A New 2d/4d Duality via Integrability

Heng-Yu Chen
Department of Physics
National Taiwan University

February 28, 2012/ NTU String Seminar, Taipei

Based on 1104.3021, with Nick Dorey and Sungjay Lee (DAMTP) and Tim Hollowood (Swansea).

A New 2d/4d Duality

- Theory I: Four $\operatorname{dim} \mathcal{N}=2$ SQCD with $G=S U(L)$, plus L fundamental hypermultiplets of masses $\vec{m}_{F}=\left(m_{1}, \ldots, m_{L}\right)$ and L anti-fundamental hypermultiplets of masses $\vec{m}_{\mathrm{AF}}=\left(\tilde{m}_{1}, \ldots, \tilde{m}_{L}\right)$. The complex gauge coupling is $\tau=\frac{4 \pi i}{g^{2}}+\frac{\Theta_{4 \mathrm{D}}}{2 \pi}$
- Theory \mathbf{I} is subjected to Ω-deformation with $\left(\epsilon_{1}, \epsilon_{2}\right)=(\epsilon, 0)$, which preserves $\mathcal{N}=(2,2)$ SUSY in $x^{0}-x^{1}$ plane. The coulomb branch of undeformed theory is lifted, only discrete points remain:

$$
\begin{equation*}
\vec{a}=\vec{m}_{F}-\vec{n} \epsilon, \quad \vec{n}=\left(n_{1}, \ldots, n_{L}\right) \in \mathbb{Z}^{L} . \tag{1}
\end{equation*}
$$

- The low energy dynamics are governed by twisted superpotential $\mathcal{W}^{(I)}(\vec{a}, \epsilon)$, which is inherited from Nekrasov partition function $\mathcal{Z}\left(\vec{a}, \epsilon_{1}, \epsilon_{2}\right)$ as:

$$
\begin{equation*}
\mathcal{W}^{(I)}(\vec{a}, \epsilon)=\lim _{\epsilon_{1} \rightarrow \epsilon, \epsilon_{2} \rightarrow 0}\left[\epsilon_{2} \mathcal{Z}\left(\vec{a}, \epsilon_{1}, \epsilon_{2}\right)\right]+\text { quantized fluxes } \tag{2}
\end{equation*}
$$

- Theory II: Two $\operatorname{dim} \mathcal{N}=(2,2)$ SYM with $G=U(N)$, plus L fundamental chiral multiplet of twisted masses $\vec{M}_{\mathrm{F}}=\left(M_{1}, \ldots, M_{L}\right)$, L anti-fundamental chirals of twisted masses $\vec{M}_{\mathrm{AF}}=\left(\tilde{M}_{1}, \ldots, \tilde{M}_{L}\right)$; and an adjoint chiral multiplet of twisted mass ϵ. The complex gauge coupling is $\hat{\tau}=i r+\frac{\Theta_{2 D}}{2 \pi}$.
- This is the world volume theory of 4 dim "vortex/surface operator". Its low energy dynamics is also governed by effective twisted superpotential $\mathcal{W}^{(I I)}\left(\left\{\lambda_{k}\right\}\right)$ from an one-loop computation.
- $\mathcal{W}^{(I I)}\left(\left\{\lambda_{k}\right\}\right)$ is a "Yang-Yang" potential so that the F-term equation $d_{\lambda_{j}} \mathcal{W}^{(I I)}=0$ coincides with the Bethe Ansatz Equation (BAE) of $S L(2, \mathbb{R})$ spin chain:

$$
\begin{equation*}
\prod_{I=1}^{L} \frac{\lambda_{j}-M_{l}}{\lambda_{j}-\tilde{M}_{l}}=-q \prod_{k=1}^{N} \frac{\lambda_{j}-\lambda_{k}-\epsilon}{\lambda_{j}-\lambda_{k}+\epsilon}, \quad q=(-1)^{N+1} e^{2 \pi \hat{\tau}} \tag{3}
\end{equation*}
$$

- The solution "Bethe Roots" $\left\{\lambda_{j} \equiv \lambda_{(s)}\right\}$ are given by:

$$
\begin{equation*}
\lambda_{(l s)}=M_{l}-(s-1) \epsilon+\mathcal{O}(q), \quad s=1, \ldots, \hat{n}_{l}, \quad N=\sum_{l=1}^{L} \hat{n}_{l} . \tag{4}
\end{equation*}
$$

