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Abstract

Automated Lymph Node (LN) detection is an important clinical diagnostic task but very 

challenging due to the low contrast of surrounding structures in Computed Tomography (CT) and 

to their varying sizes, poses, shapes and sparsely distributed locations. State-of-the-art studies 

show the performance range of 52.9% sensitivity at 3.1 false-positives per volume (FP/vol.), or 

60.9% at 6.1 FP/vol. for mediastinal LN, by one-shot boosting on 3D HAAR features. In this 

paper, we first operate a preliminary candidate generation stage, towards ~100% sensitivity at the 

cost of high FP levels (~40 per patient), to harvest volumes of interest (VOI). Our 2.5D approach 

consequently decomposes any 3D VOI by resampling 2D reformatted orthogonal views N times, 

via scale, random translations, and rotations with respect to the VOI centroid coordinates. These 

random views are then used to train a deep Convolutional Neural Network (CNN) classifier. In 

testing, the CNN is employed to assign LN probabilities for all N random views that can be simply 

averaged (as a set) to compute the final classification probability per VOI. We validate the 

approach on two datasets: 90 CT volumes with 388 mediastinal LNs and 86 patients with 595 

abdominal LNs. We achieve sensitivities of 70%/83% at 3 FP/vol. and 84%/90% at 6 FP/vol. in 

mediastinum and abdomen respectively, which drastically improves over the previous state-of-the-

art work.

1 Introduction

Accurate detection and segmentation of enlarged Lymph Nodes (LNs) plays an important 

role for the staging of many diseases and their treatment, e.g. lung cancer, lymphoma and 

inflammation. These pathologies can cause affected LNs to become enlarged, i.e. swell in 

size. A LN’s size is typically measured on Computed Tomography (CT) images following 

the RECIST guideline (Therasse et al., 2000). A LN is considered enlarged if its smallest 

diameter (along its short axis) measures more than 10 mm on an axial CT slice (see Fig. 1). 

Quantitative analysis plays a pivotal role for assessing the progression of certain diseases, 

accurate staging, prognosis, choice of therapy, and follow-up examinations. Radiologists 
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need to detect, quantitatively evaluate and classify LNs. This assessment is typically done 

manually and is error prone due to the fact that LNs can vary markedly in shape and size and 

can have attenuation coefficients similar to those of surrounding organs (see Fig. 1). 

Furthermore, manual processing is time-consuming and tedious and might delay the clinical 

workflow.

Previous work on computer-aided detection (CADe) systems for LNs mostly uses direct 3D 

information from volumetric CT images. State-of-the-art methods (Barbu et al., 2012, 

Feulner et al., 2013) perform boosting-based feature selection and integration over a pool of 

~50 thousand 3D Haar-like features to obtain a strong binary classifier for detecting LNs. 

Due to the limited availability of annotated training data and the intrinsic high 

dimensionality, modeling complex 3D image structures for LN detection is non-trivial. 

Particularly, lymph nodes have large within-class appearance, location or pose variations, 

and low contrast from surrounding anatomies over a patient population. This results in many 

false-positives (FP), to assure a moderately high detection sensitivity (Feuerstein et al., 

2009), or only limited sensitivity levels (Barbu et al., 2012, Feulner et al., 2013). The good 

sensitivities achieved at low FP range in Barbu et al. (2012) are not directly comparable with 

the other studies since Barbu et al. (2012) reports on axillary, pelvic, and only some parts of 

the abdominal regions, while others evaluate only on mediastinum (Feuerstein et al., 2012, 

Feulner et al., 2013, Feuerstein et al., 2009) or abdomen (Nakamura et al., 2013). High 

numbers of FPs per image make efficient integration of CADe into clinical workflow 

challenging.

Our method employs a LN CADe systems (Liu et al., 2014, Cherry et al., 2014) with high 

sensitivities as the first stage and focuses on effectively reducing FPs. In comparison, the 

direct one-shot 3D detection (Barbu et al., 2012, Feulner et al., 2013) saturates at ~65% 

sensitivity at full FP range. Recently, the availability of large-scale annotated training sets 

and the accessibility of affordable parallel computing resources via GPUs has made it 

feasible to train deep Convolution Neural Networks (CNNs) and achieve great advances in 

challenging ImageNet recognition tasks (Krizhevsky et al., 2012, Zeiler and Fergus, 2013). 

