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Abstract This paper addresses a general multiobjective optimization problem. One
of the most widely used methods of dealing with multiple conflicting objectives
consists of constructing and optimizing a so-called achievement scalarizing func-
tion (ASF) which has an ability to produce any Pareto optimal or weakly/properly
Pareto optimal solution. The ASF minimizes the distance from the reference point to
the feasible region, if the reference point is unattainable, or maximizes the distance
otherwise. The distance is defined by means of some specific kind of a metric intro-
duced in the objective space. The reference point is usually specified by a decision
maker and contains her/his aspirations about desirable objective values. The classical
approach to constructing an ASF is based on using the Chebyshev metric L∞. Another
possibility is to use an additive ASF based on a modified linear metric L1. In this paper,
we propose a parameterized version of an ASF. We introduce an integer parameter
in order to control the degree of metric flexibility varying from L1 to L∞. We prove
that the parameterized ASF supports all the Pareto optimal solutions. Moreover, we
specify conditions under which the Pareto optimality of each solution is guaranteed.
An illustrative example for the case of three objectives and comparative analysis of
parameterized ASFs with different values of the parameter are given. We show that
the parameterized ASF provides the decision maker with flexible and advanced tools
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to detect Pareto optimal points, especially those whose detection with other ASFs is
not straightforward since it may require changing essentially the reference point or
weighting coefficients as well as some other extra computational efforts.

Keywords Multiobjective optimization · Achievement function · Parameterization ·
Pareto optimal solutions · Multiple criteria decision making

1 Introduction

Many real-life optimization problems can hardly be considered as properly formu-
lated without taking into account their multiple objective nature. This fact commonly
accepted by many experts explains a permanently growing interest in the area of
multiobjective optimization. Considering multiple conflicting objectives is advanta-
geous in comparison with optimizing one single objective only. It is well known that
a solution which is optimal with respect to one single objective may be arbitrarily
bad with respect to other objectives and thus will be unacceptable for the decision
maker (DM). While optimizing one objective usually leads to one optimal solution,
multiobjective optimization involves dealing with a set of Pareto optimal solutions
(alternatives) that provide different trade-offs between several conflicting objectives.
Usually these objectives represent various interests. For example, for some transpor-
tation problems one goal may be oriented on passenger comfort while another one
may represent convenience for the transport company. Thus, finding a compromise
between several goals may positively influence interests of all participants involved.
The primary goal of multiobjective optimization is to optimize simultaneously several
conflicting objectives in order to find Pareto optimal solutions acceptable for the DM.
Optimality is usually understood in the sense of Pareto optimality, but other optimality
principles (lexicographic, Smale, Slater, Geoffrion, Borwein, Condorcet etc., see, e.g.
Sawaragi et al. 1985) can also be used.

In multiobjective optimization, vectors are regarded as optimal if their components
cannot be improved without deteriorating the others. This concept was first introduced
by Pareto (1909). The Pareto optimality principle generally describes an equilibrium
situation such that the value of no objective for any Pareto optimal solution can be
improved without getting the value of another objective deteriorated.

There is a large variety of methods suggested for solving multiobjective optimiza-
tion problems (see, e.g., Ehrgott 2000; Miettinen 1999; Sawaragi et al. 1985; Steuer
1986). Many of these methods are based on a scalarization approach. Via scalariza-
tion, the problem is transformed into a single objective optimization problem involving
possibly some parameters or additional constraints. In most scalarizing functions, addi-
tional information is requested from the DM about her/his individual preferences and
further taken into consideration. After the scalarization phase, the widely developed
theory and methods of single objective optimization are available.

Multiobjective optimization methods utilize different scalarizing functions in dif-
ferent ways. The input requested from the DM may consist of trade-off information,
marginal rates of substitution or desirable objective function values (see ++e.g. Luque
et al.). Furthermore, the scalarization may be performed once or repeatedly as a part
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of an iterative process. When methods are introduced in the literature, the optimality
of the results produced is usually proved. On the other hand, it is not so common to
justify why some specific form of scalarization is used. The choice of the particular
scalarization approach has to be done very carefully, since different scalarizations
typically produce different Pareto optimal solutions.

One of the most widely used approaches of dealing with multiple conflicting objec-
tives involves constructing and optimizing a so-called achievement scalarizing func-
tion (ASF) (Miettinen 1999; Wierzbicki 1980, 1986b) which has an ability to produce
any (properly) Pareto optimal or weakly Pareto optimal solution. The ASF minimizes
the distance from the reference point (specified by the DM) to the feasible region, if
the reference point is unattainable, or maximizes the distance otherwise. The distance
is defined by means of some appropriate metric introduced in the objective space. The
classical approach to constructing an ASF is based on using Chebyshev L∞ and linear
L1 metrics (see, e.g. Miettinen 1999).

Our work is inspired by Ruiz et al. (2008) where an achievement scalarizing func-
tion based on using a modified linear metric was proposed. As it was truly noticed
Ruiz et al. (2008), there might be some situations where the DM may want to minimize
not the maximal unwanted deviation from the reference point, but the weighted sum
of unwanted deviations instead. We enhance this idea of Ruiz et al. (2008) by assum-
ing that the DM’s wishes can be even more complicated involving more advanced
scalarization mechanisms. So, in our paper we extend some general ideas of Ruiz
et al. (2008) and propose a parameterized version of an ASF. We introduce an integer
parameter in order to control the degree of metric flexibility varying from L1 to L∞.
We prove that the parameterized ASF is able to detect any Pareto optimal solutions.
Moreover, we specify conditions under which the Pareto optimality of each solution
produced by the parameterized ASF is guaranteed.

