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Abstract. We study the bi-Hamiltonian structure of the hierarchy of a 3-component

Novikov system. We show that Hamiltonian functionals of the 3-Novikov hierarchy

in negative direction are local, and in both directions are homogenous. We construct

a reciprocal transformation to connect the 3-Novikov system to a reduction of the

first negative flow in a modified Yajima-Oikawa hierarchy, which is shown to pass the

standard Painlevé test. Besides we discuss bi-Hamiltonian structures of the 3-Novikov

hierarchy under the reciprocal transformation. Moreover, we consider a limit for the

3-Novikov system.

1. Introduction

The Camassa-Holm (CH) equation

mt + umx + 2uxm = 0, m = u− uxx, (1)

has attracted much attention since it is derived as the governing equation for dispersive

shallow-water motion in 1993 [1]. It is remarkable that the CH equation has peakon

solutions which are interesting in general analysis of PDEs [2]. The CH equation is

integrable from the point of view of Lax pair and bi-Hamiltonian structure [1, 3]. It is

linked to the negative KdV equation by a reciprocal transformation [4, 5, 6]. In Ref. [7]

and its references, many other algebraic and geometric properties of the CH equation

are introduced.

By applying asymptotic integrability method to a family of third order dispersive

PDE, Degasperis and Procesi [8] found another equation possessing peakon solutions

mt + umx + 3uxm = 0, m = u− uxx. (2)

The DP equation has a Lax pair and a bi-Hamiltonian structure [9]. An infinite

sequence of conservation laws for the equation are also obtained. Besides a reciprocal

transformation is constructed to connect it with a negative flow in the Kaup-

Kupershmidt hierarchy. Hereafter, many other equations of CH type were proposed and

studied. For example, the Novikov equation, the modified CH equation, a 2-component

CH equation and the Geng-Xue equation (see e.g. [10, 11, 12, 13, 14, 15]).

http://arxiv.org/abs/1612.08600v3
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Recently, Geng and Xue [16] presented a 3-component CH type hierarchy by

consider the following 3× 3 matrix spectral problem

ϕx =









0 1 0

1 + λu 0 v

λw 0 0









ϕ. (3)

The spectral problem (3) may reduce to that of the CH equation, the DP equation,

the Novikov equation and the Geng-Xue equation. The corresponding hierarchy was

derived by choosing the trivial flow as (u, v, w)Tt = (u, v, w)Tx . The first negative flow in

the hierarchy reads

ut = −vpx + uxq +
3

2
uqx −

3

2
u(pxrx − pr),

vt = 2vqx + vxq,

wt = vrx + wxq +
3

2
wqx +

3

2
w(pxrx − pr), (4)

u = p− pxx, w = rxx − r,

v =
1

2
(qxx − 4q + pxxrx − rxxpx + 3pxr − 3prx).

This system can be reduced to the CH equation as p = r = 0. It admits a bi-Hamiltonian

structure and an infinite sequence of conserved quantities [16, 17]. However, it is hard

to construct some exact solutions for this system.

Subsequently, by considering reductions of a 4-component CH type system, we

proposed another 3-component CH type system

m1t + u2gm1x −m3(u2xf − u2g)−m1(3u2f −m3u2) = 0,

m2t + u2gm2x +m2(3u2xg +m3u2) = 0,

m3t + u2gm3x −m3(2u2f + u2xg −m3u2) = 0,

mi = ui − uixx, i = 1..3, f = u3 − u1x, g = u1 − u3x,

(5)

associated with the spectral problem [18]

φx =









0 0 1

λm1 0 λm3

1 λm2 0









φ. (6)

It is shown to possess a bi-Hamiltonian structure and infinitely many conserved

quantities. The system (5) is found to connect with a negative generalized MKdV system

(a modified Yajima-Oikawa (mYJ) system[19, 20]) via a reciprocal transformation, and

the associated system is shown to pass the standard Painlevé test of WTC [21].

In this paper, we will study a new 3-Novikov hierarchy associated with the following

spectral problem

ϕx = Uϕ, U =









0 1 0

1 + λu2 0 v

λw 0 0









, ϕ =









ϕ1

ϕ2

ϕ3









, (7)

which is obtained by replacing u in (3) with u2 for convenience. The new hierarchy is

different from the hierarchy found by Geng and Xue, because we take the trivial flow
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as (u, v, w)Tt = (0, v,−w)T . The first typical member in the 3-Novikov hierarchy is the

3-Novikov system

ut + (upr)x = 0,

vt + 3vpxr + vxpr + u2p = 0,

wt + 3wprx + wxpr − u2r = 0,

v = p− pxx, w = r − rxx.

