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Abstract
This paper proposes, for the first time, a new radiation pattern synthesis for fractal antenna 
array that combines the unique multi-band characteristics of fractal arrays with the adap-
tive beamforming requirements in wireless environment with high-jamming power. In this 
work, a new adaptive beamforming method based on discrete cbKalman filter is proposed 
for linear Cantor fractal array with high performance and low computational require-
ments. The proposed Kalman filter-based beamformer is compared with the Least Mean 
Squares (LMS) and the Recursive Least Squares (RLS) techniques under various param-
eter regimes, and the results reveal the superior performance of the proposed approach in 
terms of beamforming stability, Half-Power Beam Width (HPBW), maximum Side-Lobe 
Level (SLL), null depth at the direction of interference signals, and convergence rate for 
different Signal to Interference (SIR) values. Also, the results demonstrate that the sug-
gested approach not only achieves perfect adaptation of the radiation pattern synthesis at 
high jamming power, but also keep the same SLL at different operating frequencies. This 
shows the usefulness of the proposed approach in multi-band smart antenna technology for 
mobile communications and other wireless systems.

Keywords Antenna Array · Adaptive Beamforming · Kalman Filter · Fractal Array · 
Jamming Power

1 Introduction

Multi-band and small-size antenna arrays become an active field of research in modern 
wireless communications [1, 2]. Applications of multi-band antenna arrays include, but are 
not limited to, cellular mobile communications, satellite communications, Synthetic Aper-
ture Radar (SAR), and automotive applications [3, 4]. The multi-band operation can be 
obtained by self-scalable fractal array, where an iterative algorithm is employed to replicate 
an initial geometry, called generator, several times over a variety of scale sizes to grow into 
the resultant fractal geometry [5, 6]. This approach facilitates the design of various fractal 
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array configurations with different free aspects. Unlike ordinary antenna arrays which are 
band-limited, fractal arrays can work at distinct operating frequencies based on the fractal 
geometry and how the elements are produced at distinct expansion factors [5].

Fractal antenna arrays are like ordinary ones in the sense that they may be classified 
into three categories: linear, planar, and conformal arrays. One of the commonly used 
techniques for generating linear and planar fractal arrays is the concentric circular ring 
subarray generator [7, 8]. There are several types of fractal array designs based on this 
subarray generator, including linear Cantor, Sierpinski carpet, hexagonal, and pentago-
nal arrays [9–13]. Several recent designs of fractal antenna arrays have been developed 
for various wireless communication systems [14, 15]. In [16], a fractal array design of 
18 transmit and 24 receive antennas was developed for a Multiple-Input Multiple-Output 
(MIMO) radar system. In this design, antenna array topologies based on space filling frac-
tals are employed to approximate a circular shaped antenna array on a hexagonal grid and 
to reduce the Side-Lobe Level (SLL). In [17], a new circular fractal antenna array design 
of eight elements was developed for multi-band operation in various wireless standards, 
including Wi-Max (3.5–3.8  GHz), C-band applications (3.8–4.4 and 4.8–5.4  GHz), and 
WLAN (5.15–5.85 GHz). The size of this fractal array design is lower than ordinary circu-
lar antenna array by 6%, which reveals the compact size of fractal array designs.

Array pattern synthesis has drawn great attention in wireless communications during the 
past few decades [18–20]. It requires steering the peak of the radiation main lobe towards 
the Direction of Arrival (DOA) of a desired signal, while forming nulls in the radiation 
pattern towards the DOA of every undesired signal, and thus, providing a larger signal to 
interference plus noise ratio (SINR). Adaptive beamforming techniques should be used to 
compute the optimum excitation weights for antenna elements that achieve the required 
radiation pattern characteristics [21]. Several studies investigated the adaptive beamform-
ing capability for different ordinary antenna arrays [22, 23]. To date, there are many opti-
mization methods that were employed in adaptive beamforming for ordinary antenna arrays 
[24–27]. These optimization techniques are used to optimize the steering of the radiation 
main lobe, as well as the nulls, and consequently enhance the SINR. The performance of 
these techniques in finding the optimum combination weights is still insufficient due the 
problem of premature convergence [24].

Traditional adaptive beamforming techniques such as the Least Mean Squares (LMS) 
and the Recursive Least Squares (RLS) were investigated in several studies for ordi-
nary antenna arrays [28]. Recently, several enhanced signal processing techniques based 
on LMS algorithm have been proposed for adaptive beamforming [29–31]. In [32], an 
L0-norm constrained normalized LMS (L0-CNLMS) adaptive beamforming algorithm was 
proposed for controllable sparse ordinary antenna arrays. Note that LMS-based techniques 
provide better beamforming performance than RLS-based algorithms. However, RLS 
method is not easily affected by changes in the eigenvalue prevalence of the correlation 
matrix of the input vector, and it provides faster convergence rate than LMS method [33, 
34]. Recently, new techniques based on combining both LMS and RLS were investigated, 
and the results showed better performance and convergence rate than the standalone LMS 
or RLS [35, 36].