The paper is organized as follows: Sect. 2 is devoted to the main definitions and
concepts. In Sect. 3 we briefly give a description for a class of methods based on
the concept of a reference point. In Sect. 4 we propose a new approach to creating
an achievement scalarizing function which is based on parameterization. Theoretical
justification of the approach is given. An illustrative example for the case of a three-
dimensional objective space is presented in Sect. 5. Final remarks and open questions
are presented in Sect. 6.

2 Preliminaries and basic definitions

Let X be an arbitrary set of feasible solutions or a set of decision vectors. Let a vector
valued function f : X → Rm consisting of m ≥ 2 objective functions be defined on
the set of feasible solutions:

f (x) = ( f1(x), f2(x), . . . , fm(x)).

Without loss of generality we assume that every objective function is subject to be
minimized on the set of feasible solutions:

fi (x) −→ min
x∈X

, i ∈ Nm = {1, 2, . . . , m}.
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Further, throughout the paper we will refer to Rm as an objective space and vector
f (x) as an objective vector.

We also assume that

(i) every objective function fi is a lower semicontinuous function;
(ii) X is a nonempty compact set.

We denote by

Mi (X) = arg min
x∈X

fi (x), i ∈ Nm

a set of minima of the i-th objective function.
Evidently, if

m∩
i=1

Mi (X) �= ∅,

then there exists at least one solution which delivers a minimum for all objectives.
Such a solution can be called an ideal solution. An optimization problem which does
not contain ideal solutions is called non-degenerate and objectives are at least partly
conflicting. Simultaneous optimization of several objectives for non-degenerate mul-
tiobjective optimization problems is not a straightforward task, and we need to define
optimality for such problems. In what follows, we consider non-degenerate problems.

The following definition formalizes the concept of Pareto optimality:

Definition 1 A decision vector x∗ ∈ X is Pareto optimal if there does not exist another
x ∈ X such that fi (x) ≤ fi (x∗) for all i ∈ Nm and f j (x) < f j (x∗) for at least one
index j .

We can denote the set of Pareto optimal decision vectors as Pm(X). Furthermore,
the set { f (x) ∈ Rm : x ∈ Pm(X)} is called the Pareto frontier. For two vectors
a, b ∈ Rm , we write a ≤ b if ai ≤ bi for all i ∈ Nm . Then we say that one vector
a dominates another vector b if a ≤ b and a �= b. Thus, the set of Pareto optimal
solutions is simply a subset of feasible solutions whose images are non-dominated in
the objective space.

The optimality in a multiobjective case can be introduced in different ways. The
following definition was firstly proposed by Slater (1950):

Definition 2 A decision vector x ∈ X is weakly Pareto optimal if there does not exist
another x ∈ X such that fi (x) < fi (x) for all i ∈ Nm .

We can denote the set of weakly Pareto optimal decision vectors or Slater set as
Slm(X). For two vectors a, b ∈ Rm , we write a < b if ai < bi for all i ∈ Nm . Then
we say that one vector a strictly dominates another vector b if ai < bi for all i ∈ Nm .
Thus, the set of weakly Pareto optimal solutions is a subset of feasible solutions whose
images are strictly non-dominated in the objective space. An objective vector f (x)

is (weakly) Pareto optimal if the corresponding decision vector x is (weakly) Pareto
optimal.

Under the assumptions (i)–(ii) mentioned earlier in the problem formulation, we
know that the set of Pareto optimal solutions is non-empty, i.e., there always exists at
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least one Pareto optimal solution (see Sawaragi et al. 1985, Corollary 3.2.1). Obviously,
the set of Pareto optimal solutions is a subset of weakly Pareto optimal solutions.

Even though the concept of Pareto optimality corresponds to the intuitive idea
of a compromise and rational behavior of the DM, we deal with both Definitions 1
and 2 because weakly Pareto optimal solutions are sometimes computationally more
convenient to produce than Pareto optimal solutions.

Lower and upper bounds on objective values of all Pareto optimal solutions are given
by the ideal and nadir objective vectors f I and f N , respectively. The components
fi of the ideal (nadir) objective vector f I = ( f I

1 , . . . , f I
m) ( f N = ( f N

1 , . . . , f N
m ))

are obtained by minimizing (maximizing) each of the objective functions individually
subject to the set of Pareto optimal solutions:

f I
i = min

x∈Pm (X)
fi (x), i ∈ Nm,

f N
i = max

x∈Pm (X)
fi (x), i ∈ Nm .

For calculating the ideal objective vector, minimization over the set of Pareto opti-
mal solutions can be replaced by minimization over the set of all feasible solutions.
Such a replacement allows to calculate the ideal objective vector without having
explicit information about the entire Pareto optimal set. Due to this, in fact, the concept
of an ideal objective vector coincides with the concept of an ideal solution introduced
earlier. Unfortunately, calculating the nadir objective vector is not that simple. The
upper bounds of the Pareto optimal set, that is, the components of a nadir objective
vector f N are hard to compute for problems with more than two objectives. The nadir
objective vector can, however, be estimated from a payoff table, but this estimation
might be not very reliable (see, e.g. Miettinen 1999). Recently, some approaches have
been proposed as efficient approximation techniques to obtain a good approximation
of the nadir objective vector (see, e.g. Deb and Miettinen 2010).