(8)

It can be reduced to the DP equation, the Novikov equation and the Geng-Xue equation

as u = 0, r = 1, as u = 0, p = r and as u = 0 respectively. We will construct infinitely

many conserved quantities and study the bi-Hamiltonian structure of the 3-Novikov

hierarchy, and construct a reciprocal transformation for the system (8).

The outline of this paper is as follows. In Section 2, we construct infinitely many

conserved quantities for the 3-Novikov equation with the aid of the spectral problem (7).

We also analyze the homogeneous and local properties of the Hamiltonian functionals

in the 3-Novikov hierarchy. In Section 3, we find the relationship between the two

systems (5) and (8). In Section 4, we construct a reciprocal transformation to connect

the 3-Novikov system with the first negative flow in a mYJ hierarchy, and analyse the

bi-Hamiltonian structure under this transformation. In Section 5, we present a limit of

the 3-Novikov system.

2. Conserved quantities and bi-Hamiltonian structure of the 3-Novikov

hierarchy

2.1. Conserved quantities

The 3-Novikov system (8) arises as the compatibility condition for the linear system

ϕx = Uϕ, ϕt = V ϕ, (9)

where

V =









1
3λ

+ prx −pr p
λ

pxrx − λu2pr 1
3λ

− pxr
px
λ
− vpr

−λwpr − rx r pxr − prx −
2
3λ









.

With the aid of the Lax pair (9), infinitely many conserved quantities or conservation

laws for the 3-Novikov system can be constructed. For example, setting ρ = (lnϕ3)x and

expanding it in powers of λ, as pointed out in [16], one may able to obtain an infinite

sequence of conserved densities for (8) from coefficients of ρ by solving

(∂ + ρ)[(
ρ

w
)x +

ρ2

w
]− (1 + λu2)

ρ

w
− λv = 0. (10)

However, it is not easy to solve (10) and the expansion of ρ in [16] can be generalized.

Therefore we will consider a better formulation for computations and get more exact

conserved quantities, which may be useful to generalize flows of the 3-Novikov hierarchy

and to construct reciprocal transformations.
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Let a = ϕ1

ϕ3
, b = ϕ2

ϕ3
. It follows that ρ = λwa with a and b satisfying

ax = b− λwa2, (11)

bx = (1 + λu2)a+ v − λwab. (12)

Solving the above system by expanding a, b as a =
∑

j≥0 ajλ
j , b =

∑

j≥0 bjλ
j yields

a0x = b0, b0x = a0 + v,

a1x = b1 − wa20, b1x = a1 + u2a0 − wa0b0,

aix = bi − w
i−1
∑

k=0

akai−k−1, bix = ai + u2ai−1 − w
i−1
∑

k=0

akbi−k−1, (i ≥ 2).

We obtain, after some calculations, that

a0 = −p, b0 = −px,

a1 = (1− ∂2)−1(u2p+ 3wppx + wxp
2), b1 = wp2 + a1x,

ai = (1− ∂2)−1[w
i−1
∑

k=0

akbi−k−1 + (w
i−1
∑

k=0

akai−k−1)x − u2ai−1],

bi = aix + w
i−1
∑

k=0

akai−k−1, (i ≥ 2).

Then an infinite sequences of conserved quantities are gotten. The first three are

Γ1 = −

∫

pwdx,

Γ2 =
∫

[u2pr + wppxr − wp2rx]dx,

Γ3 =
∫

[a1(3wprx + wxpr − u2r)− w2p3r]dx.

Furthermore, we can also expanding a, b as

a =
∑

j≥1

ajλ
− 1

2
j , b = λ

1
2

∑

j≥1

bjλ
− 1

2
j ,

which are different from the expansions in [16]. Taking the similar procedure as the

previous, we have

a1 = uw−1, b1 = u2w−1,

a2 =
1

2
u−2v −

3

2
(uw)−1ux + w−2wx, b2 = u−1v − u−1(u2w−1)x,

bi+1 = −u−1(bix − ai−1 + w
i
∑

k=2

akbi+2−k),

ai+1 =
1

2
u−1(bi+1 − aix − w

i
∑

k=2

akai+2−k).

Then the first four conserved quantities may be obtained, which are

Υ1 =
∫

udx,

Υ2 =
1

2

∫

u−2vwdx,
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Υ3 =
1

4

∫

u−5(
1

2
u2u2x + u2wvx + 2u4 −

3

2
v2w2 − u2vwx)dx,

Υ4 =
1

2

∫

[−u−4(vw + vxwx) + 2u−6(uux(vw)x − w2vvx − 2vwu2x)

+u−8(3w2v2uux + w3v3)]dx.

2.2. Hamiltonian structure

In this part, we will study the 3-Novikov hierarchy in the view of bi-Hamiltonian

structure. Notice that the 3-Novikov system (8) is generated by the two conserved

quantities Γ1,Γ2, we have the following result.