- The Conjectured Duality states that, the on-shell values of the twisted superpotentials for Theory I/II coincide:

$$
\begin{equation*}
\mathcal{W}^{(I)}\left(a_{l}=m_{l}-n_{l} \epsilon\right)-\mathcal{W}^{(I)}\left(a_{l}=m_{l}-\epsilon\right)=\mathcal{W}^{(I I)}\left(\left\{\hat{n}_{l}\right\}\right), \tag{5}
\end{equation*}
$$

if we make following identification of parameters:

$$
\begin{equation*}
\hat{\tau}=\tau+\frac{1}{2}(N+1), \hat{n}_{l}=n_{l}-1, M_{l}=m_{l}-\frac{3}{2} \epsilon, \tilde{M}_{l}=\tilde{m}_{l}-\frac{1}{2} \epsilon . \tag{6}
\end{equation*}
$$

- The VEVs of Chiral ring of Theory I $\mathcal{O}_{k}=\operatorname{Tr} \varphi^{k}$ are also mapped the conserved charges of $S L(2, \mathbb{R})$ spin chain arising from Theory II.
- The exact perturbative matching, and first few instanton checks were performed earlier. Here we shall prove the duality exactly, by saddle point analysis of $\mathcal{Z}\left(\vec{a}, \epsilon_{1,2}\right)$, such that $S L(2, \mathbb{R})$ BAE appears and $\mathcal{W}^{(I)}$ and $\mathcal{W}^{(I I)}$ match on-shell. The steps can be easily generalized for proving the duality in wide range of set-ups.

BAE from Nekrasov Instanton Partition Function

- We begin with the Gamma-function representation of Nekrasov Partition function [Nekrasoo-Okounkou]:

$$
\begin{equation*}
\mathcal{Z}_{\text {inst }}=\sum_{\{\vec{Y}\}} q^{|\vec{Y}|} \mathcal{Z}_{\text {vec }}(\vec{Y}) \prod_{n=1}^{2 L} \mathcal{Z}_{\text {hyp }}\left(\vec{Y}, \mu_{n}\right), \quad q=e^{2 \pi i \tau} \tag{7}
\end{equation*}
$$

where $\mathcal{Z}_{\text {eec }}(\vec{Y})$ and $\mathcal{Z}_{\text {hyp }}\left(\vec{Y}, \mu_{n}\right)$ are:

$$
\begin{align*}
& \mathcal{Z}_{\mathrm{vec}}(\vec{Y})=\prod_{(i) \neq(n j)} \frac{\Gamma\left(\epsilon_{2}^{-1}\left(x_{l i}-x_{n j}-\epsilon_{1}\right)\right)}{\Gamma\left(\epsilon_{2}^{-1}\left(x_{l i}-x_{n j}\right)\right)} \cdot \frac{\Gamma\left(\epsilon_{2}^{-1}\left(x_{l i}^{(0)}-x_{n j}^{(0)}\right)\right)}{\Gamma\left(\epsilon_{2}^{-1}\left(x_{l i}^{(0)}-x_{n j}^{(0)}-\epsilon_{1}\right)\right)}, \\
& \mathcal{Z}_{\mathrm{hyp}}\left(\vec{Y}, \mu_{n}\right)=\prod_{l i} \frac{\Gamma\left(\epsilon_{2}^{-1}\left(x_{l i}+\mu_{n}\right)\right)}{\Gamma\left(\epsilon_{2}^{-1}\left(x_{l i}^{(0)}+\mu_{n}\right)\right)} . \\
& x_{l i}=a_{l}+(i-1) \epsilon_{1}+\epsilon_{2} k_{l i}, \quad x_{l i}^{(0)}=a_{l}+(i-1) \epsilon_{1} . \tag{8}
\end{align*}
$$

with $k_{l i}$ being the length of i-th row in the Young Tableau Y_{l}.

