, boundary, and class, ViVOC
=
{

XS
tiVOC

,m, TiVOC
, c
(

tiVOC

)

}

, is added to the dictionary.
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In practice, the online classification of a test subsequence XS
t,m requires the presence in the

dictionary of a word whose prototype is similar to XS
t,m. Therefore, an anomaly of a new class or a

subsequence collected after a modification of the operating conditions is not classified until enough
subsequences of the same type are collected, a corresponding word is introduced in the dictionary,
and the expert has labeled the word prototype. Although this process delays the correct classification
of some subsequences, it conservatively prevents from incorrect diagnosis.

The remaining part of this section is organized as follows. Section 3.1 introduces the dissimilarity
measure used by the classification and clustering modules; Section 3.2, Section 3.3, and Section 3.4
discuss the classification, clustering, and labeling module, respectively.

3.1. Dissimilarity Measure

The classification and clustering modules need a measure of dissimilarity between subsequences,
which quantifies the concept of distance between them [42].

Considering two generic subsequences XS
ti,m

= [
→
x (ti −m + 1), . . . ,

→
x (ti)] and XS

t j,m
=

[
→
x
(

t j −m + 1
)

, . . . ,
→
x
(

t j

)

], one of the most used dissimilarity measure is the pointwise Euclidean
distance (PED) defined by [43]:

SPED
i, j = |XS

ti,m
−XS

t j,m
| =

√

∑m

k
|
→
x (ti −m + k) −

→
x
(

t j −m + k
)

|
2
. (1)

It has been shown that PED works well in very large datasets where there is a large probability
of having good matches among subsequences [44] and in the case in which the subsequences are
synchronized [45]. For example, the two subsequences reported in Figure 4, with very similar behavior
except for the position of the peak, have a relatively large PED value, although they are very similar
from the point of view of fault diagnostics. To overtake these limitations of PED, the dynamic time
warping (DTW) similarity measure is used in this work [46]. The computation of the DTW SDTW

i, j

between the two subsequences XS
ti,m

and XS
t j,m

is based on:

1. The definition of a cost (or distance) matrix D of size m2, in which the
(

ki, k j

)

entry is
∣

∣

∣

∣

x(ti −m + ki) − x
(

t j −m + k j

)

∣

∣

∣

∣

;

2. the research for warping path ρ [47] through the cost matrix Dmxm characterized by the
minimal distance;

3. The computation of the distance SDTW
i, j among the aligned subsequences.

Further details on the computation of the DTW similarity measure can be found in [48]. Notice
that two subsequences containing the same type of anomaly but desynchronized, as those reported in
Figure 4, have small DTW dissimilarity values since the DTW algorithm firstly synchronizes the two
subsequences and, then, it computes pointwise distances.

Finally, notice that the DTW algorithm does not recognize similar two subsequences of the same
class if the anomaly (e.g., a peak) in one of them is only partially included in the time window
(e.g., at the end). The proposed method is able to mitigate the consequences of this border effect since
the successive time windows, which will progressively include the anomaly, will be also progressively
recognized more similarly to the one fully containing the anomaly.
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Figure 4. Example of the computation of the pointwise Euclidean distance (PED): (a) Procedure
followed for the alignment; (b) computation of the dynamic time warping (DTW); (c) similarity values
of the two subsequences XS

ti,m
and XS

t j,m
.
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3.2. Classification Module

The CM model needs an empirical classifier trained using the information in the dictionary and
based on a classification algorithm capable of incremental learning and of providing an “I do not know”
outcome when the test subsequence is dissimilar to all the subsequences in the dictionary.

In this work, we have developed an algorithm that firstly verifies whether the test subsequence
XS

t,m belongs to at least one of the boundaries of the words in the dictionary. This is done by
computing the DTW similarity between the test subsequence and all the words in the dictionary:

St,iVOC
= SDTW

(

XS
t,m, XS

tiVOC

)

for ∀iVOC = 1, . . . , nvoc. If St,iVOC
> Ti for any iVOC = 1, . . . , nVOC, then an

“I do not know” outcome is associated to the test subsequence. This method for novelty identification
directly exploits the presence of a dictionary, which allows identifying the unknown subsequences as
those that fall outside the boundaries of the words.