Sometimes, a vector strictly better than f I is required. This vector is called a uto-
pian objective vector and denoted by f U . In practice, the components of the utopian
objective vector are calculated by subtracting some small positive scalar from the
components of the ideal objective vector:

f U = f I − ε · 1(m),

where 1(m) is an m-dimensional vector of all ones and ε is a small positive parameter.
There exists a large variety of methods proposed to deal with problems involv-

ing multiple objectives. As mentioned in the introduction, a widely used approach
for solving multiobjective optimization problems is scalarization, that is, converting
the multiple objectives together with possible preference information into one scalar-
ized objective. Two major requirements are set for a scalarization function in order to
provide method completeness (Sawaragi et al. 1985):

• it should be able to cover the entire set of Pareto optimal solutions, and
• every solution found by means of scalarization should be (weakly) Pareto optimal.
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The mechanism of scalarization is a key issue behind many different methods for
multiobjective optimization reported in the literature.

The simplest approach is a linear scalarization, also known as the weighting method
(Miettinen 1999; Steuer 1986). This scalarization satisfies the two aforementioned
requirements for convex optimization problems, but not for nonconvex and discrete
unsupported cases. A major incremental complication of these cases is that not all
Pareto optimal solutions are reachable as optimal solutions by means of linear scalar-
ization. Such solutions are referred to as unsupported solutions in the literature (see,
e.g. Steuer 1986).

A scalarization approach which is applicable for both convex and nonconvex prob-
lems is the minimization of some sort of distance from an ideal solution. As we already
mentioned earlier, in the case of conflicting objectives, the ideal objective vector is not
feasible, but it can serve as a reference point, with a goal to find solutions which are as
close as possible to the ideal values with respect to the chosen distance measure. An
example of this approach is the so-called compromise programming, also known as a
method of global criterion, where the L p metric (1 ≤ p ≤ ∞) can be used to measure
the distance. If weighting coefficients are used in the metric, we get a so-called method
of weighted metrics or weighted compromise programming. The two requirements set
on scalarization functions are satisfied only if L∞, that is, the Chebyshev metric is
used with the utopian objective vector as a reference point. For more advanced details
on properties of compromise programming and L p problems, see Miettinen (1999)
and references therein.

The usage of compromise programming has some limitations. One of the most
important restrictions is that the usage of the ideal objective vector does not incorpo-
rate the preference information. To enable the DM’s preferences to be included, one
can use a reference point consisting of aspiration levels instead of the ideal objective
vector. If we ask the DM to specify the reference point, we can take her/his preferences
into account and hopefully generate more satisfactory solutions. The reference point
reflects the DM’s estimations about the desirable objective values. However, if we
allow the DM to set the reference point, we must replace the L p metrics as distance
measures by achievement scalarizing functions. In this way we can guarantee that
the method works for both achievable and inachievable reference points Miettinen
(1999).

In what follows, we concentrate on reference point-based scalarizing functions.

3 Reference point-based approaches and achievement scalarizing functions

In reference point based methods (see, e.g. Wierzbicki 1980, 1986b, 1999), the DM
specifies a reference point f R consisting of desirable or reasonable aspiration levels
f R
i for each objective function fi , i ∈ Nm . This reference point only indicates what

kind of objective function values the DM prefers.
Achievement scalarizing functions (ASFs) have been introduced by Wierzbicki

(1980). The scalarized problem is given by

min
x∈X

sR( f (x)). (1)
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Certain properties of ASFs guarantee that problem (1) yields Pareto optimal
solutions.

Definition 3 Wierzbicki (1986b) An ASF sR : Rm → R is said to be

1. Increasing,
if for any y1, y2 ∈ Rm, y1

i ≤ y2
i for all i ∈ Nm , then sR(y1) ≤ sR(y2).

2. Strictly increasing,
if for any y1, y2 ∈ Rm, y1

i < y2
i for all i ∈ Nm , then sR(y1) < sR(y2).

3. Strongly increasing,
if for any y1, y2 ∈Rm, y1

i ≤ y2
i for all i ∈ Nm and y1 �= y2, then sR(y1)<sR(y2).

Obviously, any strongly increasing ASF is also strictly increasing, and any strictly
increasing ASF is also increasing. The following theorems define necessary and suf-
ficient conditions for an optimal solution of (1) to be (weakly) Pareto optimal:

Theorem 1 Wierzbicki (1986a,b)

1. Let sR be strongly (strictly) increasing. If x∗ ∈ X is an optimal solution of problem
(1), then x∗ is (weakly) Pareto optimal.

2. If sR is increasing and the solution of (1) x∗ ∈ X is unique, then x∗ is Pareto
optimal.

Theorem 2 Miettinen (1999) If sR is strictly increasing and x∗ ∈ X is weakly Pareto
optimal, then it is a solution of (1) with f R = f (x∗) and the optimal value of sR is
zero.

The advantage of ASFs is that any (weakly) Pareto optimal solution can be obtained
by moving the reference point only. It was shown in Wierzbicki (1986a) that the solu-
tion of an ASF depends Lipschitz continuously on the reference point. In general,
ASFs are conceptually very appealing to generate Pareto optimal solutions, and they
overcome most of the difficulties arising with other methods (Miettinen 1999) in the
class of methods for generating Pareto optimal solutions.