Studies that apply deep learning and CNNs to medical imaging applications also show 

promise, e.g. (Prasoon et al., 2013), and classifying digital pathology (Cirean et al., 2013). 

Extensions of CNNs to 3D have been proposed, but computational cost and memory 

consumption are still too high to be efficiently implemented on today’s computer graphics 

hardware units (Prasoon et al., 2013, Turaga et al., 2010). In this work, we investigate the 

feasibility of using CNNs as a highly effective of FP reduction. We propose to use 3D VOIs 

with a new 2.5D representation that may easily facilitate a generally-purposed 3D object 

detection by classification scheme.

2 Methods

2.1 LN Candidate Detection in Mediastinum and Abdomen

We use a preliminary CADe system for detecting LN candidates from mediastinal (Liu et 

al., 2014) and abdominal (Cherry et al., 2014) CT volumes. In the mediastinum, lungs are 

segmented automatically and shape features are computed at voxel-level. The system uses a 

spatial prior of anatomical structures (such as esophagus, aortic arch, and/or heart) via multi-

Roth et al. Page 2

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2015 January 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



atlas label fusion before detecting LN candidates using a Support Vector Machine (SVM) 

for classification. In the abdomen, a random forest classifier is used to create voxel-level LN 

predictions. Both systems permit the combination of multiple statistical image descriptors 

and appropriate feature selection in order to improve LN detection beyond traditional 

enhancement filters. LN candidate generation is not a core topic of this paper. Currently, 

94%–97% sensitivity level at the rates of 25–35 FP/vol. can been achieved (Liu et al., 2014, 

Cherry et al., 2014). Given sufficient training for the LN candidate generation step, close to 

100% sensitivities could be reached in the future.

2.2 CNN training on 2.5D Image Patches

In general computer vision, a CNN is typically designed to classify color images that contain 

three image channels: Red, Green and Blue (RGB). We map this set-up by assigning the 

axial, coronal and sagittal slices in a Volume-of-Interest (VOI) into to these three channels 

(see Fig. 1). Our approach is similar to Prasoon et al. (2013) in that we use the three 

orthogonal slices (axial, coronal and sagittal) through the center of a CADe mark as the 

input patch. However, we aim to simplify the training of the CNN by jointly using three 

channel images. This differs from the approach of Prasoon et al. (2013) that uses three 

individual and separately trained CNNs on each one of the orthogonal image slices, with a 

subsequent fusion of their predictions for image segmentation. The 3D CT data is resampled 

in order to extract VOIs at Ns different physical scales s (the edge length of each VOI), but 

with fixed numbers of voxels. In order to increase the training data variation and to avoid 

overfitting (analogous to the 2D data augmentation approach in Krizhevsky et al. (2012)), 

each VOI is also translated along a random vector v in 3D space Nt times. Furthermore, each 

translated VOI is rotated around a randomly oriented vector v at its center Nr times by a 

random angle α = [0°,…, 360°], resulting in N = Ns × Nt × Nr random observation of each 

VOI (similar to Göktürk et al. (2001)). This permits easy expansion of both the training and 

testing data for this type of neural net application. When classifying unseen data, the N 

random CNN predictions can be simply averaged at each VOI to compute a per-candidate 

probability:

(1)

where Pi(x) is the CNN’s classification probability for one individual image patch. The main 

purpose of this approach is to decompose the volumetric information from each VOI into a 

set of random 2D images (with three channels) that combine orthogonal slices at N 

reformatted orientations in 3D. Our relatively simple re-sampling of the 3D data 

circumvents using 3D CNN directly (Turaga et al., 2010). This not only greatly reduces the 

computational burden for training and testing, but more importantly, alleviates the curse-of-

dimensionality problem. Direct training 3D deep CNN (Turaga et al., 2010) for the 

volumetric object detection problem may not be feasible due to severe lack of sufficient 

training samples, especially in the medical imaging domain. CNNs generally need 

tremendous amounts of training examples to address overfitting, with respect to the large 

number of parameters. Krizhevsky et al. (2012) uses translational shifting and mirroring of 

2D image patches for this purpose. Random resampling is an effective and efficient way to 
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increase the amount of available training data. Our 2.5D representation is intuitive and 

applies the success of large scale 2D image classification, using CNN (Krizhevsky et al., 

2012) effortlessly into 3D space. The above averaging process (i.e., Eq. 1) further improves 

the robustness and stability of 2D CNN labeling on random views (see Sec. 3).

