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A New Adaptive Observer

Kumpati S. Narendra and Lena S. Valavani

1\1~~troductton

~~ An adaptive observer is defined as one which estimates the state variables

and parameters of an unknown stable linear time—Invariant plant f rom it. input-

output da
~~) During the period 1973—1975 several seemingly different versions of

(~
h. adaptive observer (1—3] appeared in the control literature. Recently,

[however, it has been shown (5] that all these results can be derived in a unified

manner. At the present tIa~ there are two distinct approaches to the design of

adaptive observers for a plant whose input output behavior can be represented by

an a?~
order differential equation. In the first approach~the observer is of the

s~~~ order as the plant and is referred to as a minimal (order) observer. Using

th . second approach , a non—minimal observer of order (2n—l) is obtained . Minimal

observers are conside rably more difficul t to synthesize than non-minimal observers

and require the generation of additional signals for the stabilization of the

adaptiv, loop ,~
81 However , they have the advantage of yielding aimoltaneously

both para meter and state estimates of the plant. Non-minimal observers are con-

sidereb ly simpler in struc ture but the n state varia bles of the plant have to be

estimated from the avail able (2n—l) state vari able , of the observer.
‘6

In thi , brief paper , ve psepsss,a new obssrvsrAvhich appear s to combine the

advantages of the two types of observers described above. With this obssr ver , the

par ameter estimates of the plant are directly obtained with a structure which is

no more complex than that of a non-minimal observer Jfl
’which is widely used at

the presen t time. The parameter estimates ar e sImultaneously used to dete rmine

directly the stat s estimat e. of th. plant . Under certain condit ion. ) dtaeaaud tm

sa4$tau ), the sew observer has a faster rate of convergence than the ob.*rver.

knave at preaent,whicb aikes it particularly attractive for use in the control

~. _____________________________________
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From a theoretical point of view, the l~~~ as in section 4 contain the prin-

cipal idea s in this paper. A direc t application of the lemsaa results in a new

prototype for an error model and this in turn forms the mathematical basis for

the adaptive observer.

2. The Problem:

A plant P has an admissible input u(t) {a scalar valued piecewise continuous

function} and a corresponding output 7(t). A - linear system {h
T
,A~,b} is said

to characterize this plant if every pair (u(t),y(t)} satisfies the equations

x —Ax (t)+bu(t)
p p p  p

T 
(1)

y(t ) • h x ( t)

where A is an (nxn) matrix and h and b are constan t n-vectors . The identifica—

tiou probl em say be qualitatively defined as th. probl em of constructing a suit’

able model which, when sub~.cted to the s~~~ input u(t) as the plant ,pro duces

an output y
5

(t) which tend s towards i~ (t) asymptotically.

In the simplest case~ve are interested in output identification in which

+ 0, where s
1

(t) 
~ 

y(t) — y
5

(t) , for a given input u(t) . When the input

is “sufficiently rich” this also implies transfer function identification. If

the transfer function of the plant identified corresponds to a unique parametri-

zation of the plant,we also have parameter identification.

We are Interested hers in a specific param etrization of the plant and hence ,

in both the output and parame ter identification problems.

The plant is described by equatio n (1.) where A~ is a stable (nm) matrix

which is in output canonical form so that:

• ___  

(2) 

--- ~~~~~~~~~~
_ _

~
.
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and h
T 

(1,0,0,. . . ,O]. The vectors a , and b in equation (1) are the unknown

para meters of the plan t which have to be estimated.

If A~ is a known stable matrix in output canonical form such tha t

I ‘
-1

A — a 
-___ 

(3)

L oJ

equation (1) may be expressed as

.

x - A x  + e x  + b u
p m p  l i p  p

I. (4)
x h x  and 0 •a — a
lp p 1 p m

To identify the parameter vector. a and b , we set up an observer which is

described by the differential equation

• A x  + b U  + d(erv
1 

+ ~~v
2

]

(5)
x 1 .h T

x -
is a

where b
5 

and d are known constant vectors, e1(t) and 02(t) are n-dimensional ad—

justable parameter vectors which are the estimates of the parameter error vectors

• Cap
_a

m
) and e2 • (b

p~
b

m
)
~ 

and v
1(t) and v2(e) are known inpu t signals which

can be generated using the input and output of the plant .