The most well-known strictly increasing ASF is of Chebyshev type:

s∞
R ( f (x), λ) = max

i∈Nm
λi ( fi (x) − f R

i ), (2)

where λ is m-vector of non-negative coefficients used for scaling purposes, that is, for
normalizing objective functions of different magnitudes.

Note that here we do not use absolute value because we want to ensure that (weakly)
Pareto optimal solutions are produced independently of the attainability or unattain-
ability of the reference point. Indeed, we are in fact seeking for solutions which either
minimize the distance from the reference point to the feasible region, if the reference
point is unattainable, or maximize the distance otherwise.

The most well-known strongly increasing ASF is of augmented Chebyshev type:

s∞+1
R ( f (x), λ) = ρ

∑

i∈Nm

λi ( fi (x) − f R
i ) + max

i∈Nm
λi ( fi (x) − f R

i ), (3)

where ρ > 0 is a small parameter.
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Note that (3) can be viewed as a parameterized version of s∞
R with a continuous

parameter ρ > 0. While the main term maxi∈Nm λi ( fi (x) − f R
i ) produces weakly

Pareto optimal solutions, the augmented term ρ
∑

i∈Nm
λi ( fi (x) − f R

i ) is used at the
same time to guarantee proper Pareto optimality of the obtained solutions (for the def-
inition of proper Pareto optimality see, e.g. Miettinen 1999). In terms of Wierzbicki
(1977), functions (2) and (3) are called order-representing and order-approximation
functions, respectively. There are many variants and refinements of these ASFs which
have been designed to guarantee Pareto optimality (Kaliszewski 1994; Miettinen and
Mäkelä 2002).

Among others, some questions concerning ASFs based on the L1 metric are
discussed in Ruiz et al. (2008) and an additive ASF based on the L1 metric is proposed
as

ŝ1
R( f (x), λ) =

∑

i∈Nm

λi | fi (x) − f R
i |. (4)

It is evident that

s∞+1
R ( f (x), λ) = ρ ŝ1

R( f (x), λ) + s∞
R ( f (x), λ)

in the case where the reference point dominates or is equal to the ideal solution.
Notice that (4) requires the reference point not to be strictly dominated by any

feasible point in order to work properly. However, even in the case of non-dominated
reference point, the solution produced may be not the best one due to excessive penali-
zation of “good” (negative) deviations (for more details see Fig. 2 in Ruiz et al. (2008)).
Penalizing “good” deviations makes no sense unless the reference point is attainable.
To overcome the last-mentioned drawback, a modified additive ASF based on the L1
metric is proposed in Ruiz et al. (2008) in the following form:

s1
R( f (x), λ) =

∑

i∈Nm

max [λi ( fi (x) − f R
i ), 0]. (5)

Note that s1
R( f (x), λ) ≥ 0. This function is still sensitive to the location of the ref-

erence point (i.e. being nondominated by any feasible point); however, it maintains
a better penalization mechanism. Indeed, it allows penalizing “bad” (positive) devia-
tions from the reference point but at the same time forbids penalizing “good” (negative)
deviation.

The following properties of s1
R( f (x), λ) were proved in Ruiz et al. (2008).

Theorem 3 Ruiz et al. (2008) Given problem (1) with ASF defined by (5), let f R be
a reference point such that f R is not dominated by an objective vector of any feasible
solution of problem (1). Also assume λi > 0 for all i ∈ Nm. Then any optimal solution
of problem (1) is a weakly Pareto optimal solution.

It is easy to see by checking the proof in Ruiz et al. (2008) (see Theorem 2) that
the result stated above is also valid in the case if the reference point is not strictly
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dominated by an objective vector of any feasible solution of problem (1), i.e., if there
exist no feasible x ∈ X with fi (x) < f R

i for all i ∈ Nm .

Theorem 4 Ruiz et al. (2008) Given problem (1) with ASF defined by (5) and any
reference point f R, assume λi > 0 for all i ∈ Nm. Then among the optimal solutions
of problem (1) there exists at least one Pareto optimal solution. If the optimal solution
of problem (1) is unique, then it is Pareto optimal.

Based on the above results, we may conclude that s1
R( f (x), λ) is sensitive to the

correct choice of the reference point f R , i.e., some sort of underestimation of aspi-
ration levels is required from the DM to guarantee weak Pareto optimality. In case
we want to guarantee Pareto optimality, an augmentation term can be used as in (3).
Notice that earlier we mentioned ASFs that work for any kind of reference point,
whereas s1

R( f (x), λ) is sensitive to the choice of a reference point. The assumption
that the reference point should not be dominated by an objective vector of any feasible
solution is the price the DM has to pay if (s)he wants to minimize the aggregated
deviations from the reference point. Nevertheless, the good fact about s1

R( f (x), λ) is
that, under the same set of weighting coefficients, it allows producing solutions which
are significantly different from those produced by “classical” ASFs. These solutions
represent a different preference structure and therefore could be a good alternative to
those solutions obtained based on s∞

R ( f (x), λ).
In the following section we introduce a parameterized ASF, depending on a param-

eter q ∈ Nm , whose extreme cases coincide with s1
R( f (x), λ) for q = 1, and

s∞
R ( f (x), λ) for q = m, respectively.