The estimation capabilities of Kalman filter can be exploited in blind adaptive beam-
forming with high rate of convergence and low misadjustment [37]. In [38] and [39], 
the extended Kalman filter was used for the adaptive beamforming of narrowband linear 
antenna array. This approach was proven to be robust against the possible mismatch that 
may occur between the required signal steering vector and the real steering vector. In 
[40], the unscented Kalman filter was investigated for blind beamforming of ordinary 
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antenna arrays without using any constrained optimization techniques. This approach 
achieved superior performance over the RLS in terms of the convergence speed and 
output SINR.

All the previous studies suggested efficient and robust adaptive beamforming techniques 
for ordinary antenna arrays. On contrast, very few studies have investigated fractal array 
designs with adaptive beamforming capability [41–43]. In [41], the LMS algorithm was 
employed for the adaptive beamforming design of linear Cantor and Sierpinski carpet frac-
tal antenna array. In [42], new designs of adaptive thinned hexagonal and pentagonal frac-
tal arrays were proposed. In this design, the Ant Colony Optimization (ACO) method was 
employed for reducing the number of elements with SLL reduction, while the LMS algo-
rithm was used for adaptive beamforming. In [43], a new rapid beamforming algorithm for 
fractal antenna array was investigated using the assignment of usage time and location tag 
algorithm.

The aim of this work is to propose a new adaptive beamforming method based on dis-
crete Kalman filter for fractal antenna arrays in wireless environment with strong-jamming 
power. The remaining parts of this paper are organized as follows. In Sect. 2, the design 
of linear Cantor fractal array is introduced, then the theory of LMS, RLS, and discrete 
Kalman filter is presented. Section  3 discusses the simulation results of the suggested 
Kalman-based adaptive beamforming technique for linear Cantor fractal array, followed by 
comparing the beamforming results of Kalman filter with LMS and RLS techniques for 
different Signal to Interference (SIR) ratio in terms of beamforming stability, Half-Power 
Beam Width (HPBW), maximum SLL, nulls depth, and convergence rate. Afterwards, the 
performance of the proposed fractal array design is compared with the corresponding ordi-
nary linear antenna array. The conclusions are provided in Sect. 4.

2  Methodology

2.1  Cantor Fractal Antenna Arrays

To obtain a final structure of fractal antenna array, a generating subarray, small array at a 
scale factor p = 1, is applied repeatedly. When repeatedly applied, it forms a larger array at 
a larger scaling factor (i.e., p > 1). One of the commonly used techniques for fractal array 
design is the linear Cantor array. It can be constructed through the repetitive application 
of a three-element generating sub-array [12]. This generating subarray comprises of three 
uniformly spaced elements, with turning off the central element, i.e., 101. At each stage 
of growth, 1 is replaced by 101 and 0 by 000 to form the array recursively. This makes the 
array pattern 101 000 101 at the second stage of growth (p = 2) and 101,000,101,000,000,0
00,101,000,101 at p = 3 and so on (see Fig. 1).

The array factor of a subarray made of three elements with the representation 101 is

where � = kd cos (�) + � , �  is the angle between the propagation direction and the array 
axis, d and � are the spacing and the progressive phase-shift of the generator array, respec-
tively, k = 2�

�
  is the wavenumber, and � is the wavelength.

Under the condition of an expansion factor equals three ( � = 3 ), the equation represent-
ing the array factor will be:

(1)GA(�) = 2 cos(�)
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where p is the stage of growth.

2.2  Adaptive Beamforming

A novel adaptive beamforming approach based on discrete Kalman filter is proposed for 
pattern synthesis of fractal antenna array. This approach is employed by estimating the best 
weights of the array elements that decrease the error between the array output and the desired 
signal. The proposed Kalman filter-based beamformer is compared with the traditional LMS 
and RLS adaptive beamforming techniques [28, 44–46]. The algorithms of LMS, RLS, and 
Kalman filter are discussed in the following subsections (Fig. 2).