Theorem 1 The 3-Novikov equation (8) is a bi-Hamiltonian system, namely, it may

be written as








u

v

w









t

= J









δH2

δu
δH2

δv
δH2

δw









= K









δH1

δu
δH1

δv
δH1

δw









, (13)

where

J =









1
2
∂ 0 0

0 0 1− ∂2

0 ∂2 − 1 0









,

K =









0 0 0

0 3
2
v∂−1v −u2 − 3

2
v∂−1w

0 u2 − 3
2
w∂−1v 3

2
w∂−1w









− 2Ω(∂3 − 4∂)−1Ω∗,

herein

Ω = (∂u,
1

2
v∂ + ∂v,

1

2
w∂ + ∂w)T ,

H1 = −Γ1, H2 = −Γ2.

Since J ,K forms a Hamiltonian pair [16], one can prove the theorem easily. Hence

a recursion operator for 3-Novikov hierarchy is gotten as R = KJ −1, and we can derive

a new 3-Novikov hierarchy by taking the trivial flow as (u, v, w)Tt = R(0, v,−w)T . Then

the positive flows in the hierarchy may be obtained as








u

v

w









tn

= J









δHn+1

δu
δHn+1

δv
δHn+1

δw









= K









δHn

δu
δHn

δv
δHn

δw









, n = 1, 2, ..., (14)

and infinitely many negative flows read as








u

v

w









t−n

= K









δH
−(n+1)

δu
δH

−(n+1)

δv
δH

−(n+1)

δw









= J









δH−n

δu
δH−n

δv
δH−n

δw









, n = 1, 2, ... (15)
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with the first two Hamiltonian functionals giving by H−1 = −2Υ2, H−2 = −2Υ4. In

particular, the first negative flow in the hierarchy is obtained by using the Hamiltonian

functionals H−1, H−2, that is

ut − (
vw

u3
)x = 0,

vt − (
v

u2
)xx +

v

u2
= 0, (16)

wt −
w

u2
+ (

w

u2
)xx = 0.

It is worth to note that Υ1 and Υ3 are the Casimir functionals of the Hamiltonian

operators J and K respectively.

Since the structure of Hamiltonian functionals Hns in the 3-Novikov hierarchy is

largely unknown, like the cases in [22, 23], we will consider the homogeneous and local

properties of them. Introducing θ = (u, v, w)T and Xn[θ] =
δHn

δθ
, then recursive relation

in the positive direction

J
δHn+1

δθ
= K

δHn

δθ
, n = 1, 2, ...,

yields an infinite sequence of variational derivatives for the Hamiltonian functionals Hns

Xn+1[θ] = J −1KXn[θ], n = 1, 2, .... (17)

Similarly, the variational derivatives for the Hamiltonian functionals H−ns in the

negative direction are given by

X−(n+1)[θ] = K−1JX−n[θ], n = 1, 2, ....

Proposition 1 The variational derivatives Xn[θ] are homogeneous in the sense that

Xn[ǫθ] = ǫ2n−1Xn[θ], n ≥ 1, (18)

and

Hn[εθ] =
1

2n

∫

Xn[θ] · θdx, n ≥ 1. (19)

Proof: When n = 1, the formulate (18) holds clearly. Now suppose (18) also holds for

n = k, that is

Xk[ǫθ] = ǫ2k−1Xk[θ].

Then for n = k + 1, we have

Xk+1[ǫθ] = J
−1[ǫθ]K[ǫθ]Xk[ǫθ] = ǫ2J −1[θ]K[θ]Xk[ǫθ],

which implies that

Xk+1[ǫθ] = ǫ2k+1[θ]Xk+1[θ].

In addition, for any n ≥ 1, we have

Hn[θ] =
∫ 1

0

∫

Xn[εθ] · θdxdε =
1

2n

∫

Xn[θ] · θdx,

then the Hamiltonian functionals Hns are also homogeneous with

Hn[εθ] = ε2nHn[θ], n = 1, 2, ....
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The recursive formula for Hns yields infinitely many Hamiltonian functionals in the

positive direction, and H1 and H2 are local. However, Hn, n ≥ 3 becomes nonlocal. For

example H3 = −Γ3, which is shown to be nonlocal.

Proposition 2 The variational derivatives X−n[θ]s satisfy

X−n[ǫθ] = ǫ1−2nX−n[θ], n = 1, 2, .... (20)

while

H−n[θ] =
1

2− 2n

∫

X−n[θ] · θdx, (21)

and H−ns are all local.

The formulae (20) and (21) may be proven by taking the process before, and we will

prove the local property of H−ns below.

Lemma 1 ([22, 23, 24]) If a differential function M [θ] satisfies
∫

M [θ]dx = 0

for all θ, then there exists a unique differential function N [θ] up to addition of a constant

such that M [θ] is the total x-derivative M [θ] = (N [θ])x.