If x (t) — x (t) act) , the state error vector and h
Te(t) — e1

(t) , the

output error , we have fro. equations (4) and (5)

- A

m; 
+ 0

1
x
1 

+ 0
2
u - d(I~v

1 
+ ~~~~ 

(6)

t The probl now is to determine how 0
1

(t) and b
2(t) must be adjusted so that

they evolve to am~ 12 
respectively end result in th. output error e

1
(t) tending

to zero as t ... As in all adaptiv, observers, the adaptive law. are expressed

- -
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in terms of the time derivatives of e1
(t) and 92

(t) .

3. Error Enuattons for Minimal and Non-minimal Adaptive Observers:

Equation (6) describes the behaviour of the output error between plant and

model in terms of the unknown parameter error vectors and 0
2 

and the adjustable

parameters , 8
1
(t) and 0

2
(t). Once the adaptive laws for updating 0

1
(t) and 8

2
(t)

are specified , equation (6) can be written entirely tn terms of the output and

para meter errors of the overall system. The analysis of the stability behaviour

of the error equations is obviously central to the understandin g of the conver-

gence prop erties of the adaptive observer . Asymptotic stability of the error

equations , for evample , implies that the states and para meters of the observer

converge to those of the plant asymptotically.

lefore proceed ing to consider the erro r equations of the new adaptive ob-

server , we shal l discuss briefly in this section the error equations which have

arise n in the past in the design of minimal and non-minimal observers.

As pointed out by Nare ndra and Kudva (5] and Anderson (7], an interesting

prototyp. for error equations has the form (Figure 1]:

• £~t + de
T(t)v(t)

£
1 
• h e

Where e(t) is an n—vector of errors, 0(t) is an a—vector of parameter errors, v(t)

is en a-vector of piecewise continuous bounded time functions which are linearly

indapendsat on the semi—infinite interval, h and d are constant n—vectors, t
m 
is

an (ame) stable matrix and the triple (h
T
~Am~

d} is completely controllable and

completely observable.

ft has been shove that if the transfer function h
T(sI_A,)~~ d is strictly

positive real then the adaptive law

• T
r — r  ~~o (8) 

~
.4- _ 

~~~~~~~ - -
~ - 
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where F is any sy etric positive definite matrix,vill result in a stable system

in which e(t) will tend to zero and 0(t) to some constant vector as t -“ ~~
.

The adaptive law (8) is obtained by selecting a function

V(e ,0) — 
i~

Tp~ + e
Tr~~e] (9)

• • dv
as a candidate for a Lyapu nov function and choosing 0(t) to sake V(c ,8) —

negative semidefinite. It has further been shown that1 if the input v(t) is

“sufficiently rich”, the parameter error vector 0(t) will tend to zero [8].

The above simple but powerful result can be directly applied to the design

problem of non—minimal observers. In the discussion that follows it is shown

that it can also be related to an error differential equation (10) which arises

in the design of ~~
4n1

~~ai observers.

In the differential equation

• A~~(t) + 0(t)z1
(t) e

1
(t) — h

T
e(t) (10)

let .(t) be an n—vector, A
m 

an (nm ) stable constant matrix , 0(t) an n-vector

of parameter errors and z
1

-(t) a unif ormly bounded scalar function of time. It

is desired to adjust i(t) using only available input and output data (i.e. e
1
(t)

and s
1
(t)) such that e

1
(t) will tend to zero asymptotically .

The form of equation (10) does not lend itself easily to the generation of

adaptive laws of the form

— f(e1, z
1
). (11)

Eu, avsr , it has been shown (4) that vectors v(t) and v(t) exist such that

• A
1
. + 8(t) ,

1
(t) + v(t) .