- Now if we take the limit $\left(\epsilon_{1}, \epsilon_{2}\right) \rightarrow(\epsilon, 0)$ [Nekrasov-Shatashvili], Stirling's approximation for $\Gamma(x)$ yields:

$$
\begin{equation*}
\mathcal{Z}_{\text {inst }}=\int \prod_{l i} d x_{l i} \exp \left[\epsilon_{2}^{-1} \mathcal{H}_{\text {inst }}\left(x_{l i}, x_{l i}^{(0)}\right)\right], \quad \mathcal{H}_{\text {inst }}\left(x_{l i}\right)=\mathcal{Y}\left(x_{l i}\right)-\mathcal{Y}\left(x_{l i}^{(0)}\right), \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{Y}\left(x_{l i}\right) & =\log q \sum_{(l i)} x_{l i}+\sum_{(l i), n}\left(f\left(x_{l i}+\tilde{m}_{n}\right)+f\left(x_{l i}-m_{n}+\epsilon\right)\right) \\
& +\frac{1}{2} \sum_{(l i) \neq(k j)}\left(f\left(x_{l i}-x_{k j}-\epsilon\right)-f\left(x_{l i}-x_{k j}+\epsilon\right)\right), \tag{10}
\end{align*}
$$

with $f(x)=x \log x-x$ and $\mathcal{Y}\left(x_{l i}^{(0)}\right)=\mathcal{Y}\left(x_{l i} \rightarrow x_{l i}^{(0)}\right)$.

- As $\epsilon_{2} \rightarrow 0$, the instanton positions condense and become constant on the intervals:

$$
\begin{equation*}
\mathcal{I}=\bigcup_{l i}\left[x_{l i}^{(0)}, x_{l i}\right] \tag{11}
\end{equation*}
$$

- We can re-express $\mathcal{H}_{\text {inst }}$ in terms of instanton density $\rho(x)$:

$$
\begin{equation*}
\mathcal{H}_{\mathrm{inst}}[\rho]=-\frac{1}{2} \int_{\mathcal{I} \times \mathcal{I}} d x d y \rho(x) \mathfrak{G}(x-y) \rho(y)+\int_{\mathcal{I}} d x \rho(x) \log (q \mathfrak{R}(x)) \tag{12}
\end{equation*}
$$

where the kernels are:

$$
\begin{aligned}
\mathfrak{G}(x) & =\frac{d}{d x} \log \left(\frac{x-\epsilon}{x+\epsilon}\right), \quad \mathfrak{R}(x)=\frac{A(x) D(x+\epsilon)}{P(x) P(x+\epsilon)} \\
A(x) & =\prod_{l=1}^{L}\left(x-\tilde{m}_{l}\right), D(x)=\prod_{l=1}^{L}\left(x-m_{l}\right), P(x)=\prod_{l=1}^{L}\left(x-a_{l}\right)
\end{aligned}
$$

- In the $\epsilon_{2} \rightarrow 0$ limit, the functional integral is dominated by "saddle point equation":

$$
\begin{equation*}
\frac{\delta \mathcal{H}_{\mathrm{inst}}[\rho]}{\delta x_{j}}=-\int_{\mathcal{I}} d y \mathfrak{G}\left(x_{j}-y\right) \rho(y)+\log \left(q \mathfrak{R}\left(x_{j}\right)\right)=0 \tag{13}
\end{equation*}
$$

- Integrating and exponetiating the saddle point equation, we obtained infinite set of equations for $\left\{x_{l i}\right\}$:

$$
\begin{align*}
& \frac{\mathfrak{Q}\left(x_{l i}+\epsilon\right) \mathfrak{Q}^{(0)}\left(x_{l i}-\epsilon\right)}{\mathfrak{Q}\left(x_{l i}-\epsilon\right) \mathfrak{Q}^{(0)}\left(x_{l i}+\epsilon\right)}=-q \mathfrak{R}\left(x_{l i}\right) \tag{14}\\
& \mathfrak{Q}(x)=\prod_{k=1}^{L} \prod_{j=1}^{\infty}\left(x-x_{k j}\right), \quad \mathfrak{Q}^{(0)}(x)=\prod_{k=1}^{L} \prod_{j=1}^{\infty}\left(x-x_{k j}^{(0)}\right) .
\end{align*}
$$

- To see $S L(2, \mathbb{R})$ spin chain appearing, the infinite equations (14) can be truncated to finite set, if we impose the "quantization condition":
$a_{l}=m_{l}-n_{l} \epsilon, n_{l} \in \mathbb{Z}>0, \longrightarrow x_{l i}=x_{l i}^{(0)}=a_{l}+(i-1) \epsilon$, for $i \geq n_{l}$.

