A New Additive Homomorphic Encryption based on the co-ACD Problem

Jung Hee Cheon¹, Hyung Tae Lee², and Jae Hong Seo³

¹Seoul National University, Korea

 $^2 \hbox{Nanyang Technological University, Singapore} \\$

³Myongji University, Korea

ACM CCS 2014, November 04, 2014

Applications of Additive Homomorphic Encryption

- Basic applications: Statistics as encrypted
 - Computing average on encrypted data
- Advanced applications: Before the appearance of FHE, AHE enables us to construct various applications.
 - Oblivious pseudorandom functions, Oblivious transfer
 - Private information retrieval, Private set operation protocols
 - ▶ Electronic voting, Commitment scheme and so on
- Still, AHE-based applications are more efficient than FHE-based applications.

Applications of Additive Homomorphic Encryption

- Basic applications: Statistics as encrypted
 - Computing average on encrypted data
- Advanced applications: Before the appearance of FHE, AHE enables us to construct various applications.
 - Oblivious pseudorandom functions, Oblivious transfer
 - Private information retrieval, Private set operation protocols
 - Electronic voting, Commitment scheme and so on
- Still, AHE-based applications are more efficient than FHE-based applications.

Applications of Additive Homomorphic Encryption

- Basic applications: Statistics as encrypted
 - Computing average on encrypted data
- Advanced applications: Before the appearance of FHE, AHE enables us to construct various applications.
 - Oblivious pseudorandom functions, Oblivious transfer
 - Private information retrieval, Private set operation protocols
 - Electronic voting, Commitment scheme and so on
- Still, AHE-based applications are more efficient than FHE-based applications.

Our Results

- Strategy: Follow the technique to construct the recent SHE
 - Construct secure private-key AHE
 - ★ Using modular reduction with several moduli and inserting Noise
 - ★ Analyze the hardness of a new problem by applying known attacks
 - Convert into a public-key version
 - ★ $M + \sum Enc(0)$ and leftover hash lemma over lattices
- Implementation result (128-bit security)

	Ctxt	PK	KeyGen	Enc	Dec	Add
Paillier	6144 bit	1.5 KB	437.39 s	62.46 ms	40.38 ms	12.40 μ s
Ours	3072 bit	1.3 MB	0.35 s	0.72 ms	$4.00~\mu s$	$0.40~\mu s$

Provide applications of our construction and general AHE

Our Results

- Strategy: Follow the technique to construct the recent SHE
 - Construct secure private-key AHE
 - ★ Using modular reduction with several moduli and inserting Noise
 - ★ Analyze the hardness of a new problem by applying known attacks
 - Convert into a public-key version
 - ★ $M + \sum Enc(0)$ and leftover hash lemma over lattices
- Implementation result (128-bit security)

	Ctxt	PK	KeyGen	Enc	Dec	Add
Paillier	6144 bit	1.5 KB	437.39 s	62.46 ms	40.38 ms	12.40 μ s
Ours	3072 bit	1.3 MB	0.35 s	0.72 ms	4.00 μ s	0.40 μ s

Provide applications of our construction and general AHE

Our Results

- Strategy: Follow the technique to construct the recent SHE
 - Construct secure private-key AHE
 - ★ Using modular reduction with several moduli and inserting Noise
 - ★ Analyze the hardness of a new problem by applying known attacks
 - Convert into a public-key version
 - ★ $M + \sum Enc(0)$ and leftover hash lemma over lattices
- Implementation result (128-bit security)

	Ctxt	PK	KeyGen	Enc	Dec	Add
Paillier	6144 bit	1.5 KB	437.39 s	62.46 ms	40.38 ms	12.40 μ s
Ours	3072 bit	1.3 MB	0.35 s	0.72 ms	$4.00~\mu$ s	$0.40~\mu s$

Provide applications of our construction and general AHE

$$\mathsf{CRT}_{(p_1,\ldots,p_k)}: \prod_{i=1}^k \mathbb{Z}_{p_i} \to \mathbb{Z}_{\prod_{i=1}^k p_i} \\ (m_1,\cdots,m_k) \mapsto m$$