1
(t) — h

T
e(t) (12)

- S 
+ dI

T
(t)v(t) e

1
(t) • h

T
e
1

(t) (13)

—S.-.... ~~~~ 
__S_

~
S
~~~~~

S__ — ______________________ S.-. 
- .  ________________________

~.- ~~ 
.. 
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have the same outputs e
1
(t) and z

1
(t). The vector v(t) can be generated by a

dynamical system whose input is z
1
(t) while w(t) depends on both e

1
(t) and v(t).

In view of the input—output equivalence of the two systems (12) and (13),

the adaptive law for (12) is generated in an identical manner to that of (13)

and is given by equation (8)

i — —re
1
(t)v — —re

1
(t)v r — rT 

> 0 (14)

Hence, a minimal order adaptive observer can be designed by generating suitable

vectors v(t) and w(t),where v(t) is used in the adaptive law and the vector w(t) 

S

is used as an input to the observer. This in turn yields the well known form of

the adaptive observer shown in Figure [2].

Equations (7) and (8) represent the form of the error equations for a non—

minimal observer while equations (12) and (14) are the error equations for a

•ln( 1 observer. In both cases the time derivative of the parameter error

vector 0 is adjusted so tha t in the li mit 0(t) tends to zero. In equation (6)

which is the error equation of the new adap t ive observer , no provision is made

to directly adjust the parameter error vectors 0
1 
and 

~
2• Instead, new adj ustable

par ter vectors 0
1
(t) and 0

2
(t) are introduced to estimate and 0

2 
and compen—

aate for the effect on e
1(t). It is this fact that distinguishes the new adaptive

observer from those tha t are currently in existence.

The error equations which describe the behavior of the new observer are of

the for.:

• A T1 A T2
e . A 1 e + 01

x
1

+ 0
2

u _ d ( 0
1
v + e 2v J

I

— ~~~~~~~~~~~~~~~ (15)

2 
— ~~~~~~~~~~~~~~~~

~
.
~~
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where f and f have to be suitably chosen so that e (t) + 0, 0 (t) + B and

e 2(t) 
1 

+ •,
• 

1 1 1

4. $ath.aatical Preliminaries:

The following lemsas are found to be directly related to the questions

raised at the end of the last section and hence to the final structure of the

adaptive observer.

L. a 1: A time-invariant dynamical system

z — As + •u z
1
(t) — h

T
z(t) (16)

where A is an (tutu) stable matrix in output canonical form, h
T 

—

— 

~ l’~2’” 
, $ ]  is zero state input—output equivalent to the dynamical system

of order (Zn—i)

Aw + d,
T
vl w

1
(t) - h

T
w

v .Dv + bu(t) (17)

v
~

. L L
~

where the (n—i x n—i) matrix D is stable, v is an (n—i) dimensional vector,

b
T 

— (0,0, ..,0,l] d
T 

— (l,d2,d3
,...,d

0
] and the matrices D and L are defined as

0 1 0 . . 0 1 —d~ —d
3 

. . .
8 0 0 1 0 .  • 6

0 1  0 . . .
D

0 0  . . . 1 0 0  . . . 1 0

—l —d2 ,  ‘ ‘~~~~n 
0 . . . . . 1

Proof: Th* transfer function of (16) is

, 
n—l
+ +  $

T
1
(s) u 1 n

.
n +~~~5 +

~
s•+tn 

,

-

, ~~~~~ - - S . .
~~ - S.

1

~

_

~ 

- ~~~

-

~~
-
~~~~

•
-

~~~
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and the transfer function of the system (17) is

d 5
n_2

+ . .+ d $ 5~~—’+ ..  .+ $
— 

2 ii 1 
— 

n
5 + a s + ..+ a  s +. ..+ d

1 n n

Hence , for zero initial states the two systems have the same output corresponding

to any input u(t).