With respect to the classification of the test subsequences which are inside the boundaries of at least
one word of the dictionary, examples of classifiers with incremental learning capability are generative
adversarial networks (GAN) [49,50], compact abating probability (CAP) [51], extreme value machine
(EVM) [52], and the Learn++. NSE [53]. Since in this work the dissimilarity measures among the test
subsequence and all the subsequences in the dictionary have been already computed in the novelty
identification phase, it is straightforward to use a 1-nearest neighbor (1 NN) algorithm [54] in which
the DTW dissimilarity measure is used as a distance, and the training set is formed by the prototypes
XS

tiVOC
,m and the associated classes c

(

tiVOC

)

. This corresponds to identifying the prototype of the

dictionary with the smallest dissimilarity value SDTW
(

XS
t,m, XS

tiVOC

)

and to assign the test subsequence

to its class. In this classification scheme, the incremental learning capability is obtained by adding new
words to the dictionary.

3.3. Clustering Module

The clustering module receives in input the subsequences to which an “I do not know” outcome
has been associated by the classification module, hereafter referred to as unlabeled subsequences,
and provides in output clusters made by similar subsequences.

To this aim, an agglomerative hierarchical clustering algorithm based on a bottom-up approach is
used. It builds up clusters starting from single subsequences and, then, merges these atomic clusters
into larger and larger clusters, until all subsequences lie in a single cluster [55] and a dendrogram is
formed (see Figure 5). The most-right nodes (leaf nodes) of the dendrogram represent the subsequences,
whereas the remaining nodes represent the clusters to which the data belong up to the most-left node
which is called root node. The tree-like diagram shows (dis)similarities among groups of subsequences,
where the vertical axis represents the subsequences and how they are merged into clusters, whereas
the horizontal axis represents the (dis)similarities among subsequences or clusters. The height of each
node (x-axis) is monotonically increasing with the level of the merger, so that the projection of the node
on the x-axis is proportional to the value of the intergroup dissimilarity.

In this work, the DTW similarity measure introduced in Section 3.2 is employed to evaluate
the dissimilarity between subsequences, whereas dissimilarities between two clusters are evaluated
considering a linkage criterion. Generally, three categories of clustering are defined considering the
type of linkage criterion [56]. In all the three cases, all pairwise dissimilarities between the subsequences
of one cluster and those of another cluster are computed. Complete (or maximum) linkage clustering
uses the largest of these dissimilarities values as distance between the two clusters, whereas single
(or minimum) linkage clustering uses the smallest value. Average (or mean) linkage clustering uses
the average of all the dissimilarities as distance between the two clusters.

In this work, a single linkage clustering is used. A dendrogram is built each time w unlabeled
sequences become available. Once a dendrogram is built, the most dense and homogeneous subtree is
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identified by using the signi f icance index [41], which allows comparing subtrees of different sizes and
it is sent to the labeling module.
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Figure 5. Dendrogram made by w = 4 subsequences.

Specifically, the signi f icance index is computed by:

(1) Randomly permuting the data
→
x (τ) within each subsequence XS

t,m to remove temporal motifs

and create “patternless” time series X
Spermut

t,m ;

(2) Creating a new dendrogram using the obtained X
Spermut

t,m subsequences;

(3) Computing for all the possible subtree sizes, j = 2, . . . , w, the mean, mean( j), and the standard

deviation, std( j), of the heights of these subtrees among the subsequences X
Spermut

t,m in the subtrees
of size j. The height of a subtree (i.e., the x-axis in Figure 5) indicates the DTW dissimilarity
measure between the subsequences;

(4) Normalizing the observed height of the subtree subtreei of size j by using:

signi f icance index (subtreei) =
mean( j) − subtreei.height

std( j)
. (2)

In practice, the signi f icance index allows quantifying how much a given subtree is homogeneous
and dense compared to a subtree obtained from a “patternless” time series of the same size.