The CNN architecture typically consists of several layers that apply convolutional filters to 

the input images (hence the name). The subsequent layers consist of max-pooling layers, 

fully-connected layers, and a final 2-way softmax layer for classification (see Fig. 2). In 

order to avoid overfitting, we use a recently published method called “DropConnect” that 

behaves as a regularizer when training the CNN (Wan et al., 2013). DropConnect is a 

variation of the earlier proposed “DropOut” method. In order to allow efficient training of 

the CNN, we use a GPU-based open-source implementation by Krizhevsky et al. (2012) 

with the DropConnect extension by Wan et al. (2013). Alongside the use of GPU 

acceleration, a speed-up in training has been achieved by using rectified linear units as the 

neuron model instead of the standard neuron model f(x) = tanh(x) or f(x) = (1 + e−x)−1 

(Krizhevsky et al., 2012). At this time, the optimal architecture of CNNs for a particular 

image classification task is difficult to determine (Zeiler and Fergus, 2013). We evaluate 

several CNNs with slightly different layer architectures to choose the best CNN architecture 

for our classification task and find relatively stable behavior on our datasets. Hence, we fix 

the CNN architecture for the subsequent cross-validation performed in this study. A recent 

approach proposes to visualize the trained CNN model by deconvolution and in order aid 

understanding the behavior of CNNs (Zeiler and Fergus, 2013). These methods have the 

potential to allow better CNN design rather than using a heuristic approach as in this work.

3 Evaluation and Results

Radiologists labeled a total of 388 mediastinal LNs as positives’ in CT images of 90 patients 

and a total of 595 abdominal LNs in 86 patients. In order to objectively evaluate the 

performance of our CNN based 2.5D detection module, 100% sensitivity at the LN 

candidate generation stage is assumed by injecting the labeled LNs into the set of CADe LN 

candidates (see Sec. 2.1). The CADe systems produce a total of 3208 false-positive 

detections (> 15 mm away from true LN) in the mediastinum and 3484 in the abdomen. 

These false-positive detections are used as negative’ LN candidate examples for training the 

CNNs. All patients are randomly split into three subsets (at the patient level) to allow a 3-

folded cross-validation. We use different sample rates of positive and negative image 

patches to generate a balanced training set. This proves beneficial for training the CNN – no 

balancing is done during cross-validation. Each three-channel image patch is centered at a 

CADe coordinate with 32 × 32 pixels. All patches are sampled at 4 scales: s = [30, 35, 40, 

45] mm for the VOI edge length in physical image space, after iso-metric resampling of the 

CT image (see Fig. 1). We use a soft-tissue window level of [−100, 200 HU] as in Barbu et 

al. (2012). Furthermore, all VOIs are N = 100 times randomly translated (up to 3 mm) and 

rotated at each scale (Ns = 4, Nt = 5 and Nr = 5). We train separate CNN models for 

mediastinum and for abdomen. Training each CNN model takes 9–12 hours on a NVIDIA 

GeForce GTX TITAN, while running the 2.5D image patch classification for testing runs in 

only circa 5 minutes. Image patch extraction from one CT volume takes around 2 minutes. 

We then apply the trained CNN to classify image patches from the testing datasets. Figure 3 
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shows a typical classification probability on a random subset of test VOIs. Averaging the N 

predictions at each LN candidate allows us to compute a per-candidate probability p(x), as in 

Eq. 1. Varying a threshold parameter on this probability allows us to compute the free-

response receiver operating characteristic (FROC) curves. FROC curves are compared in 

Fig. 4 for varying amounts of N. It can be seen that the classification performance saturates 

quickly with increasing N. The classification sensitivity improves on the existing LN CADe 

systems (Liu et al., 2014, Cherry et al., 2014) from 55% to 70% in the mediastinum and 

from 30% to 83% in the abdomen at a low rate of 3 FP per patient volume (FP/vol.) at N = 