One Slide Proof for (15)

- We can consider the following equality:

$$
\begin{equation*}
\mathfrak{W}(x+\epsilon)-\frac{(1+q)}{2} \mathfrak{W}(x) \frac{T(x)}{P(x+\epsilon)}=-q \mathfrak{R}(x) \mathfrak{W}(x-\epsilon), \tag{16}
\end{equation*}
$$

where
$\mathfrak{W}(x)=\frac{\mathfrak{Q}(x)}{\mathfrak{Q}^{(0)}(x)}, \quad T(x)=\frac{2}{(1+q)}\left(\frac{\mathfrak{Q}(x+\epsilon)}{\mathfrak{Q}(x)}+q A(x) D(x) \frac{\mathfrak{Q}(x-\epsilon)}{\mathfrak{Q}(x)}\right)$,
$T(x)$ is a degree L polynomial in x.

- Now is the quantization condition $a_{l}=m_{l}-n_{l} \epsilon$ is imposed, the simple pole at $x=a_{l}+\left(n_{l}-1\right) \epsilon$ in $\mathfrak{W}(x-\epsilon)$ on RHS of (16) coincides with a zero of $\mathfrak{R}(x)$, this implies $\mathfrak{W}(x)$ cannot have simple pole at $x=a_{l}+\left(n_{l}-1\right) \epsilon$ either. The argument can be repeated continuously for $i \geq n_{l}$, and only possible if $x_{l i}=x_{l i}^{(0)}, i \geq n_{l}$, hence we obtain (15).
- Having truncated the infinite set of equations by quantization condition, we arrive at:

$$
\begin{equation*}
\frac{D\left(x_{l i}+2 \epsilon\right)}{A\left(x_{l i}\right)}=-q \frac{\hat{\mathfrak{Q}}\left(x_{l i}-\epsilon\right)}{\hat{\mathfrak{Q}}\left(x_{l i}+\epsilon\right)}, \quad \hat{\mathfrak{Q}}(x)=\prod_{l=1}^{L} \prod_{i=1}^{n_{l}-1}\left(x-x_{l i}\right) \tag{17}
\end{equation*}
$$

substituting in the identifications of parameters (6) and $x_{l i}=\lambda_{l i}-\frac{\epsilon}{2}$, we finally see that (17) precisely coincides with the $S L(2, \mathbb{R})$ BĀ (3).

- To complete the proof, we can now evaluate $\mathcal{H}_{\text {inst }}[\rho]$ with the truncation/quantization condition imposed, and obtain:

$$
\begin{align*}
& \mathcal{W}_{\text {inst }}^{(1)}\left(m_{l}-n_{l} \epsilon\right)-\mathcal{W}_{\text {inst }}^{(1)}\left(m_{l}-\epsilon\right)=\hat{\mathcal{Y}}\left(x_{l i}\right)-\hat{\mathcal{Y}}\left(x_{l i}^{(0)}\right), \tag{18}\\
& \hat{\mathcal{Y}}\left(x_{l i}\right)=\log q \sum_{(i i)=1}^{N} x_{l i}+\sum_{(l i)=1}^{N} \sum_{n=1}^{L}\left(f\left(x_{l i}-\tilde{m}_{n}\right)-f\left(x_{l i}-m_{n}+2 \epsilon\right)\right) \\
& +\frac{1}{2} \sum_{(l i) \neq(m j)=1}^{N}\left(f\left(x_{l i}-x_{m j}-\epsilon\right)-f\left(x_{l i}-x_{m j}+\epsilon\right)\right) . \tag{19}
\end{align*}
$$

Again after matching the parameters, this precisely matches with the $\hat{q} /$ instanton-dependent part of $\mathcal{W}^{(I I)}\left(\left\{\hat{n}_{l}\right\}\right)$ and completes our proof.

Simple Generalization: Linear Quiver Gauge Theories

Here we provide a simple generalization to A_{p}-linear quiver gauge theories and their associated spin chains.