- $Enc(m_1, \dots, m_k) = CRT_{(p_1, \dots, p_k)}(m_1 + e_1Q_1, \dots, m_k + e_kQ_k)$
- At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic encryption using this homomorphism.
- $\mathbf{Enc}(m_1, \dots, m_k) = \mathsf{CRT}_{(q_0, p_1, \dots, p_k)}(r, m_1 + e_1 Q_1, \dots, m_k + e_k Q_k)$
- Semantically secure under the (extended)-ACD assumption

$$\mathsf{CRT}_{(p_1,\ldots,p_k)}: \prod_{i=1}^k \mathbb{Z}_{p_i} \to \mathbb{Z}_{\prod_{i=1}^k p_i} \\ (m_1,\cdots,m_k) \mapsto m$$

- $Enc(m_1, \dots, m_k) = CRT_{(p_1, \dots, p_k)}(m_1 + e_1Q_1, \dots, m_k + e_kQ_k)$
- At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic encryption using this homomorphism.
- $Enc(m_1, \dots, m_k) = CRT_{(q_0, p_1, \dots, p_k)}(r, m_1 + e_1Q_1, \dots, m_k + e_kQ_k)$
- Semantically secure under the (extended)-ACD assumption

$$\mathsf{CRT}_{(p_1,\ldots,p_k)}: \prod_{i=1}^k \mathbb{Z}_{p_i} \to \mathbb{Z}_{\prod_{i=1}^k p_i} \\ (m_1,\cdots,m_k) \mapsto m$$

- $Enc(m_1, \dots, m_k) = CRT_{(p_1, \dots, p_k)}(m_1 + e_1Q_1, \dots, m_k + e_kQ_k)$
- At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic encryption using this homomorphism.
- $Enc(m_1, \dots, m_k) = CRT_{(q_0, p_1, \dots, p_k)}(r, m_1 + e_1Q_1, \dots, m_k + e_kQ_k)$
- Semantically secure under the (extended)-ACD assumption

$$\mathsf{CRT}_{(p_1,\ldots,p_k)}: \prod_{i=1}^k \mathbb{Z}_{p_i} \to \mathbb{Z}_{\prod_{i=1}^k p_i} \\ (m_1,\cdots,m_k) \mapsto m$$

- $Enc(m_1, \dots, m_k) = CRT_{(p_1, \dots, p_k)}(m_1 + e_1Q_1, \dots, m_k + e_kQ_k)$
- At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic encryption using this homomorphism.
- $\mathsf{Enc}(m_1, \cdots, m_k) = \mathsf{CRT}_{(q_0, p_1, \dots, p_k)}(r, m_1 + e_1 Q_1, \cdots, m_k + e_k Q_k)$
- Semantically secure under the (extended)-ACD assumption

$$\mathsf{CRT}_{(p_1,\ldots,p_k)}: \prod_{i=1}^k \mathbb{Z}_{p_i} \to \mathbb{Z}_{\prod_{i=1}^k p_i} \\ (m_1,\cdots,m_k) \mapsto m$$

- $Enc(m_1, \dots, m_k) = CRT_{(p_1, \dots, p_k)}(m_1 + e_1Q_1, \dots, m_k + e_kQ_k)$
- At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic encryption using this homomorphism.
- $\mathsf{Enc}(m_1, \cdots, m_k) = \mathsf{CRT}_{(q_0, p_1, \dots, p_k)}(r, m_1 + e_1 Q_1, \cdots, m_k + e_k Q_k)$
- Semantically secure under the (extended)-ACD assumption

Ring Homomorphism: Inverse of a Homomorphism

• The inverse of a ring homomorphism is also a ring homomorphism!

Inverse of Chinese Remainder Theorem

$$\mathsf{ModRed}_{(p_1,\ldots,p_k)}: \ \mathbb{Z}_{\prod_{i=1}^k p_i} \ \to \ \prod_{i=1}^k \mathbb{Z}_{p_i} \\ m \ \mapsto \ ([m]_{p_1},\cdots,[m]_{p_k})$$

- With this homomorphism, we expect an efficient SHE where
 - ▶ the message space is comparable to Cheon et al.'s construction
 - ▶ the ciphertext size is smaller than Cheon et al.'s construction

Ring Homomorphism: Inverse of a Homomorphism

• The inverse of a ring homomorphism is also a ring homomorphism!