Introducing

X−k[θ] = (Ak, Bk, Ck)
T

Ek = (∂3 − 4∂)−1(u∂,
3

2
v∂ +

1

2
vx,

3

2
w∂ +

1

2
wx)X−k[θ], k ≥ 1.

When n = 1, X−1[θ] is local since

X−1[θ] = (2
vw

u3
,−

w

u2
,−

v

u2
)T .

Now suppose X−k[θ] is local for n = k. Then for n = k + 1, we have

X−(k+1)[θ] = K−1JX−k[θ] = (K−1J )kX−1[θ],

which is equal to

KX−(k+1)[θ] = JX−k[θ]. (22)

This shows that

Ek+1 =
1

4u
Ak, (23)

3

2
v∂−1(vBk+1 − wCk+1)− u2Ck+1 + (3v∂ + 2vx)Ek+1 = (1− ∂2)Ck, (24)

u2Bk+1 −
3

2
w∂−1(vBk+1 − wCk+1) + (3w∂ + 2wx)Ek+1 = (∂2 − 1)Bk.(25)

Then we will prove the local property of X−(k+1) in two steps. The first step

is to prove that Bk+1 and Ck+1 are local. Since Ak, Bk, Ck are all local, we can obtain
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immediately from (24) and (25) that Bk+1 and Ck+1 are local, if there exist a differential

function Mk such that

vBk+1 − wCk+1 =
w

u2
(1− ∂2)Ck +

v

u2
(∂2 − 1)Bk −

3vw

2u2
∂
Ak

u
−

(vw)x
2u3

Ak

=Mkx.

Then according to the Lemma 1, we only need to prove

Y1 =
∫

[
w

u2
(1− ∂2)Ck +

v

u2
(∂2 − 1)Bk −

3vw

2u2
∂
Ak

u
−

(vw)x
2u3

Ak]dx = 0.

In fact

Y1 =
∫

[
w

u2
(1− ∂2)Ck +

v

u2
(∂2 − 1)Bk −

3vw

2u2
∂
Ak

u
−

(vw)x
2u3

Ak]dx

=
∫

[Ck(1− ∂2)
w

u2
+Bk(∂

2 − 1)
v

u2
+ Ak(

vw

u3
)x]dx

=
∫









Ak

Bk

Ck









· J









2vw
u2

−W
u2

− v
u2









dx

=
∫

X−k[θ] · JX−1[θ]dx.

On the other hand, using the recursion relation, we have

Y1 =
∫

(K−1J )k−1X−1[θ] · JX−1[θ]dx

= −

∫

X−1[θ] · J (K−1
J )k−1X−1[θ]dx

= −

∫

X−1[θ] · (JK−1)k−1JX−1[θ]dx

= −

∫

(K−1J )k−1X−1[θ] · JX−1[θ]dx

= −

∫

X−k[θ] · JX−1[θ]dx.

Therefore Y1 = 0, and hence Bk+1 and Ck+1 are local.

The next step is to prove that Ak+1 is local. From (23), we infer that

Ak+1x =
1

u
[(∂3 − 4∂)

Ak

4u
− (3v∂ + 2vx)Bk+1 − (3w∂ + 2wx)Ck+1].

Notice that Bk+1 and Ck+1 are all local, so Ak+1 is local if the right part of the above

equality is a total x-derivative Nkx for a differential function Nk. That is to say, Ak+1

is local if

Y2 =
∫

(
1

u
[(∂3 − 4∂)

Ak

4u
− (3v∂ + 2vx)Bk+1 − (3w∂ + 2wx)Ck+1])dx = 0.

Lemma 2 Define

D =

(

3
2
v∂−1v −u2 − 3

2
v∂−1w

u2 − 3
2
w∂−1v 3

2
w∂−1w

)

,

we have

D−1 =
1

u2

(

3
2
w∂−1w u2 + 3

2
w∂−1v

3
2
v∂−1w − u2 3

2
v∂−1v

)

1

u2
.
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To make the expressions compact, we introduce some new notations as:

Z1 = (1− ∂2)Ck − (3v∂ + 2vx)
Ak

4u
, Z2 = (∂2 − 1)Bk − (3vw∂ + 2wx)

Ak

4u
,

Z3 =
vx

u3
−

3

2

uxv

u4
−

3

2

wv2

u4
, Z4 = −

wx

u3
+

3

2

uxw

u4
−

3

2

vw2

u5
.