3.4. Labeling Module

Assuming that i-1 subsequences are already present in the dictionary, once a cluster is identified
by the clustering module, a prototypical subsequence is randomly selected among those of the cluster
and indicated as XS

tiVOC
,m. An expert is, then, asked to assign a label c(tivoc

) to the subsequence, which

can correspond to normal conditions (c(tivoc
) = 1), an anomaly of a class previously identified or an

anomaly of a new class c(tivoc
) > 1. Finally, the threshold TiVOC

of the i-th word, ViVOC
, is computed as

the maximum DTW distance between the prototype XS
tiVOC

,m and the other subsequences in the cluster,

and the triplet
{

XS
tiVOC

,m, TiVOC
, c
(

tiVOC

)

}

is added to the dictionary.
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4. Synthetic Case Study

A one-dimensional normal condition data stream is produced by a process which is assumed to
follow the Mackey–Glass (MCG) series [57] generated from the differential equation:

xi+1 = d
xi−a

1 + xr
i−a

+ (1− q)xi, (3)

with parameter values set to d = 0.2, q = 0.1; r = 10, a = 17, which have already been used to validate
anomaly detection and classification methods in [58,59].

The initial points of the MCG series are considered as representative of the component operation
in normal conditions (c1). Three different classes of anomaly, which will be referred to as c2, c3, and c4,
are assumed to occur at random intervals of times, whose duration is sampled from an exponential
probability distribution with mean time equal to 1250 arbitrary time units [60]. The anomalies are
simulated by adding to the MCG time series one of the three disturbances reported in Table 2. The type
of anomaly occurring is sampled using the probabilities reported in Table 2.

Table 2. Detailed characteristics of the three different anomalies added to the pure (Mackey-Glass)
MCG of Equation (3). τ0 indicates the beginning of the anomaly period.

Anomaly Class Added Time Series (xnoise(t)) Probability of Occurrence (p)

c2 2 0.25
c3 0.3 sin(t− τ0/2 ) 0.15
c4 −(1/7)e(t−τ0) 0.60

The duration of the anomaly is sampled from a uniform distribution in the range [85,115] time
units. For clarification purposes, Figure 6 shows the data stream with examples of anomalies of
different classes (c2, c3, and c4–anomaly types 1, 2, and 3, respectively) together with the normal
condition (c1). The data stream is simulated for a time interval of 8.30 × 106 time units.             
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Figure 6. Simulated data stream.
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The method of Section 3 has been applied considering subsequences of time length m = 100 and
the size of the dendrogram has been set to w = 200.

Figure 7 shows the evolution of the number of words in the dictionary as time passes. Notice
that at time t = 0 the dictionary is empty since no information on the process is available. Therefore,
the first w = 100 subsequences are sent directly to the clustering module and the first dictionary word
is created at time m×w = 20, 000, when the dendrogram is full for the first time. As the process goes
on, more and more words, representing prototypical subsequences of the four classes, are added to
the dictionary. As expected, the rate with which words are added to the dictionary decreases as time
passes and only nine words are added to the dictionary in the second half of the experiment from time
t = 4.15 × 106 to the end.
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Figure 7. Evolution in time of the number of words in the dictionary.

Table 3 reports the number of subsequences of each class which have been treated by the method
during the experiment and the corresponding number of created words. Since each word added to
the dictionary requires an expert intervention for the word labeling, the relatively small set of words
created during the experiment allows satisfying objective (3) of Section 2.

Table 3. Number of subsequences of each class seen by the method during the experiment and
corresponding number of the created word.

Anomaly Class Number of Subsequences Number of Words

c1 25671 25
c2 4489 31
c3 2229 10
c4 8995 30

With respect to the classification performance of the method (objective 1 of Section 2), Table 4
reports the confusion matrix obtained by online classifying all the subsequences of the experiment.
The confusion matrix shows all the combinations of the true (on the columns) and predicted (on the rows)
classes. Therefore, all correct classifications are on the diagonal of the confusion matrix (highlighted
in dark shade of color). Notice that most of the misclassification errors are false alarms, in which
subsequences of class c1 (i.e., normal conditions) are assigned to class c4 (i.e., anomaly of class 3).
This is due to the nature of the anomaly of class c4, which is obtained by adding to the original MCG a
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disturbance with an exponential trend that at the beginning is very small and, therefore, it does not
significantly modify the normal condition behavior.