Inverse of Chinese Remainder Theorem

$$\mathsf{ModRed}_{(p_1,\ldots,p_k)}: \ \mathbb{Z}_{\prod_{i=1}^k p_i} \ \to \ \prod_{i=1}^k \mathbb{Z}_{p_i} \\ m \ \mapsto \ ([m]_{p_1},\cdots,[m]_{p_k})$$

- With this homomorphism, we expect an efficient SHE where
 - ▶ the message space is comparable to Cheon et al.'s construction
 - ▶ the ciphertext size is smaller than Cheon et al.'s construction

Ring Homomorphism: Inverse of a Homomorphism

• The inverse of a ring homomorphism is also a ring homomorphism!

Inverse of Chinese Remainder Theorem

$$\mathsf{ModRed}_{(p_1,\ldots,p_k)}: \ \mathbb{Z}_{\prod_{i=1}^k p_i} \ \to \ \prod_{i=1}^k \mathbb{Z}_{p_i} \\ m \ \mapsto \ ([m]_{p_1},\cdots,[m]_{p_k})$$

- With this homomorphism, we expect an efficient SHE where
 - ▶ the message space is comparable to Cheon et al.'s construction
 - the ciphertext size is smaller than Cheon et al.'s construction

- Setup(λ):
 - Choose η -bit distinct primes p_1, \ldots, p_k satisfying $\gcd(Q, p_i) = 1$
 - \triangleright $N := \prod_{i=1}^k p_i$
 - Output the private key $sk = (p_1, \ldots, p_k)$
- **Enc**(*sk*, *m*):
 - ▶ Randomly and uniformly choose *e* from $(-2^{\rho}, 2^{\rho})$
 - Compute

$$\mathsf{ModRed}_{(p_1,\ldots,p_k)}(m+eQ) = \vec{c} = ([m+eQ]_{p_1},\ldots,[m+eQ]_{p_k})$$

- Dec(sk, c̄):
 - Compute

$$m = [\mathsf{CRT}_{(p_1,\ldots,p_k)}(\vec{c})]_Q = [m + eQ]_Q$$

- Setup(λ):
 - Choose η -bit distinct primes p_1, \ldots, p_k satisfying $\gcd(Q, p_i) = 1$
 - \triangleright $N := \prod_{i=1}^k p_i$
 - Output the private key $sk = (p_1, \ldots, p_k)$
- **Enc**(*sk*, *m*):
 - ▶ Randomly and uniformly choose *e* from $(-2^{\rho}, 2^{\rho})$
 - Compute

$$\mathsf{ModRed}_{(p_1,\ldots,p_k)}(m+eQ) = \vec{c} = ([m+eQ]_{p_1},\ldots,[m+eQ]_{p_k})$$

- Dec(sk, c̄):
 - Compute

$$m = [\mathsf{CRT}_{(p_1, \dots, p_k)}(\vec{c})]_Q = [m + eQ]_Q$$

- Setup(λ):
 - Choose η -bit distinct primes p_1, \ldots, p_k satisfying $\gcd(Q, p_i) = 1$
 - \triangleright $N := \prod_{i=1}^k p_i$
 - Output the private key $sk = (p_1, \ldots, p_k)$
- **Enc**(*sk*, *m*):
 - ▶ Randomly and uniformly choose e from $(-2^{\rho}, 2^{\rho})$
 - Compute

$$\mathsf{ModRed}_{(p_1,\ldots,p_k)}(m+eQ) = \vec{c} = ([m+eQ]_{p_1},\ldots,[m+eQ]_{p_k})$$

- Dec(sk, \(\vec{c}\)):
 - Compute

$$m = [\mathsf{CRT}_{(p_1,\ldots,p_k)}(\vec{c})]_Q = [m + eQ]_Q$$

- $Add(sk, \vec{c_1}, \vec{c_2})$: Output $\vec{c_1} + \vec{c_2}$ through the component-wise integer additions
- $Mul(sk, \vec{c_1}, \vec{c_2})$: Output $\vec{c_1} \times \vec{c_2}$ through the component-wise integer multiplications
- Correctness
 - $ightharpoonup \vec{c}$: homomorphically generated ciphertext
 - $ightharpoonup ec{c} = \operatorname{\mathsf{ModRed}}(f(m_1 + e_1 Q, \dots, m_\ell + e_\ell Q))$ for some f
 - If $|f(m_1 + e_1 Q, \dots, m_\ell + e_\ell Q)| < \frac{N}{2}$,

