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A New 2d/4d Duality

I Theory I: Four dim N = 2 SQCD with G = SU(L), plus L
fundamental hypermultiplets of masses ~mF = (m1, . . . ,mL) and L
anti-fundamental hypermultiplets of masses ~mAF = (m̃1, . . . , m̃L).
The complex gauge coupling is τ = 4πi

g2 + Θ4D

2π

I Theory I is subjected to Ω-deformation with (ε1, ε2) = (ε, 0), which
preserves N = (2, 2) SUSY in x0 − x1 plane. The coulomb branch
of undeformed theory is lifted, only discrete points remain:

~a = ~mF − ~nε , ~n = (n1, . . . , nL) ∈ ZL . (1)

I The low energy dynamics are governed by twisted superpotential
W(I )(~a, ε), which is inherited from Nekrasov partition function
Z(~a, ε1, ε2) as:

W(I )(~a, ε) = lim
ε1→ε,ε2→0

[ε2Z(~a, ε1, ε2)] + quantized fluxes (2)



I Theory II: Two dim N = (2, 2) SYM with G = U(N), plus L

fundamental chiral multiplet of twisted masses ~MF = (M1, . . . ,ML),

L anti-fundamental chirals of twisted masses ~MAF = (M̃1, . . . , M̃L);
and an adjoint chiral multiplet of twisted mass ε. The complex
gauge coupling is τ̂ = ir + Θ2D

2π .

I This is the world volume theory of 4 dim “vortex/surface operator”.
Its low energy dynamics is also governed by effective twisted
superpotential W(II )({λk}) from an one-loop computation.

I W(II )({λk}) is a “Yang-Yang” potential so that the F-term equation
dλjW(II ) = 0 coincides with the Bethe Ansatz Equation (BAE) of
SL(2,R) spin chain:

L∏
l=1

λj −Ml

λj − M̃l

= −q
N∏

k=1

λj − λk − ε

λj − λk + ε
, q = (−1)N+1e2πτ̂. (3)

I The solution “Bethe Roots” {λj ≡ λ(ls)} are given by:

λ(ls) = Ml − (s − 1)ε+O(q) , s = 1, . . . , n̂l , N =
L∑

l=1

n̂l . (4)



I The Conjectured Duality states that, the on-shell values of the
twisted superpotentials for Theory I/II coincide:

W(I )(al = ml − nlε)−W(I )(al = ml − ε) = W(II )({n̂l}) , (5)

if we make following identification of parameters:

τ̂ = τ +
1

2
(N +1), n̂l = nl − 1, Ml = ml −

3

2
ε, M̃l = m̃l −

1

2
ε. (6)

I The VEVs of Chiral ring of Theory I Ok = Trϕk are also mapped
the conserved charges of SL(2,R) spin chain arising from Theory II.

I The exact perturbative matching, and first few instanton checks
were performed earlier. Here we shall prove the duality exactly, by
saddle point analysis of Z(~a, ε1,2), such that SL(2,R) BAE appears
and W(I ) and W(II ) match on-shell. The steps can be easily
generalized for proving the duality in wide range of set-ups.



BAE from Nekrasov Instanton Partition Function

I We begin with the Gamma-function representation of Nekrasov
Partition function [Nekrasov-Okounkov]:

Zinst =
∑
{~Y}

q|
~Y |Zvec(~Y )

2L∏
n=1

Zhyp(~Y , µn) , q = e2πiτ (7)

where Zvec(~Y ) and Zhyp(~Y , µn) are:

Zvec(~Y ) =
∏

(li)6=(nj)

Γ
(
ε−1
2 (xli − xnj − ε1)

)
Γ
(
ε−1
2 (xli − xnj)

) ·
Γ
(
ε−1
2 (x

(0)
li − x

(0)
nj )

)
Γ
(
ε−1
2 (x

(0)
li − x

(0)
nj − ε1)

) ,

Zhyp(~Y , µn) =
∏
li

Γ
(
ε−1
2 (xli + µn)

)
Γ
(
ε−1
2 (x

(0)
li + µn)

) .

xli = al + (i − 1)ε1 + ε2kli , x
(0)
li = al + (i − 1)ε1 . (8)

with kli being the length of i-th row in the Young Tableau Yl .