2.2.1  Least Mean Square (LMS) Algorithm

In LMS method, the weights of array element are computed and updated recursively using the 
steepest-descent technique [18]. The instantaneous gradient vector ∇J(i) is used to update the 
weights of array elements as follows:

where w(i) is the weight of array element at iteration i and � is a contrloing parmeter of the 
convergence rate. The instantaneous gradient vector  ∇̂J(i) can be expressed as:

(2)AFp(�) =

P
∏

p=1

COS(3p−1�)

(3)w(i + 1) = w(i) +
1

2
�
[

−∇̂J(i)
]

Fig. 1  The first four growth stages of linear Cantor fractal array

Fig. 2  Structure of the proposed Kalman filter algorithm for adaptive beamforming
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where R̂(i) = x(i)xT (i) is the correlation matrix of the array inputsx(i) , and P̂(i) = x(i)d(i) is 
the cross-correlation vector between x(i) and the desired signal d(i). The element weights 
can be obtained by substituting ∇̂J(i) from Eq. (4) into (3) as follows:

where e(i) is the estimated error. The step size is selected to be within the extent 0< �  < 1/ 
λmax, where λmax is the largest eigen value of correlation matrix R̂ [44]. In this study, a step 
size of 0.05 is found to be the optimum value for achieving high performance.

2.2.2  Recursive Least Squares (RLS) Algorithm

The RLS technique overcomes the main disadvantage of LMS technique of having 
slow adaptation. Note that both LMS and RLS algorithms depend on error correction 
learning. However, the LMS follows the path of diminishing the instantaneous value 
of the squared estimation error for every iteration i,while the RLS reduces the sum of 
squared estimation errors up to the current iteration i [45, 46].

In the RLS method, the intermediate vector r(i) and the gain vector k(i) are calcu-
lated at each iteration i = 1, 2, 3 … as follows:

where x(i) is the regressor input and P(i) is the inverse of the matrix of data autocorrela-
tion. The initial value of P(i) is set to be P(0) = �−1I , where � is a small positive constant 
and I is the identity matrix. � is a positive parameter, denoted by the forgetting factor, and 
it lies in the range 0 < < �  ≤ 1 to ensure exponential distribution for the weight, in which 
high weight is given to recent data, and less weight is assigned to past data. In this study, � 
= 0.999 is found to be the optimum value for achieving high performance.

The a priori estimation error is given by

In order to obtain the updated weights w(i) , the gain vector k(i) is multiplied by e(i) 
and added to the weight vector w(i − 1) as follows:

The inverse correlation matrix is recalculated with new input values using the 
updated weights as follows

The RLS algorithm outperforms the LMS in the convergence stability.

(4)∇̂J(i) = −2P̂(i) + 2R̂(i)w(i)

(5)
w(i + 1) = w(i) + �

[

P̂(i) − R̂(i)w(i)
]

= w(i) + �
[

d(i) − xT (i)w(i)
]

x(i) = w(i) + �e(i)x(i)

(6)r(i) = 1 + �−1xT (i)P(i − 1)x(i)

(7)k(i) = �−1P(i − 1)x(i)∕r(i)

(8)e(i) = d(i) − xT (i)w(i − 1)

(9)w(i) = w(i − 1) + k(i)e(i)

(10)P(i) = [�−1P(i − 1) − k(i)kT (i)r(i)]
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2.2.3  The Proposed Kalman Filter Algorithm

In this work, a linear discrete Kalman filter is used to obtain the required adaptive weights for 
array elements to steer the main lobe and the nulls in presence of noise towards the desired 
and interferer directions, respectively.

For N-element linear narrowband array, the array output is y(i) = wT (i)x(i) , where x(i) is 
the input signal and w(i) is the weight vector at sample time i . For wideband array, a tapped 
delay line filter should be included in each channel of the array using the same mathemati-
cal formulation of narrowband case, in which vectors w(i) and x(i) are used to represent tap 
weights and delayed signals, respectively. Let the state equation of optimal array weights be 
expressed as [37, 48]∶

where ϕ(i + 1, i) is a state transition matrix, and the index (i + 1, i) indicates the state value 
at sample time i + 1 based on measurements through i . Note that for stationary environ-
ment, the array optimal weights will remain constant and ϕ(i + 1, i) becomes the identity 
matrix. If the array signal environment is time-varying, a more sophisticated model should 
be developed for ϕ(i + 1, i) to estimate the optimum array weights adaptively based on the 
changing environment.

Assume that the system measurements can be expressed by a noise contaminated version 
of the optimal array output as follows:

where d(i) is the reference signal, and �(i) is a Gaussian random variable with zero mean 
and variance �2(i) , representing the measurement noise. It can be deduced that the opti-
mum estimate of the array weight vector ŵopt(i) is given by [48]:

where the index (i, i − 1) indicates a predicted quantity at sample time i based on measure-
ments through i − 1 , and K(i) is the Kalman gain vector. Note that the quantity between 
brackets in Eq. (13) represents the difference between the desired reference signal and the 
actual array output.