$$f(m_1+e_1Q,\ldots,m_\ell+e_\ell Q) = \mathsf{CRT}(\mathsf{ModRed}(f(m_1+e_1Q,\ldots,m_\ell+e_\ell Q)))$$

```
f(m_1 + e_1 Q, ..., m_{\ell} + e_{\ell} Q) \neq ([f(m_1 + e_1 Q, ..., m_{\ell} + e_{\ell} Q)]_N)
= CRT(ModRed(f(m_1 + e_1 Q, ..., m_{\ell} + e_{\ell} Q))
```

- $Add(sk, \vec{c_1}, \vec{c_2})$: Output $\vec{c_1} + \vec{c_2}$ through the component-wise integer additions
- $Mul(sk, \vec{c_1}, \vec{c_2})$: Output $\vec{c_1} \times \vec{c_2}$ through the component-wise integer multiplications
- Correctness
 - $ightharpoonup \vec{c}$: homomorphically generated ciphertext
 - $\vec{c} = \mathsf{ModRed}(f(m_1 + e_1 Q, \dots, m_\ell + e_\ell Q))$ for some f
 - If $|f(m_1 + e_1 Q, \dots, m_\ell + e_\ell Q)| < \frac{N}{2}$,

$$f(m_1+e_1Q,\ldots,m_\ell+e_\ellQ) = \mathsf{CRT}(\mathsf{ModRed}(f(m_1+e_1Q,\ldots,m_\ell+e_\ellQ)))$$

```
f(m_1 + e_1 Q, ..., m_\ell + e_\ell Q) \neq ([f(m_1 + e_1 Q, ..., m_\ell + e_\ell Q)]_N)
= CRT(ModRed(f(m_1 + e_1 Q, ..., m_\ell + e_\ell Q)))
```

- $Add(sk, \vec{c_1}, \vec{c_2})$: Output $\vec{c_1} + \vec{c_2}$ through the component-wise integer additions
- $Mul(sk, \vec{c_1}, \vec{c_2})$: Output $\vec{c_1} \times \vec{c_2}$ through the component-wise integer multiplications
- Correctness
 - \vec{c} : homomorphically generated ciphertext
 - $ightharpoonup ec{c} = \mathsf{ModRed}(f(m_1 + e_1 Q, \dots, m_\ell + e_\ell Q))$ for some f
 - If $|f(m_1 + e_1 Q, \dots, m_\ell + e_\ell Q)| < \frac{N}{2}$,

$$f(m_1+e_1Q,\ldots,m_\ell+e_\ell Q) = \mathsf{CRT}(\mathsf{ModRed}(f(m_1+e_1Q,\ldots,m_\ell+e_\ell Q)))$$

```
f(m_1 + e_1 Q, ..., m_\ell + e_\ell Q) \neq ([f(m_1 + e_1 Q, ..., m_\ell + e_\ell Q)]_N)
= CRT(ModRed(f(m_1 + e_1 Q, ..., m_\ell + e_\ell Q)))
```

- $Add(sk, \vec{c_1}, \vec{c_2})$: Output $\vec{c_1} + \vec{c_2}$ through the component-wise integer additions
- $Mul(sk, \vec{c_1}, \vec{c_2})$: Output $\vec{c_1} \times \vec{c_2}$ through the component-wise integer multiplications
- Correctness
 - \vec{c} : homomorphically generated ciphertext
 - $ightharpoonup ec{c} = \mathsf{ModRed}(f(m_1 + e_1 Q, \ldots, m_\ell + e_\ell Q))$ for some f
 - If $|f(m_1 + e_1 Q, \dots, m_\ell + e_\ell Q)| < \frac{N}{2}$,

$$f(m_1+e_1Q,\ldots,m_\ell+e_\ell Q) = \mathsf{CRT}(\mathsf{ModRed}(f(m_1+e_1Q,\ldots,m_\ell+e_\ell Q)))$$

```
\begin{array}{lcl} f(m_1 + e_1 Q, \dots, m_{\ell} + e_{\ell} Q) & \neq & ([f(m_1 + e_1 Q, \dots, m_{\ell} + e_{\ell} Q)]_N) \\ & = & \mathsf{CRT}(\mathsf{ModRed}(f(m_1 + e_1 Q, \dots, m_{\ell} + e_{\ell} Q))) \end{array}
```