I Now if we take the limit (ε1, ε2) → (ε, 0) [Nekrasov-Shatashvili], Stirling’s
approximation for Γ(x) yields:

Zinst =

∫ ∏
li

dxli exp[ε
−1
2 Hinst(xli , x

(0)
li )] , Hinst(xli ) = Y(xli )−Y(x

(0)
li ) ,

(9)
where

Y
(
xli
)

= log q
∑
(li)

xli +
∑
(li),n

(
f (xli + m̃n) + f (xli −mn + ε)

)
+

1

2

∑
(li)6=(kj)

(
f (xli − xkj − ε)− f (xli − xkj + ε)

)
, (10)

with f (x) = x log x − x and Y(x
(0)
li ) = Y(xli → x

(0)
li ).

I As ε2 → 0, the instanton positions condense and become constant
on the intervals:

I =
⋃
li

[x
(0)
li , xli ] . (11)



I We can re-express Hinst in terms of instanton density ρ(x):

Hinst[ρ] = −1

2

∫
I×I

dx dy ρ(x)G(x−y)ρ(y)+

∫
I
dx ρ(x) log

(
qR(x)

)
,

(12)
where the kernels are:

G(x) =
d

dx
log

(x − ε

x + ε

)
, R(x) =

A(x)D(x + ε)

P(x)P(x + ε)
,

A(x) =
L∏

l=1

(x − m̃l) , D(x) =
L∏

l=1

(x −ml) , P(x) =
L∏

l=1

(x − al) .

I In the ε2 → 0 limit, the functional integral is dominated by “saddle
point equation”:

δHinst[ρ]

δxj
= −

∫
I
dy G(xj − y)ρ(y) + log

(
qR(xj)

)
= 0 , (13)



I Integrating and exponetiating the saddle point equation, we
obtained infinite set of equations for {xli}:

Q(xli + ε)Q(0)(xli − ε)

Q(xli − ε)Q(0)(xli + ε)
= −qR(xli ) , (14)

Q(x) =
L∏

k=1

∞∏
j=1

(x − xkj) , Q(0)(x) =
L∏

k=1

∞∏
j=1

(x − x
(0)
kj ) .

I To see SL(2,R) spin chain appearing, the infinite equations (14) can
be truncated to finite set, if we impose the “quantization condition”:

al = ml−nlε , nl ∈ Z > 0 , −→ xli = x
(0)
li = al+(i−1)ε , for i ≥ nl .

(15)



One Slide Proof for (15)

I We can consider the following equality:

W(x + ε)− (1 + q)

2
W(x)

T (x)

P(x + ε)
= −qR(x)W(x − ε) , (16)

where

W(x) =
Q(x)

Q(0)(x)
, T (x) =

2

(1 + q)

(
Q(x + ε)

Q(x)
+ qA(x)D(x)

Q(x − ε)

Q(x)

)
,

T (x) is a degree L polynomial in x .

I Now is the quantization condition al = ml − nlε is imposed, the
simple pole at x = al + (nl − 1)ε in W(x − ε) on RHS of (16)
coincides with a zero of R(x), this implies W(x) cannot have simple
pole at x = al + (nl − 1)ε either. The argument can be repeated

continuously for i ≥ nl , and only possible if xli = x
(0)
li , i ≥ nl , hence

we obtain (15).



I Having truncated the infinite set of equations by quantization
condition, we arrive at:

D(xli + 2ε)

A(xli )
= −q

Q̂(xli − ε)

Q̂(xli + ε)
, Q̂(x) =

L∏
l=1

nl−1∏
i=1

(x − xli ) , (17)

substituting in the identifications of parameters (6) and
xli = λli − ε

2 , we finally see that (17) precisely coincides with the
SL(2,R) BAE (3).