4 Parameterized achievement scalarizing functions

In this section we extend ideas of Ruiz et al. (2008) by introducing a parameterization
based on the notion of embedded subsets. We introduce an integer parameter q ∈ Nm

in order to control the degree of metric flexibility varying from L1 to L∞.
Let I q be a subset of Nm of cardinality q. A parameterized ASF is defined as

follows:

s̃q
R( f (x), λ) = max

I q⊆Nm : |I q |=q

{
∑

i∈I q

max [λi ( fi (x) − f R
i ), 0]

}
, (6)

where q ∈ Nm and λ = (λ1, . . . , λm), λi > 0, i ∈ Nm . Notice that

• for q ∈ Nm : sq
R( f (x), λ) ≥ 0;

• for q = 1: s̃1
R( f (x), λ) = max

i∈Nm
max [λi ( fi (x) − f R

i ), 0] ∼= s∞
R ( f (x), λ);

• for q = m: s̃m
R ( f (x), λ) = ∑

i∈Nm

max [λi ( fi (x) − f R
i ), 0] = s1

R( f (x), λ).

Here, “∼=” means equality in the case where there exist no feasible solutions x ∈ X
which strictly dominate the reference point, i.e., such that fi (x) < f R

i for all i ∈ Nm .
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The problem to be solved is

min
x∈X

s̃q
R( f (x), λ). (7)

It is obvious that using problem (7), every feasible solution of the multiobjective
problem (including Pareto optimal) is supported. Indeed, given any x ∈ X , the ref-
erence point f R = f (x) and a vector of weighting coefficients λ > 0, the optimal
solution to problem (7) is x with the optimal value of s̃q

R( f (x), λ) equals zero. Thus,
the first of the two requirements, mentioned in Sect. 2, holds.

For any x ∈ X , denote Ix = {i ∈ Nm : f R
i ≤ fi (x)}. The following result is

analogous to Theorem 3:

Theorem 5 Given problem (7), let f R be a reference point such that there exists
no feasible solution whose image strictly dominates f R. Also assume λi > 0 for all
i ∈ Nm. Then, any optimal solution of problem (7) is a weakly Pareto optimal solution.

Proof The proof will be given by contradiction. Let x∗ be an optimal solution of prob-
lem (7). We assume that x∗ is not weakly Pareto optimal. Then, there exists a feasible
solution x ′ ∈ X such that fi (x ′) < fi (x∗) for all i ∈ Nm .

Notice that Ix ′ ⊆ Ix∗ , and Ix ′ �= ∅ under the assumption that there exists no feasible
solution whose image strictly dominates the reference point. Then,

s̃q
R( f (x ′), λ) = max

I q⊆Nm : |I q |=q

{
∑

i∈I q

max [λi ( fi (x ′) − f R
i ), 0]

}

= max
I q⊆Nm : |I q |=q

⎧
⎨

⎩
∑

i∈I q∩Ix ′
λi ( fi (x ′) − f R

i )

⎫
⎬

⎭

< max
I q⊆Nm : |I q |=q

⎧
⎨

⎩
∑

i∈I q∩Ix ′
λi ( fi (x∗) − f R

i )

⎫
⎬

⎭

≤ max
I q⊆Nm : |I q |=q

⎧
⎨

⎩
∑

i∈I q∩Ix∗
λi ( fi (x∗) − f R

i )

⎫
⎬

⎭

= max
I q⊆Nm : |I q |=q

{
∑

i∈I q

max [λi ( fi (x∗) − f R
i ), 0]

}
= s̃q

R( f (x∗), λ).

The obtained inequality s̃q
R( f (x ′), λ) < s̃q

R( f (x∗), λ) contradicts the assumption
of x∗ being an optimal solution of problem (7). This completes the proof.

In the way similar to the proof of Theorem 4 (Theorem 1 in Ruiz et al. 2008) the
following fact can be proven:

Theorem 6 Given problem (7), let f R be any reference point. Also assume λi > 0
for all i ∈ Nm. Then, among the optimal solutions of problem (7) there exists at least
one Pareto optimal solution.
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Theorem 6 implies that the uniqueness of the optimal solution guarantees its Pareto
optimality. Notice that the facts stated above about solutions of parameterized ASFs
also implicitly follow from the results of Theorem 1. To show this, it is sufficient to
prove that s̃q

R( f (x), λ) is increasing. Moreover, it is strictly increasing if there are no
feasible solutions strictly dominating f R .

Indeed, take x1 ∈ X and x2 ∈ X with fi (x1) ≤ fi (x2) for all i ∈ Nm . Since λi > 0
for all i ∈ Nm , then

s̃q
R( f (x1), λ) = max

I q⊆Nm : |I q |=q

{
∑

i∈I q

max [λi ( fi (x1) − f R
i ), 0]

}

≤ max
I q⊆Nm : |I q |=q

{
∑

i∈I q

max [λi ( fi (x2) − f R
i ), 0]

}
= s̃q

R( f (x2), λ),

i.e., s̃q
R( f (x), λ) is increasing.