Table 4. Confusion matrix (%).

Assigned Class

c1(t) c2(t) c3(t) c4(t) “I do not know” Outcome Total

Real Class

c1(t) 49.10 2.23 0.81 9.57 0.33 62.03
c2(t) 0.47 9.90 0 0 0.48 10.85
c3(t) 0.11 0 4.28 0.84 0.15 5.39
c4(t) 0.02 0 0 21.32 0.40 21.74
Total 49.70 12.13 5.09 31.72 1.35 100

Table 5. Reports the fractions of subsequences assigned to the correct class (cc), wrong class (wc),
or non-classified (nc) (“I do not know” outcome) for each class c:

cc(c) =
number o f correctly classi f ied subsequences o f class c

total number o f subsequences o f class c

wc(c) =
number o f wrongly classi f ied subsequences o f class c

total number o f subsequences o f class c

nc(c) =
number o f non classi f ied subsequences o f class c

total number o f subsequences o f class c .

(4)

Table 5. Fractions of correct (cc), wrong (wc), and non-classified (nc) subsequences for each class.

Class cc (%) wc (%) nc (%)

c1(t) 79.53 20.42 0.05
c2(t) 91.24 4.37 4.39
c3(t) 79.45 17.68 2.87
c4(t) 98.09 0.09 1.82
All 84.00 14.65 1.35

The classification performances of classes 2 and 4 are more satisfactory than those of classes 1 and
3. In particular, according to Table 5, the classifier tends to assign to class 4 subsequences of classes 1
and 3. This is due to the fact that subsequences of class 2 differ over all the duration of the anomaly
from those of the other classes and, therefore are easy to distinguish, whereas there are time intervals
in which the pure MCG (class 1), and MCG plus a sinusoidal (class 3), and plus an exponential (class 4)
tend to have similar values.

With respect to the “I do not know” classification outcomes, the model is not able to online classify
1.35% of the total subsequences, given the lack of representative words in the dictionary at the time
in which it was required to classify them. As expected, Figure 8 shows that the majority of the
subsequences are not classified online at the beginning of the experiment, when the dictionary is empty,
whereas, as time passes, the percentage of online classification increases and tend to be 100%.

The method has two main parameters to be set: The window length m and the dendrogram size w.
The setting of m is based on a priori knowledge on the process, if available, such as the typical

periodicity of the signals in normal conditions and information on the durations of the anomalies,
and fault diagnostic requirements, such as the time available for recovery decisions and interventions
after the anomaly onset detection. On the one hand a short window length allows a prompt identification
of the anomaly since less signals value should be collected for its diagnosis, on the other hand a long
window length allows using more information for the classification and, therefore, is expected to
improve the classification performance.
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Figure 8. Evolution in time of the fraction of subsequences that are classified online.

Figures 8 and 9 show the trend of the average fraction of the four classes of subsequences assigned
to the correct class (cc), the wrong class (wc), or non-classified (“I do not know” outcome, nc) as a
function of the window length, respectively. Notice that (i) the percentage of correct and wrong
classification complement each other (see Figure 9) and the best results are obtained using a window
length of 220 time units, which is similar to the anomaly duration, (ii) the trend of the percentage of
non-classified items is stable in a satisfactory range (see Figure 10).

 

𝑤 𝑤
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Figure 9. The percentage of correct and wrong classification varying the window size.
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Figure 10. Effect of varying the window size on the percentage of non-classified items.

With respect to the setting of the size of the dendrogram, w, notice that a large value of w allows
maintaining more subsequences in the dendrogram, and, therefore, facilitates the identification of
classes of anomaly which rarely occur. Nevertheless, since a cluster is identified when w unlabeled
sequences are available, the larger the w is the more time is necessary to identify the first cluster.

Figure 11 shows that the percentage of correct and wrong classification are almost stable and
unaffected by deliberate variations in the dendrogram size, i.e., for values of w in the range [20–120],
whereas they tend to become less satisfactory when w exceeds 120, which causes a large number of
subsequences remaining unlabeled in the dendrogram. The same reasoning holds for the percentage
of non-classified subsequences (see Figure 12). For these reasons, and to speed up the process, which is
performed on cheap commodity hardware, we will maintain the buffer size as small as possible.