For stationary environment, the Kalman gain vector K(i) is given by

where P(i) is the covariance matrix of predicted error and it can be expressed as

Substituting from Eq. (14) into Eq. (15), P(i, i) can be obtained as follows

wopt(i + 1) = ϕ(i + 1, i)wopt(i)

(11)wopt(0) = w0

(12)d(i) = xT (i)wopt(i) + �(i)

(13)
ŵopt(i, i) = ϕ(i, i − 1)ŵopt(i − 1, i − 1) + K(i)[d(i) − xT (i)ϕ(i, i − 1)ŵopt(i − 1, i − 1)]

(14)K(i) = P(i, i − 1)x(i)[xT (i)P(i, i − 1)x(i) + �2(i)]
−1

(15)P(i, i − 1) = ϕ(i, i − 1)P(i − 1, i − 1)ϕT (i, i − 1)

(16)P(i, i) = P(i, i − 1) −
P(i, i − 1)x(i)xT (i)P(i, i − 1)

[�2(i) + xT (i)P(i, i − 1)x(i)]
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The performance of KF depends on the precise estimate of the process noise variance 
and the measurement noise variance. In this work, a stationary environment is assumed, 
i.e., the optimal weight vector does not vary with time and, hence, the variance of process 
noise is set to be zero. The measurement noise variance �2(i) can be obtained from the 
interpretation described in Eq. (12) of the output signal for the optimum array weight. With 
d(i) an approximation for the actual desired signal s(i) , Eq. (12) can be expressed as follows 
[47, 48]

where �(i) is the error between the actual desired signal s(i) and the reference signal d(i) . 
Consequently, the measurement noise �(i) can be written as

Assuming zero mean processes for �(i) , s(i) , and �(i) , the measurement noise has zero 
mean E{�(i)} = 0 , and consequently the variance of measurement noise �2(i) is given by

If �(i) does not correlate with s(i) and x(i) , �2(i) can be written as [47]

where Rxx(i) is the average estimate of the received signal autocorrelation matrix, rxs(i) is 
the cross-correlation between x(i) and s(i) , and MMSE is the minimum mean square error 
estimate for the array weights. An estimate for the noise variance �2(i) can be obtained 
based on the MMSE estimate for optimum array weights. In this work, �2(i) is first esti-
mated using the MSSE and then tuned around that estimate to determine the value that 
maximizes the efficiency.

3  Results

The effectiveness of the proposed Kalman filter-based beamformer for pattern synthesis of 
linear Cantor fractal antenna array is investigated through MATLAB simulations using the 
following parameters: number of antenna elements N = 16, element spacing d = λ/4, and 
expansion factor � = 3. The effect of interfering Additive White Gaussian Noise (AWGN) 
is considered by carrying out the simulations at fixed value of SNR = 30 dB. Simulations 
are carried out on various array configurations, and the average of 100 simulation runs are 
computed at different values of Signal to Interference Ratio (SIR). The proposed technique 
is compared with LMS and RLS techniques in terms of beamforming stability, HPBW, 
maximum SLL, null depth at the DOA of interference signals, and convergence rate at dif-
ferent growth stages for different SIR values.

The array factor patterns of linear Cantor array at growth stage p = 3, f = 27 GHz, and 
SNR = 30 dB are shown in Fig. 3, assuming that the DOAs of the desired and the undesired 
signals are 30° and 60°, respectively. The results are obtained using LMS, RLS, and the 
proposed Kalman filter for different values of SIR. Figure 3a demonstrates that LMS, RLS, 
and Kalman algorithms provide adaptation of the radiation pattern for very low jamming 
power (SIR = 5 dB). Figure 3b reveals the poor performance of LMS technique for low to 

(17)d(i) = xT (i)wopt(i) + �(i) = s(i) + �(i)

(18)�(i) = s(i) + �(i) − xT (i)wopt(i)

(19)�2(i) = E{�(i)�(i)} − E{�(i)}2 = E{�(i)�(i)}

(20)
�2(i) = wT

opt
(i)R

xx
(i)Wopt(i) − 2WT

opt
(i)rxs(i) + E

{

s(i)2
}

+ E
{

�(i)2
}

= MMSE + E
{

�2
}
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Fig. 3  The array factor patterns of linear Cantor array at growth stage p = 3, f = 27 GHz, and SNR = 30 dB 
using LMS, RLS, and the proposed Kalman filter for (a) SIR = 5 dB, (b) SIR = -10 dB, and (c) SIR = -15 dB
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moderate jamming power (SIR =—10 dB) as it fails to form nulls in the radiation pattern 
towards the DOA of the interference signal at 60°. For a high SIR of -15 dB as shown in 
Fig. 3c, both RLS and LMS techniques failed to steer the peak of the radiation main lobe 
towards the DOA of the desired signal at 30°, revealing poor performance for high jam-
ming power. On contrast, the proposed Kalman-beamformer achieved perfect adaptation of 
the radiation pattern synthesis at high jamming power (SIR values up to -20 dB). Moreo-
ver, the proposed approach identifies the exact locations of the nulls which decreases the 
interference from adjoining radiating systems.