L•~~ 2: In the dynamical system described by the differential equations

z — Ax + •u(t) — d[,
T
(t)v

i
(t)J

• — rz
1

(t)v
1

(t) r — r
T 

> 0 (18)

z
1
(t) — h

T
z(t)

where the matrix A and the vectors •,d, and v
1
(t) are as defined in lemma 1,

F is any symetri c positive definite matrix and h
T(sI_A) ‘d is strictly positive

real, 6(t) + 6 if the input is sufficiently rich and the overall system is

asymptotically stable.

When the input u(t) 0 equation (18) has the same form as equat ion (7) and

hence U$(t )~ is bounded.

Considering the differential equations

— AF~ + •u(t) 
~i 

— h
’r

F~1 
(19)

and 
~2 

— A~2 
— d[,

T
(t)v

l
(t)] c2 — hT

~2 
(20)

we have + 
~2 

— z and + C2 
— z

1
(t) in equation (18).

Equation (19) is input-output equivalent to

- A~~ + d$
T
(t)vl(t) C3 

- h
T
~~ ( 21)

Hence equation (18) has the same input—output behavior (for zero initial conditions)

as 

~~~~~~~~~~~~~~~~~~~ 
.5 5 S. S.S. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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n — An + dU,_$(t)}
T
v
I
(t)]

T 
(22)

‘11 
— h i~ 

—

Hence , by the pro totype discussed in section ~
)) if

4 — rz
1
(t)v

1
(t) (23)

and the input u(t) is sufficiently rich

L.im 6(t) — 6 (t) and em e
1
(t) — 0.

t-p—

5. The Adaptive Observer:

The results of section 4 can be directly applied to the adaptive observer

error equations given in (15). In such a case we have

e — A e  + 0
1
x
1 
+ - d[0~v

1
+0~v

2
]

e, • h e
(24)

1e 1 • F
1
e
1

(t)v (t)

0
2 

— F
2
e
1

(t)v 2
(t) - > 0 i — 1,2

It is obvious that v
1
(t) and v

2
(t) can be generated using two identical sys-

tems with z
1~ (t) and u(t) as the inputs. If the Zn components of [v’(t),v

2
(t)]

T

are linearly independent and the input u(t) is sufficiently rich, the parameters

0.(t) and 02
(t) converge to the true parameter errors 0

1 
and

Prom the arguments of section 4, it is clear that as t -‘ — , e1(t) + 0.

However, the other components of the error vector e(t) do not tend to zero indi-

cating that x~(t) is not an estimate of x~
(t). To obtain such an estimate

of x
,
(t)~ the estimates of the parameter errors are used in equation (4) to yield

4 
__________

- - - --~~~- - - S. -
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~~
(t )—A t + b u + O x  + e u  (25)

p m p  m l l p  2

The complete description of the observer is then given by the differential
-yr

equations

x — A x  + b u  + d [0~v’ + 9~ v
2

] (26a)

T
x h x
ml m

* — A t  + b u + 0 x  + O u  (26b)
p m p a l ip  2

—

— —r
2
e
1
v

2 
(26c)

The resulting observer structure is shown in figure 3.

Gommeats on the New Adaptive Observer:

a) As seen f rom the lemmas in section 4, the approach used in the design of the

new observer is to represent the unknown transfer function as the product of

two transfer functions, one of which is stable and the other strictly positive

real. Using such a repreeentation ,the prototype error model developed for

the design of non—minimal observers can be directly used to estimate the

unknown parameters.

b) The estimate of the state of the plant is obtained by using the estimates

of the unknown parameters in equation 26b. The error in the state estimate

C(t) 
~ x (t) — i~(t) satisfies the differential equation

£ — A
15
t + ($

1
—6

1
(t ) J x1

(t ) +

(e 2—e 2
(t) Ju(t)

and tends to zero as the parameter errors tend to zero .

- S. - S.
~~• — - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
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-
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I ~ 
c) The example. discussed in the next section indicate that the adaptive observer

converges rapidly when the system is of low order or when either the pol es or

the zeros of the plant transfer function are known . However, when all the

parameters of a high order plant are unknown the rate of convergence is found

to be rather slow which may be attributed to the fact that the components of

the vector v
1

(t) and v
2
(t) are linearly dependent. Faster schemes of con-

vergence are currently being investigated.

d) The n—vectors v
1
(t) and v

2(t) can be generated using identical dynamical sys-

tems with z
1
(t) and u(t) as inputs. This implies that a single vector d has

to be chosen such that h
T(sI_A

m
) ~d is strictly positive real. In practice,

for faster convergence, it may be desirable to use a correction signal of

the form d
1
e~v

1 + d
2
O~v

2
, instead of d[O~v

1 + O~v
2
J. In this case the trans-

fer functions h
T
(sI_A

m
)
_l
d
l 

and h
T(sI_A

m
) i

dZ 
must be positive real.

6. Examples:

Several plants were identified using the new scheme on a digital computer.

Three typical cases are included below. In the first case , the plant is of

second order and has four unknown parameters. In the second and third cases ,

the plant is of third and fourth order respectively . In the first case the transfer

function of the plant is shown and the evolution of the unknown parameters to their

f inal values is indicated . The states of the plant and the corresponding estimates

are also tabulated . For the other two cases the f inal values of the parameters are

given. 
w(s) [Tr ana fer function of the Plant] — 2

Ex~~~1e 1: s +3.5s+2.5

Time Plant Parameters
in Seconds a

1
— 3.5 a

2
2.5 b

1
— 2  b

2
4

OBSERVER PABA1~ETER$

2 3.06 2.97 2.90 3.99
4 3.53 2.28 1.86 3.99
6 3.51 2.35 2.02 3.98