Moreover, if we take x1 ∈ X and x2 ∈ X with fi (x1) < fi (x2) for all i ∈ Nm ,
then, provided that there exists no solution x ∈ X with fi (x) < f R

i for all i ∈ Nm , we
get Ix1 ⊆ Ix2 and Ix1 �= ∅, and thus, recalling that λi > 0 for all i ∈ Nm , we deduce
the following:

s̃q
R( f (x1), λ) = max

I q⊆Nm : |I q |=q

{
∑

i∈I q

max [λi ( fi (x1) − f R
i ), 0]

}

= max
I q⊆Nm : |I q |=q

⎧
⎨

⎩
∑

i∈I q∩Ix1

λi ( fi (x1) − f R
i )

⎫
⎬

⎭

< max
I q⊆Nm : |I q |=q

⎧
⎨

⎩
∑

i∈I q∩Ix2

λi ( fi (x2) − f R
i )

⎫
⎬

⎭

= max
I q⊆Nm : |I q |=q

{
∑

i∈I q

max [λi ( fi (x2) − f R
i ), 0]

}
= s̃q

R( f (x2), λ),

i.e., s̃q
R( f (x), λ) is strictly increasing.

Thus, Theorems 5 and 6, describe the conditions under which the second of the two
requirements, mentioned in Sect. 2, holds. So, we have now considered both major
requirements.

Various Pareto optimal solutions can be detected not only by moving the reference
point itself, but also by manipulating the weighting coefficients while a reference point
is remaining fixed. In this paper, we consider the simplest case where weighting coeffi-
cients are fixed for scaling (i.e. normalizing). Alternatively, the weighting coefficients
may, e.g., reflect the level of penalization for “bad” deviations which the DM wants
to introduce into the problem. Different ways of reflecting preference information
and manipulating weighting coefficients of parameterized ASFs may be a subject for
future research similar to what has been done in Luque et al. (2009).
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Parameterized ASFs can be potentially used either for some particular values of q
or for all q ∈ Nm simultaneously. The simplest but the most computationally demand-
ing way is to calculate ASFs for all q ∈ Nm . Since the solution of a problem with
a smaller q-value unlikely provides any help for the solution of the problem with a
larger q-value and vice versa, it seems realistic to use parallel computation for these
purposes. The choice of a particular q-value can be done if some extra information is
available (at least locally) about the shape of the Pareto frontier as well as the shape
of the R-level set (i.e. a set of points for which the distance from the reference point
is equal to R in terms of the corresponding ASF) of the parameterized ASF for the
given q-value. In general, getting such information may be a very complicated task and
practically can be potentially fulfilled under strong assumptions like, e.g., objective
functions convexity etc.

Notice also that the choice of parameter q affects directly the shape of R-level
that may vary from being sharp in the case of s̃1

R( f (x), λ) to linearly flat as in the
case of s̃m

R ( f (x), λ). This helps the ASF to penetrate into the areas where lots of
non-supported solutions are accumulated.

As in the case with the additive ASF s1
R( f (x), λ) developed in Ruiz et al. (2008), the

parameterized ASF s̃q
R( f (x), λ) inherits the similar limitation: one has to keep always

in mind that the reference point should not be strictly dominated by some feasible
point. However, if this is the case, the point which strictly dominates the reference
point could be easily detected, and the problem can be overcame as pointed out in
Ruiz et al. (2008).

Problem (7) is non-differentiable due to the presence of the min-max term. It can be
solved, for example, with efficient bundle methods (see, e.g. Mäkelä 2002). However,
if (7) is nonconvex, only local optima (with no guarantee of being global optima in
general) can be produced with these methods. Instead, (7) can be turned into an inte-
ger differentiable form, which is suitable for any mixed-integer programming (MIP)
solver (Westerlund and Pörn 2002), as follows:

min α

subject to

α ≥ ∑

i∈I q
s

λi (1 − zs
i )( fi (x) − f R

i ) s = 1, . . . ,
(m

q

)

f R
i − fi (x) ≤ zs

i M i ∈ I q , s = 1, . . . ,
(m

q

)

f R
i − fi (x) ≥ (zs

i − 1)M i ∈ I q , s = 1, . . . ,
(m

q

)

x ∈ X, zs
i ∈ {0, 1}, i ∈ Nm, s = 1, . . . ,

(m
q

)
. (8)

Here, s is used to enumerate all q-element subsets I q
s of an m-element set Nm ; for

any i ∈ I q
s , zs

i is a binary variable; M is a sufficiently large number to ensure that
zs

i = 1 iff f R
i − fi (x) > 0, and zs

i = 0 iff f R
i − fi (x) ≤ 0. It is easy to see that the

optimal solution of problem (8) is the feasible solution that optimizes the parameter-
ized ASF (6). However, the problem of finding a global optimum cannot be resolved
easily in a general case.
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This mixed-integer programming model contains 4 · (m
q

)
constraints, so one may

expect the increase of computational time while
(m

q

)
grows up. A large number of

constraints can be efficiently treated by a MIP solver if the constraint propagation
mechanisms (see, e.g. Rossi et al. 2006) are incorporated. Instead, solvers not assum-
ing differentiability can be used.

Despite increasing computational efforts, the parameterized ASFs present a new
approach (based on parameterization) how to generate systematically different ASFs
which may potentially produce different solutions with different q-values. Further
understanding of how different q-values produce different shapes of R-level sets may
shed extra light on the practical application of the parameterized ASFs. This could be
a challenging and promising topic for further research. In the next section, we lightly
treat this and other questions for the simplest case with three objective functions.