 

Figure 11. Percentage of correct and wrong classification with varying buffer size.
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Figure 12. Effect of varying the window size on the percentage of non-classified items.

5. Application to a Lube Oil System of a Liquid Natural Gas Plant

We consider a high performance aero-derivative gas turbine (ADGT) used in a liquid natural gas
(LNG) plant located in Australia (see Figure 13) [61,62]. According to the plant operator experience,
one of the main causes of deterioration of the ADGT is the degradation of the lube oil system.
Although this latter system undergoes periodic maintenance, its abnormal conditions are still causing
unplanned shutdowns, failures during startups, or ADGT performance derating. This has stimulated
the investigation of the possibility of developing a fault diagnostic system with the objective of replacing
periodic with condition-based maintenance. The problem is complicated by the fact that lube oils are
typically exposed to very demanding and continuously evolving conditions, such as high temperature
and variable pressure. For confidentiality reasons, no further information can be provided regarding
the considered ADGT. Moreover, the numerical values reported in Figures 14 and 15 are rescaled and
the measurements units are omitted.             

 
                 

 
                                     

     

Figure 13. Typical scheme of a lube oil system.
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Figure 14. Time evolution of the tank oil pressure (left axis) and of the number of words in the dictionary
(right axis).

 

Figure 15. Examples of subsequences of the three clusters extracted from the dendrogram.

The available dataset contains the mineral tank oil pressure values hourly measured during two
years of operation (see Figure 14). For confidentiality reasons, the measurement unit is omitted and
numerical values are rescaled.

Due to the daily repetition of the process, we use a time window length m = 24 (corresponding
to 1 day) and a dendrogram size w = 20.

Figure 14 also shows the evolution in time of the number of words in the dictionary. Notice that
most of the words are added to the dictionary around time t = 500 h when the dendrogram becomes
full for the first time, in correspondence of the modifications of the signal behavior around times t = 500
and 2000 h and of the negative spikes after time t = 6000 h. At the end of the two years, the dictionary
is formed by only 19 words, which have been labeled by the expert in three classes (see Table 6).
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Table 6. Number of words and of subsequences of each class.

Class Number of Words Number of Subsequences (Expert Classification)

c1 13 482
c2 2 11
c3 4 19

Total 19 512

Figure 15 (top left and right) show subsequences of two different clusters corresponding to normal
plant conditions (c1) in different operational conditions. Similarly, Figure 15 (bottom left) shows the
subsequences of the first cluster identified by the dendrogram at time t = 480 h, which are characterized
by an anomalous behavior with spikes. The expert has labeled the prototype of this cluster as c2 and
the corresponding word is added to the dictionary. Finally, Figure 15 (bottom right) shows a cluster
corresponding to an anomaly of class c3, characterized by full scale sensor values.

To verify the classification performance of the method, an expert has been asked to offline label all
the subsequences. Table 7 reports the obtained classification performances for each class. Notice that
the results are very satisfactory with respect to the normal condition subsequences (class 1), even if the
process is abruptly changing at time 4000 h.

With respect to the subsequences that are not classified online, the majority of them are of classes
2 or 3. This is due to the fact that these anomalies are rare with respect to normal conditions (class 1)
and, therefore, the model is not able to classify them until the corresponding words are introduced in
the dictionary, which require more time than the creation of class 1 words. Considering the condition
monitoring of an energy plant, these “I do not know” outcomes should be considered as a warning
to the operators about the plant state. Therefore, they are a correct detection of abnormal behaviors
for which the model is not able to timely provide the correct diagnosis. Notice, however, that in the
extreme case of a one-time anomaly all the diagnostic approaches are going to fail since they require
the intervention of an expert for the labeling of the class.