100. The area under the curve (AUC) improves from 0.76 to 0.942 in the abdomen, using 

the proposed false-positive reduction approach (AUC in the mediastinal was not available 

for comparison). At an operating point of 3 FP/vol., we achieve significant improvement: p 

= 7.6 × 10−3 and p = 2.5 × 10−14 in mediastinum and abdomen, respectively (Fisher’s exact 

test). Further experiments show that performing a joint CNN model trained on both 

mediastinal and abdominal LN candidates together can improve the classification by ~10% 

to ~80% sensitivity improvement at 3 FP/vol. in the mediastinal set. The sensitivity level in 

the abdomen datasets remained stable.

4 Discussion and Conclusions

This work (among others) demonstrates that deep CNNs can be generalized to 3D/2D 

medical image analysis tasks, such as effective FP reduction in CADe systems. Building 

upon existing methods for CADe of lymph nodes (LNs), we show that a random set of CNN 

observers (a 2.5D approach) can be used to reduce FPs, from the initial CADe detections. 

Different scales, sampling through random translations and rotations around each of the 

CADe detections can be exploited to prevent or alleviate overfitting during training and 

increase the CNN’s classification performance. AUC and FROC exhibit significant 

improvement on sensitivity levels at the range of clinically relevant FP/vol. rates. These 

results are a drastic improvement compared to the state-of-the-art methods. Feulner et al. 

(2013) reports 52.9% sensitivity at 3.1 FP/vol. in the mediastinum, while we achieve 70% at 

3 FP/vol. In the abdomen, the most recent work (Nakamura et al., 2013) shows 70.5% 

sensitivity at 13.0 FP/vol. We obtain 83% at 3 FP/vol. (assuming ~100% sensitivity at the 

LN candidate generation stage). Note that any direct comparison to another recent work is 

difficult since there are no common datasets available at the moment. Therefore, we will 

make our data1 and supporting material2 publicly available for convenient future 

comparison.

The performance improvement using joint training on mediastinum and abdominal lymph 

nodes shows that it is beneficial for CNN to have larger, more varied and comprehensive 

datasets (which is coherent to the computer vision literature (Krizhevsky et al., 2012)). A 

companion approach (Seff et al., 2014) exploits an alternative shallow hierarchy for LN 

classification, using a view-level classification score aggregation by another classifier. 

While they show that this is helpful to achieve better FROC curves in their scheme, we find 

that the same sparsely weighted fusion via learning does not improve over the simple 

1http://www.cc.nih.gov/about/SeniorStaff/ronald_summers.html
2https://sites.google.com/site/holgerrroth
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average of Eq. 1. This probably indicates the high quality of our deep CNN predictions and 

shows this approach to be very effective and efficient. Future work will investigate more 

sophisticated methods of label fusion from the CNNs. The proposed 2.5D generalization of 

CNNs shows promise for a variety of applications in computer-aided detection of 3D 

medical images. For future work, the 2D views with the highest probability of being a LN 

could be used to present reformatted visualizations at that orientation (optimal to the CNN) 

to assist in radiologists’ reading.
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Figure 1. 
Examples of lymph nodes (circled) in an axial CT slice of the abdomen. Image patches are 

generated from CADe candidates, using different scales, 3D translations (along a random 

vector v) and rotations (around a random vector v by a random angle α). Each image patch 

(visualized as RGB image) is composed of an axial (R), coronal (G), and sagittal slice (B) 

and centered at a LN candidate.
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Figure 2. 
Our convolution neural network consists of two convolutional layers, max-pooling layers, 

locally fully-connected layers, a DropConnect layer, and a final 2-way softmax layer for 

classification. The number of filters, connections for each layer, and the first layer of learned 

convolutional kernels are shown.
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Figure 3. 
Test probabilities of the CNN for being a lymph node on ‘true’ (left box) and ‘false’ (right 

box) lymph node candidate examples.
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Figure 4. 
Free-response receiver operating characteristic (FROC) curves for a 3-folded cross-

validation using a varying number of N random CNN observers in 90 patients in the 

mediastinum (left) and 86 patients in the abdomen (right). AUC values are computed for 

corresponding ROC curves.
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