The array factor patterns of linear Cantor array for different cases of angle differ-
ence between the desired and interference signals are shown in Fig. 4 using LMS, RLS, 
and Kalman algorithms at fixed SIR of 0 dB. Figure 4a shows the array factor patterns 
obtained for an angle difference of 30° between the DOAs of desired and the interfering 

Fig. 4  The array factor patterns of linear Cantor array at growth stage p = 2, f = 27 GHz, SNR = 30 dB, and 
SIR = 0 dB using LMS, RLS, and the proposed Kalman filter. The DOA of the desired and the undesired 
signal are (30°, 60°) for (a) and (30°, 35°) for (b), respectively
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signals, while Fig. 4b shows the same array factor patterns obtained for an angle dif-
ference of 5°. It can be noted that both LMS and RLS techniques provide unsatisfac-
tory beamforming performance when the difference between the arrival angles of the 
desired signal and the interferer is small, even with low jamming power. The reason for 
this behavior is that both LMS and RLS techniques rely on the eigen prevalence of the 
signal correlation matrix. On contrast, the proposed Kalman filter-based beamformer 
achieves superior adaptation of the radiation pattern synthesis for both low and high 
jamming power scenarios. This shows that the Kalman algorithm maintains the same 
performance when undesired users become close to the main user, and hence not affect-
ing the signal fidelity of the main user. This reveals the effectiveness of the proposed 
approach in real-time beamforming applications.

A critical comparison between the proposed Kalman filter-based beamformer, RLS, 
and LMS techniques is made for linear Cantor array using different evaluation metrics, 
including the maximum SLL, HPBW, convergence rate, and the null depth at the DOA 
of interference signal. Table  1 shows those metrics at growth stages p = 2, 3, and 4 for 
different levels of SIR at fixed value of SNR = 30 dB. It can be noted that with the use of 
Kalman filter, the required radiation pattern is nearly the same at all growth stages (p = 2, 
3, and 4). As shown in Table 1, the proposed Kalman beamformer provides deeper null 
towards the DOA of the undesired signal than the LMS and RLS techniques, especially at 
higher growth stages and higher SIR values. Also, the proposed approach achieves lower 
SLL than the LMS and RLS techniques. Moreover, the convergence speed of the proposed 
Kalman method outperforms those of other algorithms under comparison. It can be seen 
from Table 1 that for all techniques, as the growth stage is increased, the SLL value slowly 
decreases, while the HPBW is signficantly reduced. The results shown in Table 1 reveal 
that for wide range of jamming power (different SIR values), the proposed Kalman filter-
based beamformer can maintain nearly the same steering of the radiation main lobe and 
nulls, maximum SLL, and HPBW. This demonstrates the effective implementation of pro-
posed approach in high interference environment.

Figure 5 demonstrates the convergence rate of LMS, RLS, and Kalman filter at growth 
stage p = 2 for SIR = -5 dB and SNR = 30 dB. It can be noted that the proposed Kalman 
method has the fastest convergence rate of 2 iterations, while the weights of LMS and RLS 
techniques converge to their best values in 10 and 3 iterations, respectively. Using the same 
operating conditions, the stability convergence of the Kalman algorithm is better than LMS 
and RLS methods. For rapid signal variations caused by high mobility rate of the user, the 
proposed Kalman filter beamformer can accurately steer the peak of the radiation main 
lobe towards the DOA of the desired signal and form deep null in the radiation pattern 
towards the DOA of the undesired signal as its convergence rate is very high. On contrast, 
LMS and RLS adaptive beamforming algorithms may fail to track the signal in such sce-
narios due to their slow convergence rate. This reveals the superior performance of the 
proposed adaptive beamforming technique in enhancing the capacity of mobile communi-
cation systems.

Figure 6 illustrates the variations of Mean Square Error (MSE) with different levels of 
SIR using LMS, RLS, and Kalman filter. As shown in Fig. 6, the MSE amplitude decreases 
with SIR increase as we are moving from LMS to RLS algorithm, then to the Kalman 
algorithm. It can be noted that the LMS approach failed to provide adaptation of the radia-
tion pattern for high jamming power (SIR < -5 dB), while the RLS produces poor adaptive 
beamforming performance for SIR < -10 dB and good performance for SIR > -5 dB. On the 
other hand, the proposed Kalman filter-based beamformer achieves superior adaptation of 
the radiation pattern synthesis even with very strong-jamming power up to SIR = − 20 dB. 
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As shown in Fig. 6, the MSE of Kalman filter is lower than the RLS by around 20 dB for 
high SIR values (-10 dB < SIR < -20 dB), revealing its superior performance.

