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A New 2d/4d Duality

> Theory I: Four dim A/ = 2 SQCD with G = SU(L), plus L

fundamental hypermultiplets of masses mp = (my,..., m;) and L
anti-fundamental hypermultiplets of masses Mar = (/1y, ..., ML).
The complex gauge coupling is 7 = % + 92‘;]3

> Theory | is subjected to Q-deformation with (€1, €2) = (€,0), which
preserves N’ = (2,2) SUSY in x° — x! plane. The coulomb branch
of undeformed theory is lifted, only discrete points remain:

3= M — fie, i=(m,...,n)eczt. (1)

> The low energy dynamics are governed by twisted superpotential
WU)(3, €), which is inherited from Nekrasov partition function
Z(3,€1,€) as:

WO (G, &)= lim [e2(3,e1,€6)] + quantized fluxes  (2)

€1—€,e0—0



Theory II: Two dim /' = (2,2) SYM with G = U(N), plus L
fundamental chiral multiplet of twisted masses My = (My,..., M),
L anti-fundamental chirals of twisted masses Map = (Ml, e, ML);
and an adjoint chiral multiplet of twisted mass e. The complex
gauge coupling is 7 = i

This is the world volume theory of 4 dim “vortex/surface operator”.
Its low energy dynamics is also governed by effective twisted
superpotential W) ({\,}) from an one-loop computation.

WUD({A}) is a “Yang-Yang" potential so that the F-term equation
dy,WUD =0 coincides with the Bethe Ansatz Equation (BAE) of
SL(2,R) spin chain:

L
)\j—M/ )\—)\k—ﬁ N A
— = = (-1)N+te?™ ™ (3
137 =~ HA_MG q=(-1) (3)

The solution “Bethe Roots” {)\; = A()} are given by:

L
Ay =M —(s=1)e+0(q), s=1,....0, N=> f. (4



> The Conjectured Duality states that, the on-shell values of the
twisted superpotentials for Theory 1/11 coincide:

WD (a; = m; — ne) =W (a; = m — &) = WA},  (5)

if we make following identification of parameters:
N 1 " 3 - .1
T:T-I-E(N-f—l), n/:n/—l, M/:m/—ig /\/l,:m/—Ee. (6)

» The VEVs of Chiral ring of Theory | O, = Tr¢* are also mapped
the conserved charges of SL(2,R) spin chain arising from Theory II.

> The exact perturbative matching, and first few instanton checks
were performed earlier. Here we shall prove the duality exactly, by
saddle point analysis of Z(&, €1 2), such that SL(2,R) BAE appears
and W) and W) match on-shell. The steps can be easily
generalized for proving the duality in wide range of set-ups.



BAE from Nekrasov Instanton Partition Function

> We begin with the Gamma-function representation of Nekrasov
Partition function [Nekrasov-Okounkov]:

2L
Zinst = Z g7 Zvec(Y) H Ziyp(Ys ) q=e"" ()
{v} =t
where Zec(Y) and Zhyp(V,un) are:
~ I’(e;l(x/,- — Xpj — 61)) r(egl(x,(,o) — X,Sj-))))
Zvec(Y) = H M-t (=1, 0 _ (0 ’
(1) #(nj) (& 0 =x)) T =% — 1))
- (€3 (x5 + pn)
Zupl Vo) =[] 2 G )
i T(ea (i + hn))
xij = a;+ (i — 1)e1 + e2ki X/(,-O) =a+(i—1)e . (8)

with kj; being the length of /-th row in the Young Tableau Y.



> Now if we take the limit (€1, €2) — (€,0) [Nekrasov-Shatashvit], Stirling's
approximation for ['(x) yields:

Zinst = /H dxii eXP[€2 mst(XliaX/(,'O))] ; Hinst(Xli) = y(X/i)_y( i
9)
where
Y(xi) = logg» xi+ Z (xii + fn) + (x5 — my + €))
(1) (1i),n
1
—+ 5 Z (f(X/,'—ij—G)— f(X/;—ij+€)) R (10)
(1)#(kj)

with f(x) = xlogx — x and y(x,(,.o)) = Y(x; — X,(,-O)).