- $Add(sk, \vec{c_1}, \vec{c_2})$: Output $\vec{c_1} + \vec{c_2}$ through the component-wise integer additions
- $Mul(sk, \vec{c_1}, \vec{c_2})$: Output $\vec{c_1} \times \vec{c_2}$ through the component-wise integer multiplications
- Correctness
 - \vec{c} : homomorphically generated ciphertext
 - $ightharpoonup ec{c} = \mathsf{ModRed}(f(m_1 + e_1 Q, \dots, m_\ell + e_\ell Q))$ for some f
 - If $|f(m_1 + e_1 Q, \dots, m_\ell + e_\ell Q)| < \frac{N}{2}$,

$$f(m_1+e_1Q,\ldots,m_\ell+e_\ell Q) = \mathsf{CRT}(\mathsf{ModRed}(f(m_1+e_1Q,\ldots,m_\ell+e_\ell Q)))$$

$$f(m_1 + e_1 Q, ..., m_\ell + e_\ell Q) \neq ([f(m_1 + e_1 Q, ..., m_\ell + e_\ell Q)]_N)$$

= CRT(ModRed($f(m_1 + e_1 Q, ..., m_\ell + e_\ell Q)$))

The co-ACD Problem

Definition $((\rho, \eta, 2; Q)$ -co-ACD Problem)

- $\hat{\mathcal{D}}_{\rho,Q}(p_1,p_2) := \{ \mathsf{ModRed}_{(p_1,p_2)}(eQ) | e \leftarrow \mathbb{Z} \cap (-2^{\rho},2^{\rho}) \}$ for hidden η -bit primes p_j 's.
- Given polynomially many samples from $\hat{\mathcal{D}}_{\rho,Q}(p_1,p_2)$, the $(\rho,\eta,2;Q)$ -co ACD problem is to find a certain p_j .
- The difference between the ACD problem and the co-ACD problem is the distribution that samples generated.

$$\mathcal{D}_{\rho}(p_1, p_2; Q_1, Q_2; q_0) := \{ x = \mathsf{CRT}_{(q_0, p_1, \dots, p_k)}(e_0, e_1 Q_1, e_2 Q_2) | e_0 \leftarrow \mathbb{Z} \cap [0, q_0), e_i \leftarrow \mathbb{Z} \cap (-2^{\rho}, 2^{\rho}) \}$$

The co-ACD Problem

Definition $((\rho, \eta, 2; Q)$ -co-ACD Problem)

- $\hat{\mathcal{D}}_{\rho,Q}(p_1,p_2) := \{ \mathsf{ModRed}_{(p_1,p_2)}(eQ) | e \leftarrow \mathbb{Z} \cap (-2^{\rho},2^{\rho}) \}$ for hidden η -bit primes p_j 's.
- Given polynomially many samples from $\hat{\mathcal{D}}_{\rho,Q}(p_1,p_2)$, the $(\rho,\eta,2;Q)$ -co ACD problem is to find a certain p_j .
- The difference between the ACD problem and the co-ACD problem is the distribution that samples generated.

$$\mathcal{D}_{\rho}(p_1, p_2; Q_1, Q_2; q_0) := \{ x = \mathsf{CRT}_{(q_0, p_1, \dots, p_k)}(e_0, e_1 Q_1, e_2 Q_2) | e_0 \leftarrow \mathbb{Z} \cap [0, q_0), e_i \leftarrow \mathbb{Z} \cap (-2^{\rho}, 2^{\rho}) \}$$

The co-ACD Problem

Definition $((\rho, \eta, 2; Q)$ -co-ACD Problem)

- $\hat{\mathcal{D}}_{\rho,Q}(p_1,p_2) := \{ \mathsf{ModRed}_{(p_1,p_2)}(eQ) | e \leftarrow \mathbb{Z} \cap (-2^{\rho},2^{\rho}) \}$ for hidden η -bit primes p_j 's.
- Given polynomially many samples from $\hat{\mathcal{D}}_{\rho,Q}(p_1,p_2)$, the $(\rho,\eta,2;Q)$ -co ACD problem is to find a certain p_j .
- The difference between the ACD problem and the co-ACD problem is the distribution that samples generated.