The proposed Kalman filter-based beamformer achieves multi-band operation for fractal 
antenna array, in which the radiation pattern characteristics, including the main lobe peak, 
nulls, and SLL are kept the same at distinct operating frequencies scaled by the expansion 
factor � . Figure 7 shows the array factor patterns of linear Cantor array at growth stage 

Table 1  The max SLL, HPBW, convergence rate, and the null depth at the DOA of interference signal at 
p = 2, 3, and 4 for linear Cantor array using LMS, RLS, and Kalman filter-based beamforming techniques

Metric SIR (dB) − 15 − 10 − 5 0 5

p = 2 LMS – – 22.46 22.29 22.23
RLS – 23.15 21.68 22.95 22.94
KALMAN 22.30 22.28 22.55 22.58 22.20

HPBW (Degree) p = 3 LMS – – 6.96 6.96 6.98
RLS – 6.80 6.76 7.03 7.02
KALMAN 6.95 6.86 6.96 6.98 7.01

p = 4 LMS – – – 2.34 2.31
RLS – 2.22 2.43 2.48 2.25
KALMAN 2.31 2.30 2.33 2.31 2.35

p = 2 LMS – – − 4.79 − 4.89 − 4.84
RLS –– − 4.42 − 5.04 − 5.35 − 5.19
KALMAN − 4.78 − 4.58 − 5.27 − 5.82 − 5.36

Maximum SLL (dB) p = 3 LMS – – − 4.86 − 4.77 − 4.14
RLS – − 3.57 − 4.72 − 4.55 − 4.24
KALMAN − 4.85 − 4.85 −   4.98 − 4.94 − 4.31

p = 4 LMS – – – − 5.13 − 5.09
RLS – − 3.19 −  2.09 − 3.53 −  3.52
KALMAN − 5.58 − 5.27 −  5.37 −  5.45 −  5.39

p = 2 LMS – – −  40.39 −  44.43 −  42.03
RLS – − 44.69 −  44.11 −  45.51 −  43.90
KALMAN − 43.62 − 44.74 −  44.17 −  45.60 −  43.99

Null Depth (dB) p = 3 LMS – – − 42.95 −  42.09 −  46.52
RLS – − 42.82 −  49.15 − 46.56 −  47.02
KALMAN −  46.57 − 46.42 − 50.57 −  47.37 −  47.12

p = 4 LMS – – – −  24.63 −  45.77
RLS – − 43.58 −  35.96 −  35.81 −  47.15
KALMAN − 42.83 − 47.32 −  38.41 −  42.92 −  57.89

p = 2 LMS – – 16 13 10
RLS – 3 3 3 3
KALMAN 5 3 3 3 2

p = 3 LMS – – 10 10 8
Convergence RLS – 3 3 3 3

KALMAN 3 3 3 3 2
p = 4 LMS – – – 10 4

RLS – 3 3 3 2
KALMAN 3 3 3 3 2
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p = 3 and SIR = -20 dB for three operating frequencies using the proposed Kalman filter. 
Note that the operating frequency of fractal arrays can be decreased by a factor of �n from 
the specified design frequency, where n = 1, 2,···, p − 1. Assuming that the fixed design 
frequency is 27 GHz, the array patterns shown in Fig. 7 are obtained for � =3 and n = 1, 2, 
3, resulting in available operating frequencies of 3, 9, and 27 GHz. Figure 7 reveals that the 
array patterns of the proposed Kalman filter keep the same main lobe peak, nulls, and SLL 
at the three operating frequencies.

Table 2 demonstrates the Kalman beamformer results of SLL, HPBW, and convergence 
rate of the linear Cantor array for three distinct operating frequencies at p = 3. It can be 

Fig. 5  The convergence rate 
of LMS, RLS, and Kalman 
filter-based beamforming tech-
niques at growth stage p = 2 for 
SIR = -5 dB and SNR = 30 dB

Fig. 6  Variations of the MSE with different levels of SIR at growth stage p = 2, f = 27  GHz, and 
SNR = 30 dB using LMS, RLS, and Kalman adaptive beamforming techniques
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noted from Table  2 that the SLL is nearly the same at the three operating frequencies, 
while the HPBW is decreasing with the frequency increase. Also, the results show constant 
and fast convergence rate at the three operating frequencies. Table 2 reveals that the array 
weights of the proposed Kalman filter converge to their best values in only 3 iterations with 
a similar behaviour for all the three operating frequencies, revealing the superior perfor-
mance of the proposed approach in multi-band operation. Figure  7 and Table  2 demon-
strate that with the proposed Kalman filter-based beamformer, the designer can efficiently 
provide good adaptation of the radiation pattern synthesis at strong-jamming power, while 
maintaining the same SLL at different operating frequencies with fast convergence rate.