~~~~~~~~~~~~~~~~~ — 
- -
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The following table shove the states of the plant and the corresponding estimates

at t • 2 ,4 and 6 seconds

~~~~S. 
_ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _

Time x * x *ip lp 2p

2 1.69 2.12 3.69 5.65

4 — .14 — .13 — .47 — .14

6 — .87 — .87 —1.60 —1.47

Exa~~le 2: In this case the plant is of third order with a transfer function

2(52
+5.46)

3 2
s +8.3s +2l.4s+l6.8

Th. unknown parameters are b
1 

and a1,a2 
and a3. The parameter estimates given by

the observe r after twelve seconds are shown below:

b
1

2 b
1

l.9 ; a
1 — 8.3 L

l~~~
8.02

a
2

21.48
2
•21.6 ; a

3 — l6.8 £3 17.2

Example 3: A fourth order plant has a transfer function

w( s) — 20(5
3
+2.

2
+25+11

a +12s +45i +60s+20

where the zeros of the plant are known . The following estimates of the unknown
S. 

para meters were obtained after 6 seconds .

a
1

12 *i
ll.98 ; a

2
— 45

a
3

60 £
3

60.39 and a
4

— 20 8
4~~~

2O.l9

In all cases a square wave input of amplitude 5 and frequency 5 radians/sec was

used.

Conclusion :

A new structure for an adaptive observer is proposed in this paper. The

unknown par ters of the system are continuously estimated in a stable feedback

loop and are in turn used to generate the estimate of the sta te of the plant .

- S . S .
~~~ ~~~~~~ -

~~~~~ ~ .L 
~~

‘ - ‘
~~~~~~~ - - ... - -
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The overall system is found to be no more complex than the non-minimal observer

currently in use.

When the plant can be represented by a differential equation of low order

or when only the poles or zeros of ite transfer function are unknown the observer

parameters are found to converge very rapidly to their final values. For high

order plants whose poles and zeros are not known convergence appears to depend

critically on the auxiliary signals used in the adaptive laws.

The importance of the new adaptive observer lies in its potential application

to the control problem.

1
~
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