Using the Lemma 2 to solve Bk+1 and Ck+1 from (24) and (25), we arrive at

Y2 =
∫

(
1

u
[(∂3 − 4∂)

Ak

4u
− (3v∂ + 2vx)Bk+1 − (3w∂ + 2wx)Ck+1])dx

=
∫

[−
Ak

4u
(∂3 − 4∂)

1

u
+Bk+1(

vx

u
−

3uxv

u2
) + Ck+1(

wx

u
−

3uxw

u2
)]dx

=
∫

[−
Ak

4u
(∂3 − 4∂)

1

u
+ (

vx

u3
−

3uxv

2u4
)[
3

2
w∂−1(

wZ1 + vZ2

u2
) + Z2]

+ (
wx

u3
−

3uxw

2u4
)[
3

2
v∂−1(

wZ1 + vZ2

u2
)− Z1]]dx

=
∫

[−
Ak

4u
(∂3 − 4∂)

1

u
+ Z2Z3 + Z1Z4]dx

=
∫

(
Ak

4u
[−(∂3 − 4∂)

1

u
+ (3w∂ + 2wx)Z3 + (3v∂ + 2vx)Z4]

+Bk(∂
2
− 1)Z1 + Ck(1− ∂2)Z2)dx

=
∫









Ak

Bk

Ck









· J









3wvx−3vwx

2u4 − 15v2w2

4u6 + uxx

2u3 −
3u2

x

4u4 + 1
u2

wx

u3 − 3wux

2u4 + 3vw2

2u5

− vx
u3 +

3vux

2u4 + 3v2w
2u5









dx

=
∫

[−2X−k[θ] · J
δΥ3

δθ
]dx

=
∫

2J (K−1J )k−1X−1[θ] ·
δΥ3

δθ
dx

=
∫

−2(K−1J )kX−1[θ] · K
δΥ3

δθ
dx

=
∫

−2(K−1
J )kX−1[θ] · (0, 0, 0)

Tdx

= 0.

Therefore Ak+1 is local. Consequently, we prove X−ns are all local. Then using the

Lemma 4.4 in [23] (see also [22, 24]), H−ns are found to be local.

3. Relationship with a 3-component CH type system

As pointed out in [18], the 3-CH type system (5) is reciprocal linked to the first negative

flow in a mYJ hierarchy. Since the spectral problem (6) is gauge linked to the spectral

problem (7), it would seem to be a reasonable guess that the 3-CH type system (5) is

equal to the 3-Novikov system (8).
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In fact the 3-CH type system (5) may be rewritten as

m1t + u2gm1x −m3(u2xf − u2g)−m1(3u2f −m3u2) = 0,

m2t + u2gm2x +m2(3u2xg +m3u2) = 0,

m3t + u2gm3x −m3(2u2f + u2xg −m3u2) = 0,

m2 = u2 − u2xx, m1 −m3x = g − gxx, f = m3 − gx,

(26)

then a directly calculation shows that (26) is connected to (8) via

u = (m2m3)
1
2 , v = m2, w = m1 −m3x, p = u2, r = g. (27)

4. A reciprocal transformation for the 3-Novikov system

4.1. A reciprocal transformation

Although many CH type systems are completely integrable, they have some nonstandard

features such as the DT, the Bäcklund transformation and the weak Painlevé property

[9, 25]. To study the Painlevé behaviour of the 3-Novikov system (8), we can relate it

with a equation displaying the standard (strong) Painlevé test of WTC [26], which is

easy to construct the DT and the Bäcklund transformation. Our strategy is to use the

steps in [21], and we will connect the 3-Novikov system (8) with a negative flow in a

mYJ hierarchy.

The 3-Novikov system (8) has a conserved density u, and the correspondence

conservation law reads

ut = (−upr)x,

which allows a reciprocal transformation

dy = udx− uprdt, dτ = dt. (28)

Set µ = λ
1
2 and define ψ2 = µu2

v
ϕ1 +

1
µ
ϕ3. Then, under change of variables, we may

rewrite the spectral problem (7) as

ϕ1yy +
uy

u
ϕ1y −

1
u2ϕ1 − µ v

u2ψ2 = 0,

ψ2y − µu2

v
ϕ1y − µ[(u

2

v
)y +

w
u
]ϕ1 = 0.

(29)

Now, introducing the gauge transformation

ϕ1 =
v

u2
e−∂−1

y ( vw
u3

)φ1, ψ2 = e−∂−1
y ( vw

u3
)φ2,

the spectral problem (29) may be converted to

φ1yy −Q2φ1y −Q1φ1 = µφ2,

φ2y −Q3φ2 = µφ1y,
(30)

where

Q1 = (3
vy

v
− 6

uy

u
+
wy

w
−
vw

u3
)
vw

u3
+ 3

uyvy

uv
+

1 + 2uuyy − 4u2y
u2

−
vyy

v
,

Q2 = 2
vw

u3
− 2

vy

v
+ 3

uy

u
,

Q3 =
vw

u3
.
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It is easy to check that the auxiliary problem in (9) is transformed to