$$\mathcal{D}_{\rho}(p_1, p_2; Q_1, Q_2; q_0) := \{ x = \mathsf{CRT}_{(q_0, p_1, \dots, p_k)}(e_0, e_1 Q_1, e_2 Q_2) | \\ e_0 \leftarrow \mathbb{Z} \cap [0, q_0), e_i \leftarrow \mathbb{Z} \cap (-2^{\rho}, 2^{\rho}) \}$$

Security of Our Construction

Decisional version

Given polynomially many samples from $\hat{\mathcal{D}}_{\rho,Q}$ and the uniform distribution on $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2}$, determine whether the target vector \vec{x} is sampled from $\hat{\mathcal{D}}_{\rho,Q}$ or the uniform distribution on $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2}$.

- Our scheme is semantically secure under the assumption that the decisional version of the $(\rho, \eta, k; Q)$ -co-ACD problem is hard.
- There is no reduction between the co-ACD assumption and other well-known cryptographic assumptions.
- To show the hardness of the co-ACD problem, apply known attacks to solve the co-ACD problem.

Security of Our Construction

Decisional version

Given polynomially many samples from $\hat{\mathcal{D}}_{\rho,Q}$ and the uniform distribution on $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2}$, determine whether the target vector \vec{x} is sampled from $\hat{\mathcal{D}}_{\rho,Q}$ or the uniform distribution on $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2}$.

- Our scheme is semantically secure under the assumption that the decisional version of the $(\rho, \eta, k; Q)$ -co-ACD problem is hard.
- There is no reduction between the co-ACD assumption and other well-known cryptographic assumptions.
- To show the hardness of the co-ACD problem, apply known attacks to solve the co-ACD problem.

Security of Our Construction

Decisional version

Given polynomially many samples from $\hat{\mathcal{D}}_{\rho,Q}$ and the uniform distribution on $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2}$, determine whether the target vector \vec{x} is sampled from $\hat{\mathcal{D}}_{\rho,Q}$ or the uniform distribution on $\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2}$.

- Our scheme is semantically secure under the assumption that the decisional version of the $(\rho, \eta, k; Q)$ -co-ACD problem is hard.
- There is no reduction between the co-ACD assumption and other well-known cryptographic assumptions.
- To show the hardness of the co-ACD problem, apply known attacks to solve the co-ACD problem.

Analysis of the Hardness of the co-ACD Problem

Simplified co-ACD Problem

Given many samples $\mathsf{ModRed}_{(p_1,\dots,p_k)}(e_iQ) := (e_iQ \bmod p_j)_{1 \le j \le k}$ for η -bit hidden primes p_j 's and an integer $e_i \in (-2^\rho, 2^\rho)$, the co-ACD problem is to find some prime p_j .

- Using one component
 - Statistical distance from the uniform distribution: $\rho > \eta + \lambda$
 - Chen-Ngyuen's attack: $\rho > 2\lambda$
- Using multiple components
 - ▶ Coppersmith attack: $\rho > \eta + \lambda$
 - ▶ Orthogonal lattice attack: $\rho > (k-1)\eta$

Analysis of the Hardness of the co-ACD Problem

Simplified co-ACD Problem

Given many samples $\mathsf{ModRed}_{(p_1,\dots,p_k)}(e_iQ) := (e_iQ \bmod p_j)_{1 \le j \le k}$ for η -bit hidden primes p_j 's and an integer $e_i \in (-2^\rho, 2^\rho)$, the co-ACD problem is to find some prime p_j .

- Using one component
 - Statistical distance from the uniform distribution: $\rho > \eta + \lambda$
 - Chen-Ngyuen's attack: $\rho > 2\lambda$
- Using multiple components
 - ▶ Coppersmith attack: $\rho > \eta + \lambda$
 - ▶ Orthogonal lattice attack: $\rho > (k-1)\eta$

Analysis of the Hardness of the co-ACD Problem

Simplified co-ACD Problem

Given many samples $\mathsf{ModRed}_{(p_1,\dots,p_k)}(e_iQ) := (e_iQ \bmod p_j)_{1 \le j \le k}$ for η -bit hidden primes p_j 's and an integer $e_i \in (-2^\rho,2^\rho)$, the co-ACD problem is to find some prime p_j .

