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A New Adaptive Backpropagation Algorithm Based
on Lyapunov Stability Theory for Neural Networks

Zhihong Man, Hong Ren Wu, Sophie Liu, and Xinghuo Yu, Senior Member, IEEE

Abstract—A new adaptive backpropagation (BP) algorithm
based on Lyapunov stability theory for neural networks is
developed in this paper. It is shown that the candidate of a
Lyapunov function V (k) of the tracking error between the
output of a neural network and the desired reference signal is
chosen first, and the weights of the neural network are then
updated, from the output layer to the input layer, in the sense
that �V (k) = V (k) � V (k � 1) < 0. The output tracking error
can then asymptotically converge to zero according to Lyapunov
stability theory. Unlike gradient-based BP training algorithms,
the new Lyapunov adaptive BP algorithm in this paper is not used
for searching the global minimum point along the cost-function
surface in the weight space, but it is aimed at constructing an
energy surface with a single global minimum point through the
adaptive adjustment of the weights as the time goes to infinity.
Although a neural network may have bounded input disturbances,
the effects of the disturbances can be eliminated, and asymptotic
error convergence can be obtained. The new Lyapunov adaptive
BP algorithm is then applied to the design of an adaptive filter in
the simulation example to show the fast error convergence and
strong robustness with respect to large bounded input distur-
bances.

Index Terms—Adaptive filtering, backpropagation (BP), conver-
gence, feedforward neural networks, Lyapunov stability.

I. INTRODUCTION

T
HE applications of neural networks have been receiving

a great deal of attentions in many engineering disciplines.

By properly choosing neural network structures and training the

weights, engineers and researchers may use neural networks for

digital signal processing, system modeling, automatic control,

and others [1]–[9].

The conventional trainings of neural networks are mainly

based on optimization theory. For example, a cost function is

first defined, which may be the sum of squared errors or the

mean squared error between the output of a neural network

and the desired reference signal. The cost function is then

minimized in the weight space, and a set of optimal weights

may be obtained. The neural network with the optimal weights
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can then be used to perform some special tasks. In order for

searching the optimal weights for neural networks, a number of

algorithms have been developed. The gradient-based backprop-

agation (BP) training algorithms are probably the most popular

ones [2].

It is well known that the gradient-based BP training al-

gorithms may have a slow convergence in practice, and the

searching for the global minimum point of a cost function may

be trapped at local minima during gradient descent. Also, if

a neural network has large bounded input disturbances, the

global minimum point may not be found. Therefore, the fast

error convergence and strong robustness of the neural network

with the gradient-based BP algorithms may not be guaranteed.

In order to avoid the aforementioned problems, some sliding

mode control-based adaptive training algorithms have been de-

veloped recently in [10]–[15]. These adaptive learning schemes

have been used to train Adalines and multilayer neural networks

with good convergence and robustness. In this paper, we pro-

pose a new adaptive BP algorithm based on Lyapunov stability

theory [16]. The basic idea of the new Lyapunov adaptive BP

algorithm is as follows: The candidate of a Lyapunov function

(an energy function) of the tracking error is chosen first.

The weights of the neural network are then adaptively updated,

from the output layer to the input layer, to make

. According to Lyapunov stability theory,

the candidate of the Lyapunov function is a true Lyapunov func-

tion of the error dynamics of the considered neural network, and

the tracking error can then asymptotically converge to zero as

time goes to infinity.

Unlike the gradient-based BP training algorithms, the new

Lyapunov adaptive BP algorithm in this paper is not used for

searching the global minimum point along the cost-function sur-

face in the weight space, but it is aimed at constructing an en-

ergy surface with a single global minimum point through the

adaptive adjustment of the weights as time goes to infinity. The

tracking error can then asymptotically converge to zero. Another

important feature of the new Lyapunov adaptive BP algorithm is

that, although neural networks may have bounded input distur-

bances, the effects of the disturbances can be eliminated through

adaptively updating the weights according to Lyapunov stability

theory.

The basic idea of the optimization using Lyapunov stability

theory has been recently applied to the design of the finite-im-

pulse-response (FIR) adaptive filters, the radial basis function-

based adaptive filters, and adaptive control in [17]–[23]. How-

ever, in this paper, we will further explore how Lyapunov sta-

bility theory can be used to develop a new adaptive BP scheme

for neural networks. The great potential of the new Lyapunov
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Fig. 1. Feedforward neural network with three layers.

adaptive BP algorithm will be seen from both the detailed theo-

retical analysis and the excellent simulation results in this paper.

The paper is organized as follows. In Section II, the new Lya-

punov adaptive BP algorithm is formulated. In Section III, the

convergence analyses of the Lyapunov adaptive BP algorithm

with the modified weight update-laws to handle singularities are

discussed. In Section IV, a simulation example for a neural net-

work-based adaptive filter with the new Lyapunov adaptive BP

algorithm is implemented to demonstrate the fast error conver-

gence and strong robustness with respect to large bounded input

disturbances.