φ1τ = 1
µ
q1φ2 +

1
3µ2φ1,

φ2τ = 1
µ
(q2φ1y + [1− q2y + (Q3 −Q2)q2]φ1) + (q1 −

2
3µ2 )φ2,

(31)

where

q1 = p
u2

v
, q2 =

rv

u
. (32)

For the convenience of constructing exact solutions of the 3-Novikov equation, let

us rewrite the above Lax pair in scalar form. Eliminating φ2 from the systems (30) and

(31), we obtain

φ1yyy + u1φ1yy + (v1 + u1y)φ1 + (w1 + v1y)φ1 = λφ1y, (33)

φ1τ −
1

λ
(q1φ1yy + (u1 +Q3)q1φ1y − χφ1) = 0, (34)

where








u1

v1

w1









=









−Q2 −Q3

Q2Q3 −Q1 +Q3y

Q1Q3 − (Q2Q3)y −Q3yy









(35)

with

χ = q1yy + (u1 + 3Q3)q1y + [(u1 + 2Q3)Q3 +Q3y]q1 +
2

3
.

Then the compatibility condition for the Lax representation (33-34) yields the associated

3-Novikov equation








u1

v1

w1









τ

=









−2q1y,

−q1yy − u1q1y − 2(Q3q1)y,

−[Q3q1y + q1(u1Q3 + 2Q2
3 −Q3y)]y,









,

(

s1

s2

)

= 0, (36)

where

s1 = q1yy + q1(2u1Q3 + 3Q2
3 + v1) + q1y(3Q3 + u1) + 1,

s2 = w1 +Q3(v1 +Q2
3 − 3Q3y − u1y) +Q3yy + (Q2

3 −Q3y)u1.

Furthermore, one can also gain the associated 3-Novikov system (36) by applying

the reciprocal transformation (28) to the 3-Novikov system (8) directly. Now, we claim

that the 3-Novikov equation (8) and the Lax pair (9) is reciprocal transformed to the

associated equation (36) and the Lax pair (33-34) respectively. More precisely, we have:

Proposition 3 The 3-Novikov equation (36) may be changed to the associated equation

(36) by the Liouville transformation























y = I(x, θ(n)) =
∫ x
−∞ u(ν)dν,









u1(y)

v1(y)

w1(y)









=









P1(x, θ
(n)),

P2(x, θ
(n)),

P3(x, θ
(n)),









,
(37)
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where

P1 = 2
vx

vu
− 3

ux

u2
− 3

vw

u3
,

P2 =
vxx − v

u2v
− 4

uxvx

u3v
−

4wvx + 2uuxx − 6u2x
u4

+ 6
vwux

u5
+ 3

v2w2

u6
,

P3 =
v(w − wxx)

u5
+

4vwxux + 2vwuxx
u6

−
6vwu2x + 3v2wwx + vw2vx

u7

+
6v2w2ux

u8
−
v3w3

u9
,

with v = p− pxx, w = r − rxx.

It is worth to note that the associated 3-Novikov system passes the Painlevé test.

Powers of the leader terms for u1, v1, w1, q1, Q3 are −1,−2,−2,−1,−1 respectively, and

the resonances are j = −2,−1, 1, 2, 3, 4, 5.

The spectral problem (33) may be rewritten as the Lax operator for a mYJ hierarchy

Lφ1 = λφ1, L = ∂2y + u1∂y + v1 + ∂−1
y w1, (38)

which is just a member in the constrained modified KP hierarchy [27, 28]. It can reduce

to that of the mKdV equation and the KdV hierarchy as Q1 = Q3 = 0 and Q2 = Q3 = 0

respectively. We claim that the associated 3-Novikov equation is a reduction of the first

negative flow in the mYJ hierarchy.

Notice that the mYJ hierarchy admits a Hamiltonian pair

J1 =









0 0 2∂y
0 2∂y ∂2y + u1∂y

2∂y −∂2y + ∂yu1 0









,

K1 =









6∂y ∗ ∗

4u1∂y 2∂3y + 2u1∂yu1 + ∂yv1 + v1∂y ∗

2∂3y − 2∂yu1∂y + 2v1∂y χ1 χ2









,

where

χ1 = 2w1∂y + ∂yw1 − (∂3y − ∂yu1∂y + v1∂y)(∂y − u1),

χ2 = ∂yu1w1 + u1w1∂y + w1∂
2
y − ∂2yw1

and the omitted terms are determined by skew-symmetry. Then a recursion operator

for the mYJ hierarchy is obtained as R = K1J
−1
1 , and the first negative flow in the

correspondence hierarchy are obtained as








u1

v1

w1









τ

= J1









A

B

C









, K1









A

B

C









= 0, (39)