Another cause of “I do not know” outcome is the occurrence of the concept drift at time 3500 h
which cause a change of the range of the signal. In particular, Figure 16 shows that the fraction of
classified online sequences abruptly decreases at time 3500 h and returns close to 1 at time 5000 h
after the addition of seven new words to the dictionary (see Figure 14). In order to reduce the times
necessary to learn the characteristics of the new environment caused by the occurrence of a concept
drift, an interesting development of the research can be the introduction of the concept of transfer
learning in the NEL paradigm [63,64]. The idea is to transfer the knowledge acquired in a given
operational condition for which a lot of data are available to another operational conditions for which
only few data have been already collected.

Table 7. Fractions of online correct (cc), wrong (wc), and non-classified (nc) subsequences for each class.

Online Classification Performances

Class cc (%) wc (%) nc (%)

c1 88.60 0.00 12.40
c2 3.16 0.70 96.14
c3 8.57 4.76 86.67

All 83.71 0.30 15.99
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Figure 16. Evolution in time of the fraction of subsequences that are classified online.

Table 8 reports the performance of a 1 NN classifier which uses as training set the 19 subsequences of
the dictionary and the corresponding labels, when is offline tested on all the data stream. The remarkable
improvement in the classification performance of the subsequences of classes 2 and 3 indicates that the
dictionary is able to well-characterize the anomalies using a small number of words. Therefore, it is
expected that future anomalies of classes 2 and 3 will be correctly classified by the proposed method.

Table 8. Fractions of offline correct (cc) and wrong (wc) classified subsequences obtained by a 1 NN
classifier trained using the dictionary.

Offline Classification Performances

Class cc (%) wc (%)

c1 94.35 5.65
c2 92.22 7.78
c3 98.33 1.67

All 94.36 5.64

The non-classified percentage (cc) represents all the subsequences that cannot be promptly
classified by using the dictionary. These subsequences are sent to the dendrogram and are later
extracted to form the words.

Comparison with Other Fault Diagnostic Approaches

Traditional fault diagnostic approaches are based on the offline labeling of a set of training data,
available before the start of the classification task, and the subsequent development of a classifier.
In order to compare the proposed method with literature approaches, the 512 subsequences used
in Section 5 are randomly split into training (formed by 341 subsequences) and test (formed by the
remaining 171 subsequences) sets. The training set can be thought as historical data from a plant to be
used offline, whereas the test set represents the real signal stream for online applications.

The first literature approach considered in this section is based on the application of a spectral
clustering algorithm [65] for clustering and labeling the training subsequences. Then, the labeled
training subsequences are used to train a 1 NN classifier.

The objective of the spectral clustering algorithm is to partition the training subsequences into an
unknown number of clusters, each one containing classes of subsequences of similar behavior.
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To this aim, a similarity matrix, S, of size 341 × 341 is obtained by computing the similarity measure:

γi j = e
−
δ2
i j

σ2 , (5)

between all possible pairs of subsequences [66], where γi j and, δi j are the similarity and the DTW
distance measures calculated between the i-th and j-th subsequences, respectively, and σ is the
bell-shaped function parameter. In practice, γi j values closer to 0 indicate that the evolutions of the
two subsequences i and j are very different, whereas γi j values closer to 1 indicate high similarity.

Once the similarity matrix, S, is computed, the spectral clustering uses the eigenvalues
(i.e., spectrum) of S to perform dimensionality reduction. Further details on the spectral clustering
technique can be found in [67]. According to the Eigengap heuristic theory [68], the number of clusters
is set equal to seven using an optimum value of the bell-shaped function parameter equals to σ = 0.17,
by following a trial-and-error procedure. Each cluster shares the unique label of the majority of
subsequences contained in it.

The labeling is performed by assigning all the subsequences of a cluster to the class of the majority
of the subsequences in that cluster. Then, the 341 labeled subsequences are used to train a 1-NN
classifier [54]. Table 9 reports the performance of the obtained 1-NN classifier on the test set.

Table 9. Classification performances on the test subsequences obtained by the proposed method and
the spectral clustering + 1-NN classification approach.