I To complete the proof, we can now evaluate Hinst[ρ] with the
truncation/quantization condition imposed, and obtain:

W(I)
inst(ml − nlε)−W(I)

inst(ml − ε) = Ŷ
(
xli
)
− Ŷ(x (0)li

)
, (18)

Ŷ(xli ) = log q
N∑

(li)=1

xli +
N∑

(li)=1

L∑
n=1

(
f (xli − m̃n)− f (xli −mn + 2ε)

)

+
1

2

N∑
(li)6=(mj)=1

(
f (xli − xmj − ε)− f (xli − xmj + ε)

)
. (19)

Again after matching the parameters, this precisely matches with the
q̂/instanton-dependent part of W(II )({n̂l}) and completes our proof.



Simple Generalization: Linear Quiver Gauge Theories

Here we provide a simple generalization to Ap-linear quiver gauge theories
and their associated spin chains.

I Theory I: Four dim N = 2 with G = SU(L)p, plus bi-fundamental
hypermultiplets between adjacent nodes of mass µI I = 1, . . . , p− 1,
the last (first) node has L (anti)-fundamental hypermultiplets of

masses −mk + ε (−m̃l). Each SU(LI ) has τI =
4πi
g2
I
+

Θ4D
I

2π .

I Theory II: Two dim N = (2, 2) SYM with G =
∏p

I=1 U(NI ), with
matter content of one adjoint of twisted mass ε for each U(NI ),
bi-fundamentals of twisted mass ε/2 under U(NI )× U(NI+1). The

U(N1) node also has L fundamentals of ~MF = (M1, . . . ,ML) and L

anti-fundamentals of ~MAF = (M̃1, . . . , M̃L). The complex gauge

couplings are τ̂I = irI +
Θ2D

I

2π I = 1, . . . , p.
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Figure: The IIA-brane construction for Theory I in the linear quiver case.
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Figure: The IIA-brane brane construction for Theory II in the linear
quiver case.



I From the explicit brane set-up, we see that NI =
∑p

J=I

∑L
l=1 n̂

(J)
l ,

where n̂
(J)
l is the number of D2s between l-th D4 and J-th NS5.

I The F-term equation of Theory II is identified with the BAE of
SL(p + 1,R) spin chain (CIJ = Cartan matrix of SL(p + 1,R)):

−qI

p∏
J=1

QJ(λ
(I )
j − 1

2εCIJ)

QJ(λ
(I )
j + 1

2εCIJ)
=


d(λ

(1)
j )

a(λ
(1)
j )

I = 1

1 I > 1 ,
(20)

I The duality in this generalization states that:

W(I)
(
ml −n

(I )
l ε−

p−1∑
J=I

µJ

)
−W(I)

(
ml − ε−

p−1∑
J=I

µJ

)
= W(II)

(
{n(I )l }

)
,

(21)
with the following identification of parameters:

x (I ) = λ(I ) −
p−1∑
J=I

(
µJ −

1

2
ε)− 1

2
ε , q̂I = (−1)NI+1qI

Ml = ml −
p + 2

2
ε , M̃l = m̃l +

p−1∑
J=1

(
µJ −

1

2
ε) +

1

2
ε .



Future Directions

I Generalization of duality to other gauge groups SO(N) etc., or to
other dimensions, compactifications from higher dimensions.

I Quantizing other more interesting integrable systems, such elliptic
Calogero-Moser, Toda, Hitchin, Ruijsenaar-Schneider systems etc.?

I How do electromagnetic duality and mirror symmetry affect our
duality/correspondence?

I Connections with matrix models and topological strings from
instanton partition functions.

I Connections with wall-crossing phenomena in both 2 dim and 4 dim
supersymmetric gauge theories?