II. PROBLEM FORMULATION

The architecture of a standard feedforward neural net-

work with three layers is presented in Fig. 1, where

the output layer has a single linear node, the hidden

layer has nonlinear nodes, and the input data vector is

. The output of the th nonlinear node in

the hidden layer is

(2-1)

where the nonlinear function is of the form

for (2-2)

and is a positive constant.

The output of the neural network can then be expressed as

(2-3)

The idea of the new adaptive BP algorithm based on Lya-

punov stability theory can be described as follows.

1) Define the tracking error

where is the desired reference signal for , the

output of the neural network, to follow, and the point

is assumed to be the equilibrium point of the

system error dynamics.

2) Choose a candidate of Lyapunov function

, where , and

for .

3) Update the weights of the neural network at time instant ,

from the output layer to the input layer, to make

.

4) Let , and then go to step 2)

According to Lyapunov stability theory [16], if

and , is a true Lyapunov function of the error

dynamics of the neural network, and the output tracking error

can then asymptotically converge to zero as time goes to

infinity.

In Theorem 2.1 and the Lemma 2.1, we discuss how the

weights of the three layered neural network in Fig. 1 are

updated, and how the error dynamics of the neural network

behaves when using the new Lyapunov adaptive BP algorithm.

Theorem 2.1: Consider the feedforward neural network in

Fig. 1. If the weights and , from the output

layer to the hidden layer, are updated in sequence as follow:

(2-4)

and

(2-5)

where

and

(2-6)

the output tracking error can then asymptotically converge

to zero.

Proof: Choose the following candidate of Lyapunov func-

tion:

(2-7)

where is a positive constant and .

The difference between and is then given by

(2-8)
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Using (2-4) and (2-5) in (2-8), we have

(2-9)

Therefore, according to Lyapunov stability theory, the tracking

error asymptotically converges to zero.

Remark 2.1: Like the conventional BP algorithms [1]–[3],

the weights of the output layer are first updated

using (2-4), and the values of are fixed. The weights

are then updated using (2-5). It is seen that the

update-law of in (2-5) plays an important role to

guarantee .

Lemma 2.1: Consider the feedforward neural network in

Fig. 1 with the weight update-laws in (2-4) and (2-5). The error

convergence is then specified as follows:

for (2-10)

Proof:

(2-11)

It is noted that

...

(2-12)

Remark 2.2: It is easy to see from Lemma 2.1 that the error

convergence can be specified after choosing the value of pa-

rameter in the Lyapunov function in (2-7), and update-laws

in (2-4) and (2-5). Parameter controls the error convergence

rate, and the value of must be chosen to be greater than 1 to

guarantee the error convergence.

Remark 2-3: In many engineering areas, the input signal

to a system is of the form

(2-13)

where is the desired reference signal and is a bounded

disturbance. When we use the gradient-based BP algorithms to

compute the weights of a neural network or a FIR adaptive filter,

the optimal weights are closely related to the stochastic prop-

erties of the input signal . However, in the new Lyapunov

adaptive BP algorithm in this paper, we do not need to know the

stochastic properties of . What we need to do is to develop

the parameter update-laws using the measurements of and

the error to update the weights of a neural network in the

sense that , which guarantees that the tracking error

asymptotically converges to zero. Therefore, the Lyapunov

adaptive BP algorithm in this paper is independent of the sto-

chastic properties of the input signal . This feature is very

important and useful for practical application.

Remark 2-4: It is also noted that the parameter update-laws

in (2-4) and (2-5) can guarantee that the Lyapunov function

has a single global minimum point as the time scale goes

to infinity. However, the gradient-based algorithms with the

associated parameter update-laws may not have such a good

property. This is because a gradient-based adaptive algorithm

is to search for the global minimum point of a cost-function

surface, and such a searching may not find the global minimum

point when the cost function has local minima. Therefore, it is

believed that the new Lyapunov adaptive BP algorithm in this

paper has provided a new way to further improve dynamic

properties of neural networks.

Remark 2-5: The bounded property of the adjustable weights

and using the update-laws in (2-4) and (2-5)

are briefly described as follows. When the time scale is large

enough, in (2-4) can be approximated as follows:

(2-14)

can then be expressed as

(2-15)

Using (2-15) in (2-14), we have

(2-16)
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If the initial value of is , the solution

of (2-16) is of the form

(2-17)

Therefore, for bounded nonzero and

bounded , the norm of is upper

bounded.

In addition, for large value of the time scale

(2-18)

It is noted that is a constant determined by

the initial values of and . Therefore, for nonzero

, whose norm is lower and upper bounded, the norm of

is upper bounded.