Proposed Method Spectral Clustering +1 NN Classification

Class cc (%) wc (%) nc (%) cc (%) wc (%)

c1 93.71 4.40 1.89 98.74 1.26
c2 100.00 0.00 0.00 0.00 100.00
c3 85.71 14.29 0.00 42.87 57.13

All 93.57 4.68 1.75 94.15 5.85

The method proposed in this work is applied by providing to the algorithm all the 341 training
subsequences and, then, the 171 test subsequences, using a time window length of m = 24 and a
dendrogram size of w = 20. The performance reported in Table 9 refers to the classification of the test
set. One can recognize that:

(a) The performances of the proposed method on the test subsequences of classes 2 and 3 are
considerably more satisfactory than those obtained in Section 5 on all the subsequences. This is
because the training subsequences have already been processed and they have been randomly
sampled from all the data stream;

(b) the strategy combining spectral clustering and 1 NN classification fails in the classification of
the anomalies of class 2. This is because the spectral clustering identifies a cluster containing a
mixture of subsequences of classes 1 and 2, with a slight majority of those of class 1: Therefore,
all the subsequences of class 2 are wrongly labeled as class 1.

The second literature approach considered in this section relies on the labeling of all the training
subsequences by an expert and the development of an artificial neural network (ANN) for the
classification of the test subsequences [69]. This approach, which cannot be applied at an industrial
level on a large scale since it requires too large efforts for data labeling, is here considered as an ideal
benchmark for the proposed method. Notice also that human labeling of hundreds of patterns is an
error prone activity [70]. For this reason, three different cases are considered:

(1) Perfect labeling (all labels of the training subsequences are correctly assigned by the expert);
(2) imperfect labeling with 25% of errors in labeling the training subsequences;
(3) imperfect labeling with 50% error in labeling the training subsequences.
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The training datasets obtained in the three cases are used to develop the corresponding ANN
classifiers. Each ANN receives in input the m = 24 signal values collected in one day and its architecture
is formed by one input, one hidden, and one output layers. The optimum number of the hidden
layer neurons is optimized by following a trials-and-error procedure carried out on the 25% of the
training dataset. The output layer is formed by three neurons, each one representing the degree
of membership of the pattern to a class and a test pattern is assigned to the class with the largest
membership. Table 10 compares the performance on the test set of the obtained ANN classifiers with
those of the proposed method.

Table 10. Classification performances on the test subsequences obtained by the proposed method and
the ANN classifiers.

Method cc (%) wc (%) nc (%)

Proposed 93.57 4.68 1.75
0% labeling error + ANN 95.12 4.88 -

25% labeling error + ANN 94.67 5.33 -
50% labeling error + ANN 90.67 9.33 -

Notice that the fraction of wrong classification of the proposed method is smaller than that of
the ideal benchmark (0% labeling error + ANN). This is because the proposed method provides an
“I do not know” outcome for those subsequences that are more difficult to classify, whereas the ANN is
forced to classify them and, therefore, can make errors. On the other side, the use of the “I do not know”
outcome causes that the fraction of correct classifications of the proposed method is smaller than those
of the ANN classifiers trained with 0% and 25% of labeling errors.

6. Conclusions

This work deals with the use of condition monitoring (CM) in energy systems. The objective of
the work is the development of a CM model able to:

(1) Online detect abnormal conditions and classify the type of anomaly occurring in an energy plant;
(2) recognize novel plant behaviors for which historical examples are not available (novelty

identification);
(3) select representative subsequences of these classes to be labelled by an expert;
(4) automatically update the CM model in 1).

We have considered the situation in which a dataset containing pre-classified historical plant
data for training the CM model is not available and the plant behavior is evolving in time, due to
deterioration of components and sensors, maintenance activities, upgrading plan, and repowering.
The issue of training a CM model using unlabeled data in an evolving environment (EE) has been
tackled by developing a never-ending learning (NEL) approach that continuously processes the data
stream. The proposed method is based on a dictionary containing prototypical subsequences of
signal values representing classes of normal conditions and anomalies. The dictionary is continuously
updated by using a dendrogram, which identifies groups of similar subsequences of novel classes
and selects those to be labeled by an expert. A 1-nearest neighbor (1 NN) classifier trained using the
dictionary is used to online detect abnormal conditions and classify their types.