5 Case of three objectives

Because the formulation of the proposed ASF may seem rather complicated and to
illustrate some ideas mentioned earlier, in this section we consider a special case of
three objective functions, that is, m = 3 and write explicitly what the ASFs look like
in this situation. Then, (6) has the following form:

s̃q
R( f (x), λ) = max

I q⊆{1,2,3}: |I q |=q

{
∑

i∈I q

max [λi ( fi (x) − f R
i ), 0]

}
, (9)

where q = 1, 2, 3 and λ = (λ1, λ2, λ3), λi > 0, i ∈ N3.
In other words, we have
for q = 1

s̃1
R( f (x), λ) = max

{
max [λ1( f1(x) − f R

1 ), 0], max [λ2( f2(x) − f R
2 ), 0],

max [λ3( f3(x) − f R
3 ), 0]

}

= max
{
λ1 max [ f1(x) − f R

1 , 0], λ2 max [ f2(x) − f R
2 , 0],

λ3 max [ f3(x) − f R
3 , 0]

}
;

for q = 2

s̃2
R( f (x), λ) = max

{
max [λ1( f1(x) − f R

1 ), 0] + max [λ2( f2(x) − f R
2 ), 0],

max [λ1( f1(x) − f R
1 ), 0] + max [λ3( f3(x) − f R

3 ), 0],
max [λ2( f2(x) − f R

2 ), 0] + max [λ3( f3(x) − f R
3 ), 0]}

= max
{
λ1 max [ f1(x) − f R

1 , 0] + λ2 max [ f2(x) − f R
2 , 0],

λ1 max [ f1(x) − f R
1 , 0] + λ3 max [ f3(x) − f R

3 , 0],
λ2 max [ f2(x) − f R

2 , 0] + λ3 max [ f3(x) − f R
3 , 0]};
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Fig. 1 1-level set for
s̃1

R( f (x), λ)

for q = 3

s̃3
R( f (x), λ) = max [λ1( f1(x) − f R

1 ), 0]
+ max [λ2( f2(x) − f R

2 ), 0] + max [λ3( f3(x) − f R
3 ), 0]

= λ1 max [ f1(x) − f R
1 , 0] + λ2 max [ f2(x) − f R

2 , 0]
+λ3 max [ f3(x) − f R

3 , 0].

For calculating examples which appear later in this section we used MAPLE 11 soft-
ware with the built-in solver which uses sequential quadratic programming methods
(see, e.g. Fletcher 1980).

Now we give a graphical interpretation of level sets in our 3-dimensional space. To
simplify illustration, we restrict the view inside the image space within a rectangular
{ f = ( f1, f2, f3)

T : −2 ≤ fi ≤ 1, i ∈ N3}. Let us assume that the reference point is
the origin, i.e., f R = (0, 0, 0)T . Assume also that all objective functions are identity
mappings, i.e., we can operate in objective space only. We are interested in depicting a
1-level set, i.e., a set of points ( f1, f2, f3)

T for which the distance from the reference
point (coordinate origin) is equal to 1 with respect to the corresponding ASF. The
case when all weighting coefficients are equal to one, i.e., λ1 = λ2 = λ3 = 1, is
considered. Figures 1, 2 and 3 shows the 1-sets for s̃1

R( f, λ), s̃2
R( f, λ) and s̃3

R( f, λ),
respectively. While the 1-level set for s̃1

R( f, λ) looks very simple and similar to what
we always have in the case of the Chebyshev type ASF, the constructions of 1-level
sets for s̃2

R( f, λ) and s̃3
R( f, λ) are more sophisticated.

Let us look at the constructions in more detail. Those faces which are parallel to the
faces f1 f2, f1 f3, or f2 f3 are formed if one of the three maxima equals to one, while
the other two are less than one or equal to zero. Those faces which are sloped and
parallel to the coordinate rays are formed if a sum of two of the three maxima equals
to one, while the third one is less than one or equal to zero. The difference between
1-level sets for s̃2

R( f, λ) and s̃3
R( f, λ) lies in constructing of faces that correspond to

the case where all three maxima are positive and their sum has to be equal to one. For
s̃3

R( f, λ), this forms a flat triangle face (see Fig. 4), whereas for s̃2
R( f, λ) a flat triangle
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Fig. 2 1-level set for
s̃2

R( f (x), λ)

Fig. 3 1-level set for
s̃3

R( f (x), λ)

Fig. 4 Zooming 1-level set for
s̃3

R( f (x), λ)
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Fig. 5 Zooming 1-level set for
s̃2

R( f (x), λ)

transforms into a triangle pyramid with a top vertex
( 1

2 , 1
2 , 1

2

)
(see, Fig. 5). This top

vertex corresponds to the case when all three maxima participating in s̃2
R( f, λ) are

equal to 1
2 , and hence adding any two of them will give us distance one.

The natural question which may arise is the following: why do we need different
ASFs? Is it not enough to have one ASF only? We can answer this question by estab-
lishing some parallels between multiobjective optimization and art. For example, in
art drawing, a painter may need a large variety of brushes (different in size, form etc)
to deal with the most delicate details of her/his painting, e.g., to draw one small point
without touching and disturbing neighboring points. The situation looks similar to mul-
tiobjective optimization where, if a DM wants to detect one particular point (maybe
with some pre-specified properties) on the Pareto front, she/he has to vary the reference
point or, alternatively, may need a different shape of R-level sets of the ASF to perform
this task correctly. Certainly, the question which shape of R-level sets of the ASF could
be the best fit is generally quite complicated, so the answer may require additional
computational efforts or extra knowledge about the structure of the Pareto frontier.