> As e, — 0, the instanton positions condense and become constant

on the intervals: .
7= ] - (11)
li



> We can re-express Hinst in terms of instanton density p(x):

Hinst[p] = —% /I . dx dy p(x)&(x—y)p(y)+ /I dx p(x) log (g R(x)) ,

(12)
where the kernels are:
d X—€ A(x)D(x + ¢€)
®(X):a'°g<x+ )7 = PP+ o)
L L L
A(x) =[](x =), =[Ix=m), PCx)=]](x—a).
I=1 I=1 =1

> In the e; — 0 limit, the functional integral is dominated by “saddle
point equation”:

5'Hm<t[/)] / dy &(x )p(y) + log (q m(xj)) =0, (13)



> Integrating and exponetiating the saddle point equation, we
obtained infinite set of equations for {x;}:

Q(xi + €)QO(x; — €)
Q(xi — €)QO) (x; + €)

L oo
=II1Ix =), QO H H X— Xk,

k=1 j=1 k=1 j=1

— —g%(x). (14)

> To see SL(2,R) spin chain appearing, the infinite equations (14) can
be truncated to finite set, if we impose the “quantization condition” :

ag=m—me, M eZ>0, — x; = X,(,-O) = a/+(i—1)e, for i > ny.

(15)



One Slide Proof for (15)

» We can consider the following equality:

(e t6) — CEDan(e) (TX(JXF)E) — —gR(X)W(x— ), (16)
where
Q(x) 2 Q(x +¢€) Q(x —€)
W) = g+ T = gy (g + 940D o

T(x) is a degree L polynomial in x.

» Now is the quantization condition a; = m; — nje is imposed, the
simple pole at x = a; + (n; — 1)e in 2(x — €) on RHS of (16)
coincides with a zero of $R(x), this implies 20(x) cannot have simple

pole at x = a; + (n) — 1)e either. The argument can be repeated

continuously for i > ny, and only possible if x; = x,(,.o)

we obtain (15).

, 1> ny, hence



» Having truncated the infinite set of equations by quantization
condition, we arrive at:

D(xi+2¢) Q(xi — €) . L m—lx_X.
A Tapmro EEII( W), (17)

substituting in the identifications of parameters (6) and
xji = \jj — 5, we finally see that (17) precisely coincides with the
SL(2,R) BAE (3).

> To complete the proof, we can now evaluate Hi,s:[p] with the
truncation/quantization condition imposed, and obtain:

WL (my = me) - fn'ixm/ - e) =V (xi) = I . (18)
N
X/, =loggq Z Xji + Z Z ( Xjj — — f(xp — my + 26))
(=1 (=1 n=1
1 N
+§ ‘ Z (f(X/,' — Xmj — 6) — f(X/,' — Xmj + 6)) . (19)
(#(mj)=1

Again after matching the parameters, this precisely matches with the
g/instanton-dependent part of WUD({#,}) and completes our proof.



Simple Generalization: Linear Quiver Gauge Theories

Here we provide a simple generalization to Ap-linear quiver gauge theories
and their associated spin chains.

» Theory I: Four dim N = 2 with G = SU(L)®, plus bi-fundamental
hypermultiplets between adjacent nodes of mass iy I =1,...,p—1,

the last (first) node has L (anti)-fundamental hypermultiplets of
4D

masses —my + ¢ (—m;). Each SU(L)) has 7/ = 4?’%" +9
» Theory Il: Two dim N = (2,2) SYM with G = []}_; U(N;), with
matter content of one adjoint of twisted mass ¢ for each U(N,;),
bi-fundamentals of twisted mass €/2 under U(N;) x U(N;11). The
U(N;) node also has L fundamentals of My = (M, ..., M) and L
anti-fundamentals of Map = (Ml, ce l\~/h_) The complex gauge

D
o I=1,...,p.

2w

couplings are 73 = irj +
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: The llA-brane construction for Theory | in the linear quiver case.
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Figure: The llA-brane brane construction for Theory Il in the linear

quiver case.



> From the explicit brane set-up, we see that N; = 3>7_, S°0 4,
where ﬁfJ) is the number of D2s between /-th D4 and J-th NSS.

> The F-term equation of Theory Il is identified with the BAE of
SL(p + 1,R) spin chain (C;; = Cartan matrix of SL(p + 1,R)):

(1)
Q0" — 1, D
—q M — {00 (20)
= QO + Leay) 1 I>1,

» The duality in this generalization states that:

-1 -1
w) (’”I - ”51)6 - pZ NJ) -wl (m/ —€— PZ NJ) =wi ({”fl)}) ;
J=I

J=1
(21)
with the following identification of parameters:
= 1.1
(N =\ _ CZe)— = & — (—1\Ni+1
X A ;(NJ 26) 267 ar=(-1) q

1

+2 - L1

M/Zm/—p2 €, +E J—*G 26.
J=1



Future Directions

Generalization of duality to other gauge groups SO(N) etc., or to
other dimensions, compactifications from higher dimensions.

Quantizing other more interesting integrable systems, such elliptic
Calogero-Moser, Toda, Hitchin, Ruijsenaar-Schneider systems etc.?

How do electromagnetic duality and mirror symmetry affect our
duality/correspondence?

Connections with matrix models and topological strings from
instanton partition functions.

Connections with wall-crossing phenomena in both 2 dim and 4 dim
supersymmetric gauge theories?