To validate the implementation of the proposed Kalman method in fractal antenna 
arrays, other fractal array configurations such as Sierpinski carpet, hexagonal, and pen-
tagonal arrays have been investigated. The results show consistent performance in terms 
of beamforming accuracy and multi-band radiation pattern characteristics. Although the 
linear Kalman filter was employed in previous studies to acquire the adaptive weights for 
several adaptive signal processing applications, to the authors’ knowledge, it is the first 
time to investigate the Kalman filter as an adaptive beamforming technique in the synthesis 
of fractal antenna arrays. It represents a new efficient radiation pattern synthesis for frac-
tal antenna array that can achieve the following characteristics: (a) multi-band operation, 
(b) adaptive beamforming capability in strong-jamming environment, (c) optimized gain, 
and (d) reduced array size. Note that the proposed adaptive fractal antenna array design 
can be employed in several wireless applications, including satellite communications, 
4G/5G wireless mobile communications, aerial vehicles, automotive radar applications, 
and microwave communications. In [49], a fractal antenna array design for antenna gain 
improvement was developed for automotive radar systems operating at 24 GHz. A design 

Fig. 7  The array factor patterns 
of linear Cantor array at growth 
stage p = 3 and SIR = − 20 dB 
for three different operating 
frequencies using the proposed 
Kalman filter-based beamformer. 
The DOA of the desired and the 
undesired signal are (30°, 60°)

Table 2  The SLL, HPBW, and 
convergence rate of linear Cantor 
fractal array at three different 
operating frequencies using the 
proposed Kalman filter-based 
beamformer

Frequency Band 27 GHz 9 GHz 3 GHz

SLL (dB) − 4.85 − 4.89 − 4.58
HPBW (Degree) 2.69 7.82 22.74
Convergence 3 3 3
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of Sierpinski gasket equilateral triangular fractal antenna array was fabricated and tested 
for portable 4G/5G MIMO communication systems [50]. The multi-band behaviour of dif-
ferent fractal array configurations is experimentally validated in the patents of [51, 52].

3.1  Performance Analysis

The performance of the proposed fractal Cantor array design is compared with the cor-
responding ordinary linear antenna array. Figure 8. demonstrates the array factor patterns 
of Cantor array and ordinary linear array at high jamming power of SIR = -15 dB using 
the proposed Kalman filter for different number of antenna elements (N = 16, 32, and 64). 
Results show that discrete Kalman filter achieves good adaptive beamforming performance 
for both fractal and ordinary arrays at strong-jamming power. However, the main difference 
is that the Kalman filter-based beamformer can achieve multi-band operation for fractal 
array (see Figs.  8a, b, and c), in which the radiation pattern characteristics are kept the 
same at distinct operating frequencies (f = 3, 9, and 27 GHz) scaled by the expansion factor 
$$\boldsymbol{\delta }=$$ 3. For ordinary antenna arrays, the proposed Kalman filter-
based beamformer provides good adaptation of the radiation pattern synthesis at only the 
specified design frequency of 27 GHz (see Fig. 8.d). This reveals that the linear Kalman 
filter not only achieves comparable high adaptive beamforming performance for both frac-
tal and ordinary arrays at strong-jamming power but also provides multi-band operation for 
fractal antenna arrays.

Fig. 8  The array factor patterns of fractal Cantor array (a, b, and c) and ordinary linear array (d) for differ-
ent number of antenna elements at SNR = 30 dB and SIR = -15 dB using the proposed Kalman filter. The 
DOA of the desired and the undesired signal are (30°, 60°) at different operating frequencies (a) f = 27 GHz, 
(b) f = 9 GHz, and (c) f = 3 GHz for fractal Cantor array, and at fixed frequency (d) f = 27 GHz for ordinary 
linear array
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Table 3 shows the maximum SLL, HPBW, and the null depth at the DOA of interfer-
ence signal using the proposed Kalman filter-based beamforming technique for fractal 
Cantor and ordinary linear arrays. The radiation pattern of the fractal Cantor array achieves 
lower HPBW and higher directivity than ordinary linear antenna array. It can be seen that 
the SLL of Cantor fractal arrays is higher than ordinary linear arrays. However, it can be 
reduced using several optimization methods. Results show that fractal Cantor array can 
achieve multi-band operation because distinct parts of the array are like each other at vari-
ous scales, while ordinary linear array is band-limited because its operating frequency 
relies on the element spacing within the array. Figure 8 demonstrates that fractal Cantor 
array preserves its radiation pattern features at multiple operating frequencies, while ordi-
nary linear array loses its beam focusing capability as the frequency varies from the speci-
fied design frequency. This reveals the superior performance of fractal Cantor array over 
ordinary linear array in terms of array size and multi-band operation [5].