One more issue which has to be emphasized is that (as it can be seen from Fig. 4), the
linear (flat triangle) part of the R-level becomes larger when R is increasing, i.e., when
the reference point is moving far from the place of potential contact of R-level with
the image of the feasible set. Accordingly, the penetrating of the additive ASF towards
the location of non-supported solutions may be complicated, while the parameterized
ASF with q �= m may show better performance in this case.

One more reason why using various ASFs may be potentially advantageous is
the following. The efficiency of some interactive methods (see, e.g. Miettinen et al.
2008; Miettinen 1999 for more details about interactive methods in multiobjective
optimization) can be increased while different variants of ASFs are used producing
different but still ‘good’ solutions. For example, the idea of formulating several ASFs,
all using the same preference information from the DM, is efficiently used in the syn-
chronous NIMBUS approach presented in Miettinen and Mäkelä (2006). Under this
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approach, the method developers do not make the choice between different ASFs but
calculate the results of different ASFs and leave the final decision to the DM. The idea
of using the parameterized ASF could be implemented as follows: once s̃1

R( f (x), λ)

and s̃m
R ( f (x), λ) produced solutions, which are significantly different, the middle point

with respect to q parameterized ASF s̃
� m+1

2 �
R ( f (x), λ) is used to calculate one more

solution to be compared with the two already produced. Such dichotomy is continued
until the solutions produced become insignificantly different or just the same. Thus,
a larger variety of significantly different solutions can be produced under the same
preference information.

The following example shows both graphically and numerically that the solutions
obtained by means of s̃q

R( f (x), λ) are generally different for all q ∈ Nm : Let us
minimize

f (x) = ( f1(x), f2(x), f3(x))

= ((x1 + 1)2 + (x2 − 5)2, (x1 − 3)2 + (x2 + 3)2, (x1 − 4)2 + (x2 + 2)2)

subject to

x1 + 2x2 ≤ 10,

1 ≤ x1 ≤ 10, 1 ≤ x2 ≤ 4.

The ideal objective vector is f I = (5, 16, 9), which is also assumed to be
selected as a reference point f R . We define weighting coefficients in a standard
way to provide objective normalization: λ1 = 1

f I
1
, λ2 = 1

f I
2
, λ3 = 1

f I
3
, i.e.,

λ = (0.20000, 0.06250, 0.11111).

Then the optimal solutions of (7) for different values of q ∈ N3 are the following:

x ′ = arg min
x∈X

s̃1
R( f (x), λ) = (1.13525, 2.01064), s̃1

R( f (x ′), λ) = 1.69911,

f (x ′) = (13.49556, 28.58381, 24.29202);
x ′′ = arg min

x∈X
s̃2

R( f (x), λ) = (1.00000, 2.44653), s̃2
R( f (x ′′), λ) = 3.30089,

f (x ′′) = (10.52021, 33.66468, 28.77162);
x ′′′ = arg min

x∈X
s̃1

R( f (x), λ) = (1.57993, 1.15613), s̃3
R( f (x ′′′), λ) = 4.11524,

f (x ′′′) = (16.34582, 24.37556, 20.90344).

These three optimal solutions together with the ideal objective vector (the black point
outside the feasible region) are depicted in Fig. 6. Note that the solution f (x ′′) is
significantly different from f (x ′′′) and f (x ′), and it cannot be obtained easily from
the other two, e.g., by a linear combination.

It is clear that different ASFs may have different computational costs (see e.g.
Miettinen et al. 2006). It is also obvious that using extra ASFs within interactive
methods may lead to the increase of computational efforts at each iteration of the
interactive process. However, if available, parallel computing can be exploited, since

123



86 Y. Nikulin et al.

Fig. 6 Ideal vector and three
different solutions produced by
s̃1

R( f (x), λ), s̃2
R( f (x), λ),

s̃3
R( f (x), λ)

different ASFs are independent of each others. At the same time, using ASFs simulta-
neously may reduce the number of iterations needed for the iterative solution process
to converge, i.e., to find a solution which is most preferred by the DM. Reducing
the number of iterations may decrease the total time of the interactive process, since
exchanging information with the DM is sometimes much more time consuming than
the optimization itself.

6 Conclusion

In this paper we have proposed an approach how to parameterize achievement scalar-
izing functions based on the introduction of a discrete integer parameter which varies
from 1 to m, where m represents the number of objectives. We have proven the ability
of the parameterized ASF to produce weakly Pareto optimal solutions assuming the
reference point is selected to be non-dominated by any feasible solution.

We have illustrated that the solutions obtained by parameterized ASFs may be sig-
nificantly different. This fact could be potentially exploited in interactive processes to
speed up their convergence in terms of the number of iterations, and provide the DM
with more flexible tools to detect desirable Pareto optimal points. This gives us some
confidence that the parameterized ASFs may find their applications in synchronous
approaches, i.e., those using several different ASFs at once in a systematic way. As
prospective research, we would like to consider applicability of parameterized ASFs to
the well-known interactive methods, e.g. the NIMBUS method (Miettinen and Mäkelä
2006).
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