- Theory I: Four $\operatorname{dim} \mathcal{N}=2$ with $G=S U(L)^{p}$, plus bi-fundamental hypermultiplets between adjacent nodes of mass $\mu_{I} I=1, \ldots, p-1$, the last (first) node has L (anti)-fundamental hypermultiplets of masses $-m_{k}+\epsilon\left(-\tilde{m}_{l}\right)$. Each $S U\left(L_{l}\right)$ has $\tau_{l}=\frac{4 \pi i}{g_{l}^{2}}+\frac{\Theta_{l}^{4 \mathrm{D}}}{2 \pi}$.
- Theory II: Two $\operatorname{dim} \mathcal{N}=(2,2)$ SYM with $G=\prod_{l=1}^{p} U\left(N_{l}\right)$, with matter content of one adjoint of twisted mass ϵ for each $U\left(N_{l}\right)$, bi-fundamentals of twisted mass $\epsilon / 2$ under $U\left(N_{I}\right) \times U\left(N_{I+1}\right)$. The $U\left(N_{1}\right)$ node also has L fundamentals of $\vec{M}_{F}=\left(M_{1}, \ldots, M_{L}\right)$ and L anti-fundamentals of $\vec{M}_{\mathrm{AF}}=\left(\tilde{M}_{1}, \ldots, \tilde{M}_{L}\right)$. The complex gauge couplings are $\hat{\tau}_{I}=i r_{I}+\frac{\Theta_{I}^{2 \mathrm{D}}}{2 \pi} I=1, \ldots, p$.

Figure: The IIA-brane construction for Theory I in the linear quiver case.

Figure: The IIA-brane brane construction for Theory II in the linear quiver case.

- From the explicit brane set-up, we see that $N_{l}=\sum_{J=1}^{p} \sum_{l=1}^{L} \hat{n}_{l}^{(J)}$, where $\hat{n}_{l}^{(J)}$ is the number of D2s between l-th D4 and J-th NS5.
- The F-term equation of Theory II is identified with the BAE of $S L(p+1, \mathbb{R})$ spin chain $\left(C_{I J}=\right.$ Cartan matrix of $\left.S L(p+1, \mathbb{R})\right)$:

$$
-q_{I} \prod_{J=1}^{p} \frac{Q_{J}\left(\lambda_{j}^{(I)}-\frac{1}{2} \epsilon C_{I J}\right)}{Q_{J}\left(\lambda_{j}^{(I)}+\frac{1}{2} \epsilon C_{I J}\right)}= \begin{cases}\frac{d\left(\lambda_{j}^{(1)}\right)}{a\left(\lambda_{j}^{(1)}\right)} & I=1 \tag{20}\\ 1 & I>1\end{cases}
$$

- The duality in this generalization states that:

$$
\begin{equation*}
\mathcal{W}^{(I)}\left(m_{l}-n_{l}^{(I)} \epsilon-\sum_{J=l}^{p-1} \mu_{J}\right)-\mathcal{W}^{(I)}\left(m_{l}-\epsilon-\sum_{J=l}^{p-1} \mu_{J}\right)=\mathcal{W}^{(1)}\left(\left\{n_{l}^{(I)}\right\}\right), \tag{21}
\end{equation*}
$$

with the following identification of parameters:

$$
\begin{aligned}
& x^{(I)}=\lambda^{(I)}-\sum_{J=l}^{p-1}\left(\mu_{J}-\frac{1}{2} \epsilon\right)-\frac{1}{2} \epsilon, \quad \hat{q}_{I}=(-1)^{N_{l}+1} q_{l} \\
& M_{l}=m_{l}-\frac{p+2}{2} \epsilon, \quad \tilde{M}_{l}=\tilde{m}_{l}+\sum_{J=1}^{p-1}\left(\mu_{J}-\frac{1}{2} \epsilon\right)+\frac{1}{2} \epsilon .
\end{aligned}
$$

Future Directions

- Generalization of duality to other gauge groups $S O(N)$ etc., or to other dimensions, compactifications from higher dimensions.
- Quantizing other more interesting integrable systems, such elliptic Calogero-Moser, Toda, Hitchin, Ruijsenaar-Schneider systems etc.?
- How do electromagnetic duality and mirror symmetry affect our duality/correspondence?
- Connections with matrix models and topological strings from instanton partition functions.
- Connections with wall-crossing phenomena in both 2 dim and 4 dim supersymmetric gauge theories?