One of the main advantages of the fractal Cantor array is its computational efficiency 
in calculating the array factor compared to ordinary linear arrays. For ordinary linear array 
with odd number of antenna elements (N = 2 M + 1), M cosine functions should be com-
puted, and M additions should be executed for each angle. On the other hand, for fractal 
Cantor array with the same number of antenna elements, p cosine function evaluations and 
p− 1 multiplications are required. This means that for the case of 81-element ordinary lin-
ear array, 40 cosine function evaluations and 40 additions should be performed, while for 
the case of fractal Cantor array with the same number of elements, 4 cosine function evalu-
ations and 3 multiplications should be executed. This shows that the fractal array factor is 
at least M/p = 40/4 = 10 times faster than ordinary array factor, revealing the low computa-
tional cost of fractal Cantor array design.

A main challenge in the development of fractal array is the excessive number of antenna 
elements at higher expansion levels. However, optimization techniques can be employed to 
reduce the count of elements at higher growth stages and to improve the array factor prop-
erties. Note that fractal arrays are thinned arrays, due to their recursive geometric nature 
[12, 53]. Thinning of an antenna array implies turning off some antenna elements to obtain 
the required radiation features with the lowest possible count of antenna elements. How-
ever, the thinning process of fractal array may lead to high SLL which can be solved using 

Table 3  The maximum SLL, HPBW, and the null depth at the DOA of interference signal using the pro-
posed Kalman filter-based beamforming technique for fractal Cantor array and ordinary linear array

Type Number of 
Active Elements

HPBW (Degree) Maximum SLL (dB) Null Depth (dB)

Cantor Fractal Array 4 22.3 − 4.78 − 43.62
8 6.95 − 4.85 − 46.57

16 2.31 − 5.58 − 42.83
32 1.35 − 6.89 − 47.49
64 1.01 − 7.98 − 47.32

Ordinary Linear Array 4 27.3 − 6.49 − 46.83
8 15.82 − 12.15 − 53.49

16 15.52 − 13.21 − 65.33
32 7.32 − 13.49 − 46.87
64 3.65 − 13.59 − 46.23
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optimization techniques. In [54], evolutionary optimization techniques were employed to 
develop a thinned rhombic fractal antenna array, achieving above 25% of thinning with 
better array factor features than the completely populated array. In [55], an iterative feed 
matrix method is employed in a Haferman carpet fractal antenna array to simplify the array 
factor computation. This allows the application of evolutionary optimization methods in 
decreasing the count of antenna elements and keeping the SLL as low as possible at differ-
ent growth stages. In [56], the same iterative matrix approach was employed in the design 
of Sierpinski carpet fractal array, and differential evolution optimization algorithm was 
employed for reducing the number of elements and minimizing the SLL. In the future, dif-
ferent optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Opti-
mization (PSO) will be investigated for optimizing several performance metrics of the pro-
posed fractal antenna array design.

4  Conclusion

In this work, a novel technique of radiation pattern synthesis is proposed to merge the 
unique characteristics of fractal arrays with the adaptive beamforming capability in strong-
jamming environment. The Kalman filter algorithm is investigated, for the first time, as an 
adaptive beamformer in the Cantor fractal array synthesis. The proposed Kalman filter-
based beamformer is utilized to obtain the best weights of array elements in order to steer 
the main lobe peak and nulls of the radiation pattern toward the DOA of desired and inter-
ference signals, respectively, at distinct levels of jamming power. The effectiveness of the 
proposed approach is investigated by comparing its performance with the LMS and RLS 
techniques using several evaluation metrics, including the maximum SLL, HPBW, conver-
gence rate, and the null depth at the DOA of interference signal. The proposed Kalman 
filter-based beamformer achieves superior performance over LMS and RLS techniques on 
various array configurations and for different SIR values. Simulation results demonstrate 
that the suggested approach manages not only to provide superior adaptation of the radi-
ation pattern synthesis over a wide range of jamming power, but also to keep the same 
SLL at different operating frequencies with fast convergence rate. Morevere, the proposed 
technique has superior performance in tracking the desired user and eliminating the unde-
sired signals, even when undesired users are close to the desired user, showing its ability to 
improve the capacity of various wireless systems. This elucidates that the suggested design 
can be effectively utilized in real-time and multi-band beamforming wireless applications 
for strong-jamming environment.
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