where A = A(y, τ), B = B(y, τ), C = C(y, τ). To find the relation between the

associated 3-Novikov system (36) and the negative flow (39), we can take

A = −Q3q1y −Q2
3q1, B = −Q3q1, C = −q1. (40)
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Then the negative flow (39) is changed to








u1

v1

w1









τ

=









−2q1y ,

−q1yy − u1q1y − 2(Q3q1)y,

−[Q3q1y + q1(u1Q3 + 2Q2
3 −Q3y)]y,









,









z1

z2

z3









= 0, (41)

where

z1 = −2s1,

z2 = −s1yy + (Q3 − u1)s1y − 2p1s2y − 3p1ys2,

z3 = (Q2
3 − 2Q3y +Q3u1)s1y −Q3s1yy + p1s2yy + (2p1y −Q3p1 − u1p1)s2y

−(p1u1y + 2p1yu1 + 3(p1Q3)y)s2.

Thus the associated 3-Novikov system (36) is a reduction of the first negative flow (39)

in the mYJ hierarchy, since s1 = 0, s2 = 0 yields z1 = z2 = z3 = 0.

4.2. Hamiltonian structure behavior under the Liouville transformation

According to [29], if two soliton equations are linked by a Liouville transformation,

Hamiltonian structures and conserved quantities of them can be related. In this part we

will consider the Hamiltonian structures of the 3-Novikov system (8) under the Liouville

transformation (37). To this end, let ϑ = (u1, v1, w1)
T . Then from the point of view of

Hamiltonian structures, we have

θt = B(θ)
δH

δθ
= B(θ)Eθh, (42)

ϑt = B̃(ϑ)
δH̃

δϑ
= B̃(ϑ)Eϑh̃, (43)

where

H =
∫

h(x, θ(n))dx, H̃ =
∫

h̃(y, ϑ(n))dy.

Herein Eθ, Eϑ are the corresponding Euler operators, and H [θ(n)] = H̃ [ϑ(n)]. Defining

Λ(ϑ, θ) = ϑ− (P1, P2, P3)
T , hence it is easy to see that

ϑt = −T1θt, T1 = Λθ, (44)

where Λθ is Frechét derivative for the vector variable. Then a direct computation shows

that

T1 =









u1yI
′[u]− P ′

1[u] u1yI
′[v]− P ′

1[v] u1yI
′[w]− P ′

1[w]

v1yI
′[u]− P ′

2[u] v1yI
′[v]− P ′

2[v] v1yI
′[w]− P ′

2[w]

w1yI
′[u]− P ′

3[u] w1yI
′[v]− P ′

3[v] w1yI
′[w]− P ′

3[w]









.

Furthermore, the action of Euler operator under a change of variables is given by

Eθh = T2Eϑh̃, (45)

where

T2 =









P
′†
1,u(Ix)− I

′†
u (P1x) P

′†
2,u(Ix)− I

′†
u (P2x) P

′†
3,u(Ix)− I

′†
u (P3x)

P
′†
1,v(Ix)− I

′†
v (P1x) P

′†
2,v(Ix)− I

′†
v (P2x) P

′†
3,v(Ix)− I

′†
v (P3x)

P
′†
1,w(Ix)− I

′†
w (P1x) P

′†
2,w(Ix)− I

′†
w (P2x) P

′†
3,w(Ix)− I

′†
w (P3x)









.
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Lemma 3 Under the transformation (37), we have the following formulaes:

T1 = Odiag(u−1, v−1, vu−3), T2 = −diag(1, uv−1, vu−2)O†,

where

O =









u1y∂
−1
y + 3∂y + u1 − 6Q3 −2∂y + 3Q3 3

v1y∂
−1
y + 2∂2y + 2u1∂y + 2v1 − 4Q3u1 (Q3 − u1)∂y + 2Q3u1 − ∂2y 2u1
w1y∂

−1
y + 3w1 − 2χ3Q3 ∂yQ

2
3 − w1 +Q2Q

2
3 +Q3Q3y χ3









with

χ3 = ∂2y − ∂yu1 + v1.

Lemma 4 Under the reciprocal transformation (28), the following identities hold:

1

v
(1− ∂2x)

v

u2
= Θ1 ≡ Q1 − (∂y −Q2 +Q3)(∂y +Q3), (46)

and
1

u2
(∂3x − 4∂x)

1

u
= Θ2 ≡ (∂y −Q2)∂y(∂y +Q2)− 2Q1∂y − 2∂yQ1. (47)

The two Lemmas above can be proved through a straightforward computation. Hence

the main results can be summarized as:

Theorem 2 The associated 3-Novikov system is a bi-Hamiltonian system, namely, it

can be written as








u1

v1

w1









t

= K1J
−1
1 K1









δH̃2

δu1
δH̃2

δv1
δH̃2

δw1









= K1









δH̃1

δu1
δH̃1

δv1
δH̃1

δw1









, (48)

where

H̃1 =
∫

Q3q1dy,

H̃2 =
∫

[Q3q1(q1q2y − q2q1y + q1q2(Q2 − 2Q3))− q1q2]dy.