III. LAPUNOV ADAPTIVE BP ALGORITHM WITH MODIFIED

UPDATE-LAWS TO HANDLE SINGULARITIES

Theorem 2.1 and Lemma 2.1 have described the fundamen-

tals of the new Lyapunov adaptive BP algorithm for neural net-

work in Fig. 1, with weight update-laws in (2-4) and (2-5),

where all , , and are assumed to be

nonzero. However, in practice, some may be near zero,

and the corresponding may have a very large value.

In order to avoid such a situation in practice, the update-law of

in (2-4), when is near zero for , may

be modified as follows:

for

for

(3-1)

where is a small positive number.

Also, at time instant : 1) some may be near or equal

to zero; 2) some may be near or equal to zero; and 3)

both some and some may be near or equal to

zero and so on. Therefore, it is necessary to properly modify the

update-law of in (2-5) to avoid the singularities. In the

following, we first modify the parameter update-law in (2-5) to

handle the singularity in the case 3), and then explore the cor-

responding error convergence region in Theorem 3.1. The mod-

ifications of parameter update-law of and error con-

vergence for cases 1) and 2) are briefly summarized in Lemmas

3.1 and 3.2.

First, we assume that both and may be near

or equal to zero at time instant , for , and ,

respectively. We then modify the update-law for in

(2-5) as follows:

for and

for and

for and

for and

(3-2)

where and are small positive numbers.

Theorem 3.1: Consider the neural network in Fig. 1. If

and are updated using (3-1) and (3-2),

respectively, the tracking error will then converge to the

ball, centered at the system origin, with radius

(3-3)

where

(3-4)

with and .

Proof: Choosing the candidate of Lyapunov function

, we can then express as follows:

(3-5)

If, at time instant , and are near or equal to

zero, for and , respectively,

may be written as follows:

(3-6)

(3-7)

Authorized licensed use limited to: RMIT University. Downloaded on November 23, 2008 at 20:51 from IEEE Xplore.  Restrictions apply.



1584 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 17, NO. 6, NOVEMBER 2006

Therefore, using the update-law (3-2) in (3-6) and (3-7), we can

write (3-5) as shown in (3-8) at the bottom of the page.

According to the geometry of the nonlinear function

(see Remark 3.1),

in (3-8) can be expressed as

(3-9)

with .

Also, in (3-9) can be ap-

proximated by (see Remark 3.1)

(3-10)

Therefore, (3-9) becomes

for (3-11)

Similarly, in (3-8) can be written as

(3-12)

with .

(3-8)
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Then, using (3-11) and (3-12) in (3-8), we have (3-13) as

shown at the bottom of the page.

Considering the definition in (3-4), we can write (3-13)

as

(3-14)

Also, considering the facts that when is

large enough, and when

is near or equal to zero, (3-14) can be approximated

as follows:

(3-15)

Two roots of are then obtained as shown in (3-16)

at the bottom of the page. When the value of is large enough,

(3-16) can be approximated by

(3-17)

Therefore, the error will converge to the ball, centered at the

system origin, with the radius in (3-3).

Remark 3.1: When we discuss the error convergence region

in Theorem 3.1, the following properties of the nonlinear func-

tion in (2-2) have been used:

•

with (3-18)

• if (3-19)

Remark 3.2: Using the similar methods, we can easily modify

the update-law in (2-5) and discuss the error convergence for

singularity cases: 1) and 2). The results are briefly summarized

in the following lemmas.

(3-13)

(3-16)
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Fig. 2. Three-layered feedforward neural network.

Lemma 3.1: Consider the neural network in Fig. 1. If ,

for , is near or equal to zero at time instant , the up-

date-law of in (2-5) can be modified as follows:

for

for

(3-20)

and the tracking error can then converge to the ball, centered at

the system origin, with radius

(3-21)

Lemma 3.2: Consider the neural network in Fig. 1. If

, for , is near or equal to zero at time instant ,

the update-law of in (2-5) can be modified as follows:

(3-22)

and the tracking error can then converge to the ball, centered at

the system origin, with radius

(3-23)

Remark 3.3: In fact, it is not convenient to use the modi-

fied parameter update-laws discussed in the above to handle sin-

gularities. For practical application, we may use the following

modified update-laws to compute and to

handle all singularities:

(3-24)

(3-25)

where , , and are small positive numbers.

It is easy to see that (3-24) is the approximation of (3-1) when

is near zero, and (3-25) is the approximation of (3-2),

(3-20), and (3-22) when the system got singularities in cases

1)–3). It will also be seen from the following simulation section

that, if , , and in (3-24) and (3-25) are small enough,

the good tracking performance and robustness with respect to

bounded input disturbances can be obtained. In addition, the au-

thors have estimated in the simulations that the computational

complexity of the proposed new Lyapunov stability-based BP

algorithm and the one of the conventional BP algorithms in

[1]–[9] are at the same level, and the new algorithm can be easily

implemented for onlinear learning.