Differently from traditional CM approaches, which exploit different methods for the tasks of
labelling the historical data, developing the CM model and identifying the occurrence of concept drifts,
the proposed NEL method allows developing a unified and integrated approach for the different tasks.
From the methodological point of view, the proposed model builds on the NEL approach developed
for applications other than CM; this has required the addition to the original approach of a model for
fault detection and classification based on a 1 NN algorithm.



Energies 2019, 12, 4802 22 of 26

The proposed approach has been tested on an artificial time series where anomalies have been
added to a Mackey–Glass time series, and applied to a real industrial case study concerning the
monitoring of the lube oil of an aero-derivative gas turbine.

The obtained results have shown that the proposed model allows: (i) Obtaining satisfactory
performances in the detection of abnormal conditions and the classification of their type, (ii) minimizing
the number of required expert interventions for labeling historical data, and (iii) automatically updating
the model to follow the energy system evolution. For example, the developed model for monitoring
the turbine lube oil has achieved an overall classification accuracy of 89.5% with only 19 expert
interventions for data labeling during 24 months of operation. A limitation of the method is that it
does not allow online classifying all the data, given the necessity of having collected in the past enough
data to generate representative words. To overtake this limitation of the proposed model, which is also
common to the traditional CM approaches, the authors are investigating the possibility of introducing
the concept of transfer learning in the NEL paradigm.

In conclusion, the adoption of the proposed method in the energy industry is expected to
remarkably reduce the large efforts necessary for the tasks of labeling historical data and model
updating, which are typically performed by plant experts. This will boost the use of CM models in the
energy industry with benefits in terms of safety, reliability, efficiency, and profitability.
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List of Acronyms

The following acronyms are used in this manuscript:

CM Condition monitoring EE Evolving environment
CBM Condition-based maintenance NEL Never-ending learning algorithm
ANNs Artificial neural networks MCG Mackey-Glass dataset
RNNs Recurrent neural networks PED Pointwise Euclidean distance
PCA Principal component analysis DTW Dynamic time warping
AAKR Auto-associative kernel regression GAN Generative adversarial networks
FS Fuzzy similarity CAP Compact abating probability
SPRT Sequential probability ratio test EVM Extreme value machine
ML Machine learning 1 NN 1-nearest neighbor
SVMs Support vector machines LNG Liquid natural gas
GPs Gaussian processes ADGT Aero derivative gas turbine

List of Notations

The following notations are used in this manuscript:
t Current time ρ Optimal warping path
to Initial time Dmxm Cost (distance) matrix
n Number of monitored plant signals

(

ki, k j

)

Entries of cost (distance) matrix calculations

i Time index St,iVOC

DTW similarity between the test
subsequence XS

t,m and all the vocabulary

prototypes XS
tiVOC
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τ Generic time X
Spermut

t,m Patternless time series
→
x (t) Time series stream w Dendrogram size or buffer size

fi
Duration of consecutive signal
measurements collected at time ti

P Prototype

S Subsequence T Threshold

XS
ti, fi

Generic subsequence of fi measurements
collected at time ti

cc Correct classification percentage

c(ti)
Fault class or label of a subsequence
collected at time ti

wc Wrong classification percentage

m
Number of last measurements collected up
to the current time t

nc Non-classified percentage

XS
t,m

Test subsequence of m measurements
collected up to the current time t

d, r, a MCG dataset parameters

ViVOC
Generic word of the dictionary xnoise(t) Noise time series

nVOC Number of vocabulary prototypes µ
Exponential probability distribution
parameter

iVOC Index of a word, iVOC = 1, . . . , nvoc p Probability of anomaly occurrence
XS

tiVOC
,m Subsequence prototype S Similarity matrix for spectral clustering

TiVOC

Boundary of the word, i.e., a maximum
distance between the subsequences and the
prototype

γi j
Similarity measure between i-th and j-th
subsequences in the bell-shaped function

c
(

tiVOC

)

Class of the generic word ViVOC
δi j

DTW distance measure between i-th and
j-th subsequences in bell-shaped function

SPED
i, j PED between i-th and j-th subsequences σ Bell-shaped function parameter

SDTW
i, j

DTW similarity measure between i-th and
j-th subsequences
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