- Using one component
 - Statistical distance from the uniform distribution: $\rho > \eta + \lambda$
 - Chen-Ngyuen's attack: $\rho > 2\lambda$
- Using multiple components
 - ▶ Coppersmith attack: $\rho > \eta + \lambda$
 - Orthogonal lattice attack: $\rho > (k-1)\eta$

- Parameters
 - $\eta = O(\lambda^2)$ to resist factoring attack of N
 - $\rho > \eta + \lambda$ to avoid Coppersmith's attack
 - $ho > (k-1)\eta$ to avoid orthogonal lattice attack
 - k = 2 for the efficiency
- ullet The bit size ho of noise is too large to support a multiplication.
- For correct decryption, $(m_1 + e_1 Q) \times (m_2 + e_2 Q)$ is less than $\frac{N}{2}$.
- However,

$$(m_1 + e_1 Q) \times (m_2 + e_2 Q) \approx 2^{2\rho} > 2^{2(k-1)\eta} > 2^{k\eta} \approx N$$

- As a result, we obtain an efficient private-key AHE where
 - the ciphertext size is smaller than Paillier
 - the computational cost is lower than Paillier

- Parameters
 - $\eta = O(\lambda^2)$ to resist factoring attack of N
 - $\rho > \eta + \lambda$ to avoid Coppersmith's attack
 - $\rho > (k-1)\eta$ to avoid orthogonal lattice attack
 - k = 2 for the efficiency
- ullet The bit size ho of noise is too large to support a multiplication.
- For correct decryption, $(m_1 + e_1 Q) \times (m_2 + e_2 Q)$ is less than $\frac{N}{2}$.
- However,

$$(m_1 + e_1 Q) \times (m_2 + e_2 Q) \approx 2^{2\rho} > 2^{2(k-1)\eta} > 2^{k\eta} \approx N$$

- As a result, we obtain an efficient private-key AHE where
 - the ciphertext size is smaller than Paillier
 - the computational cost is lower than Paillier

- Parameters
 - $\eta = O(\lambda^2)$ to resist factoring attack of N
 - $\rho > \eta + \lambda$ to avoid Coppersmith's attack
 - $ho > (k-1)\eta$ to avoid orthogonal lattice attack
 - k = 2 for the efficiency
- ullet The bit size ho of noise is too large to support a multiplication.
- For correct decryption, $(m_1 + e_1 Q) \times (m_2 + e_2 Q)$ is less than $\frac{N}{2}$.
- However,

$$(m_1 + e_1 Q) \times (m_2 + e_2 Q) \approx 2^{2\rho} > 2^{2(k-1)\eta} > 2^{k\eta} \approx N$$

- As a result, we obtain an efficient private-key AHE where
 - the ciphertext size is smaller than Paillier
 - the computational cost is lower than Paillier

- Parameters
 - $\eta = O(\lambda^2)$ to resist factoring attack of N
 - $\rho > \eta + \lambda$ to avoid Coppersmith's attack
 - $ho > (k-1)\eta$ to avoid orthogonal lattice attack
 - k = 2 for the efficiency
- ullet The bit size ho of noise is too large to support a multiplication.
- For correct decryption, $(m_1 + e_1 Q) \times (m_2 + e_2 Q)$ is less than $\frac{N}{2}$.
- However,

$$(m_1 + e_1 Q) \times (m_2 + e_2 Q) \approx 2^{2\rho} > 2^{2(k-1)\eta} > 2^{k\eta} \approx N$$

- As a result, we obtain an efficient private-key AHE where
 - the ciphertext size is smaller than Paillier
 - the computational cost is lower than Paillier

Parameters of Our Private-key Scheme

- Parameters
 - $\eta = O(\lambda^2)$ to resist factoring attack of N
 - $\rho > \eta + \lambda$ to avoid Coppersmith's attack
 - $ho > (k-1)\eta$ to avoid orthogonal lattice attack
 - k = 2 for the efficiency
- ullet The bit size ho of noise is too large to support a multiplication.
- For correct decryption, $(m_1 + e_1 Q) \times (m_2 + e_2 Q)$ is less than $\frac{N}{2}$.
- However,

$$(m_1 + e_1 Q) \times (m_2 + e_2 Q) \approx 2^{2\rho} > 2^{2(k-1)\eta} > 2^{k\eta} \approx N$$