Remark 3.4: It is noted that the analysis and design of the

proposed new adaptive BP algorithm in Sections II and III are

carried out for the neural networks with log-sigmoid nonlinear

activation function. However, the algorithm can also be imple-

mented for neural networks with tan-sigmoid nonlinear func-

tion.

IV. SIMULATION EXAMPLE

In this section, we consider a three-layered neural adaptive

filter, as seen in Fig. 2, for the purpose of evaluating the pro-

posed new Lyapunov adaptive BP algorithm.

The desired reference signal and the input signal

are given in Fig. 3 with . The

weights and are initialized randomly with

and . The

value of parameter is chosen as 1.2. Although, theoretically,

it is all right for to be greater than one in order to guarantee

Authorized licensed use limited to: RMIT University. Downloaded on November 23, 2008 at 20:51 from IEEE Xplore.  Restrictions apply.
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Fig. 3. Desired reference signal d(k) and the input signal x(k).

Fig. 4. (a) Output tracking of the neural adaptive filter and (b) tracking error of the neural adaptive filter using Lyapunov BP algorithm.

the asymptotic error convergence, if is closed to 1, the error

convergence is very slow. If is much greater than 1, the error

convergence will be very fast. This will require that the designed

adaptive filter should have a wide frequency band or a very fast

response.

Fig. 4 shows the output of the neural adaptive filter and the

tracking error using the new Lyapunov BP training algorithm,

where the weights are updated according to the fundamental

update-laws in (2-4) and (2-5). It is seen that the effects of the

large bounded input noise have been eliminated, and the output

of the neural adaptive filter can track the desired reference signal

very well.

Fig. 5 shows the output and the tracking error with the

weights updated using the modified update-laws in (3-24) and

(3-25) with , , and . It is seen

that the tracking performance is also very good. Fig. 6 shows

the output and the tracking error with the weights updated

using the modified update-laws in (3-24) and (3-25) with

, , and . Because the values of

, , and are relatively large, the steady-state tracking

error exists. Therefore, the values of , , and must

be chosen properly in practice.

For further comparisons, Fig. 7 shows the output of the neural

adaptive filter and the tracking error using the conventional gra-

dient descent BP training algorithm with step size .

Obviously, the robustness property with respect to the bounded

input noise is no good, and the tracking performance between

the filter output and the desired reference signal is very poor.
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Fig. 5. (a) Output tracking of the neural adaptive filter and (b) tracking error of the neural adaptive filter using Lyapunov BP algorithm with the modified update-
laws in (3-24) and (3-25) (� = 0:01, � = 0:01, and � = 0:01).

Fig. 6. (a) Output tracking of the neural adaptive filter and (b) tracking error of the neural adaptive filter using Lyapunov BP algorithm with the modified update-
laws in (3-24) and (3-25) (� = 0:03, � = 0:03, and � = 0:03).
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Fig. 7. (a) Output tracking of the neural adaptive filter and (b) tracking error of the neural adaptive filter using the gradient descent BP algorithm.

Fig. 8. (a) Output tracking of a FIR adaptive filter and (b) tracking error of a FIR adaptive filter using the normalized LMS algorithm.

Also, Fig. 8 shows the simulation results of a FIR adaptive

filter trained using the normal-

ized least mean squares (LMS) searching scheme. Fig. 9 shows

the simulations of the same FIR adaptive filter trained using

Authorized licensed use limited to: RMIT University. Downloaded on November 23, 2008 at 20:51 from IEEE Xplore.  Restrictions apply.
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Fig. 9. (a) Output tracking of a FIR adaptive filter and (b) tracking error of a FIR adaptive filter using the RLS algorithm.

the recursive least squares (RLS) scheme. It is clearly seen that

the tracking performance and robustness with respect to the

bounded noise are very poor.

Therefore, the neural adaptive filter with the new Lyapunov

BP algorithm has demonstrated a very good performance with

the fast error convergence the strong robustness property with

respect to the large bounded input disturbances.

V. CONCLUSION

In this paper, we have developed a new adaptive BP algorithm

using Lyapunov stability theory for three-layered feedforward

neural networks. The error convergences have been explored

in detail. The new Lyapunov adaptive BP algorithm has been

applied to the design of a neural adaptive filter in the simulation

section. The excellent robustness property with respect to large

bounded input disturbances and fast error convergence have been

shown in the simulation example. The proposed new adaptive BP

algorithm can be easily expended to general multilayered neural

networks. The research on the optimization using Lyapunov

stability theory in this paper is just at its initial stage, and

many further work in this area are under authors’ investigation.
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