Proof: Substituting (44-45) into (42-43), a Hamiltonian pair for the associated 3-

Novikov system is obtained as

J̃ = −T1J T2, K̃ = −T1KT2. (49)

Hamiltonian functionals of the 3-Novikov system and the associated 3-Novikov system

connected by the formula (45).

To obtain bi-Hamiltonian structure of the associated 3-Novikov system, we should

calculate J̃ and K̃ in the new variable y. Using conjugation of operator to the identity

(46), we can easily check that

v

u3
(∂2x − 1)

u

v
= (∂y −Q3)(∂y +Q2 −Q3)−Q1. (50)

Let us substitute the equalities (46) and (50) into the first equality in (49). Then,

through tedious calculations, we get
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J̃ = Odiag(u−1, v−1, vu−3)J diag(1, uv−1, vu−2)O†

= O









1
2
∂y 0 0

0 0 Θ1

0 −Θ†
1 0









O†

= K1J
−1
1 K1.

On the other hand, introducing

P = (∂y,
3

2
∂y −

1

2
Q2 +Q3,

3

2
Q3∂y +

1

2
Q2Q3 +Q3y −Q2

3)
T .

Then the second equality in (49) may be changed to

K̃ = Odiag(u−1, v−1, vu−3)Kdiag(1, uv−1, vu−2)O†

= O









0 0 0

0 3
2
∂−1
y −1− 3

2
∂−1
y Q3

0 1− 3
2
Q3∂

−1
y

3
2
Q3∂

−1
y Q3









O† − 2OPΘ−1
2 P†O†

= O









0 0 0

0 3
2
∂−1
y −1− 3

2
∂−1
y Q3

0 1− 3
2
Q3∂

−1
y

3
2
Q3∂

−1
y Q3









O† −









0

1

−Q3









Θ†
2

2









0

1

−Q3









T

= K1

by using the identity (47) and OP = 1
2
(0,Θ2,−Q3Θ2)

T .

Furthermore, since the Hamiltonian functionals of the two hierarchy are connected

by the relation H [θ(n)] = H̃[ϑ(n)], we can easy to find the relationship between the two

hierarchies.

5. A limit system

The limits of the CH type equations might also contain some important models. For

example, the Hunter-Saxton equation, which can describe wave motion in a nematic

liquid crystal [30], may be consider as a limit of the CH equation [31]. The Ostrovsky

equation, which appears as the description of high-frequency waves in a relaxing medium

[32], can be obtained as a short wave limit of the DP equation [11]. In this section, we

will consider a limit of the 3-Novikov system (8).

Let us consider the transformation

x→ ǫx, t→ ǫt, u → ǫ
3
2u. (51)

Then a limit for the 3-Novikov system may be obtained in the limit ǫ→ 0, that is

ut + (upr)x = 0,

vt + 3vpxr + vxpr + u2p = 0,

wt + 3wprx + wxpr − u2r = 0,

v = −pxx, w = −rxx.

(52)
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The short wave model (52) is also integrable in the sense of admitting bi-Hamiltonian

structure and a Lax pair. The bi-Hamiltonian structure can be obtained by applying

the transformation (51) to that of the 3-Novikov system, that is








u

v

w









t

= J̄1









δH̄2

δu
δH̄2

δv
δH̄2

δw









= K̄1









δH̄1

δu
δH̄1

δv
δH̄1

δw









, (53)

where

J̄1 =









1
2
∂ 0 0

0 0 −∂2

0 ∂2 0









,

K̄1 =









0 0 0

0 3
2
v∂−1v −u2 − 3

2
v∂−1w

0 u2 − 3
2
w∂−1v 3

2
w∂−1w









− 2Ω∂−3Ω∗,

with the functionals given by

H̄1 =
∫

pxrxdx,

H̄2 =
∫

(ppxrrxx + ppxr
2
x − u2pr)dx.

Taking the transformation (51) to the Lax pair (9) with λ→ ǫλ, a Lax pair for the limit

system (52) is obtained as

ϕx =









0 1 0

λu2 0 v

λw 0 0









ϕ,

ϕt =









1
3λ

+ prx −pr p
λ

pxrx − λu2pr 1
3λ

− pxr
px
λ
− vpr

−λwpr − rx r pxr − prx −
2
3λ









ϕ.

Moreover, the short wave model (52) is also reciprocal connected to the first negative

flow in the mYJ hierarchy by taking the similar process before. It may reduce to that of

the Geng-Xue, the Novikov and the DP as u = 0 and u = 0, p = r as well as u = 0, r = 1

respectively.
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