- As a result, we obtain an efficient private-key AHE where
 - the ciphertext size is smaller than Paillier
 - the computational cost is lower than Paillier

Convert into a Public-key Version

• The distribution of $\sum Enc(0)$ and $M+\sum Enc(0)$

• By shifting the subset-sum of Enc(0)'s, we can obtain the following distribution: $\sum_{j=1}^{m} s_j \text{Enc}_j(0) + \sum_{i=1}^{n} t_i \text{Enc}_i(0)$ where $s_j \leftarrow \{0,1\}$ and $t_i \leftarrow [0,2^{\mu})$

Convert into a Public-key Version

• The distribution of $\sum Enc(0)$ and $M+\sum Enc(0)$

• By shifting the subset-sum of Enc(0)'s, we can obtain the following distribution: $\sum_{j=1}^m s_j \operatorname{Enc}_j(0) + \sum_{i=1}^n t_i \operatorname{Enc}_i(0)$ where $s_j \leftarrow \{0,1\}$ and $t_i \leftarrow [0,2^\mu)$

Convert into a Public-key Version

• The distribution of $\sum Enc(0)$ and $M+\sum Enc(0)$

• By shifting the subset-sum of Enc(0)'s, we can obtain the following distribution: $\sum_{j=1}^{m} s_j \text{Enc}_j(0) + \sum_{i=1}^{n} t_i \text{Enc}_i(0)$ where $s_j \leftarrow \{0,1\}$ and $t_i \leftarrow [0,2^{\mu})$

Leftover Hash Lemma over Lattices

Lemma (Leftover Hash Lemma over Lattices; CLT13)

- $L \subset \mathbb{Z}^n$: a lattice of rank n of a basis $\mathbf{B} = (\vec{b}_1, \dots, \vec{b}_n)$
- $m{\mathcal{D}_B}$: a distribution of outputting a random element sampled from the half-open parallelepiped generated by $m{B}$
- $x_i \leftarrow \mathcal{D}_{\mathbf{B}}$ for $1 \leq i \leq m$
- $\vec{y} = \sum_{j=1}^m s_j \vec{x_j} + \sum_{i=1}^n t_i \vec{b_i}$ where $s_j \leftarrow \{0,1\}$ and $t_i \leftarrow [0,2^{\mu}) \cap \mathbb{Z}$
- $\vec{y}' \leftarrow \mathcal{D}_{2^{\mu} \mathbf{B}} \text{ for } 2^{\mu} \mathbf{B} = (2^{\mu} \vec{b}_1, \dots, 2^{\mu} \vec{b}_n)$
- $\Longrightarrow (\vec{x}_1,\ldots,\vec{x}_m,\vec{y})$ and $(\vec{x}_1,\ldots,\vec{x}_m,\vec{y}')$ are ϵ -statistically close, with $\epsilon = \frac{mn}{2^{\mu}} + \frac{1}{2} \cdot \sqrt{\frac{|\det L|}{2^m}}$.

e.g.)
$$\eta = 1536$$
 ($\Rightarrow |\det L| \le 2^{3072}$), $m = 3328$, $n = 2$, $\mu = 142$, $\epsilon < 2^{-128}$

Public-key Version of Our Scheme

Setup(1^λ):

- ▶ $\vec{b}_1 = \mathsf{ModRed}_{(p_1,p_2)}(e'_1Q)$ and $\vec{b}_2 = \mathsf{ModRed}_{(p_1,p_2)}(e'_2Q)$ so that the determinant of the lattice generated by \vec{b}_1 and \vec{b}_2 are sufficiently large.
- ▶ $\vec{x_j} = \text{ModRed}_{(p_1,p_2)}(e_j Q)$ for $1 \leq j \leq m$ which are contained in the half-open parallelepiped generated by $\vec{b_1}$ and $\vec{b_2}$.
- ▶ $pk = \{Q, \vec{b}_1, \vec{b}_2, \vec{x}_1, \dots, \vec{x}_m\}$ and $sk = \{p_1, p_2\}$, where \mathbb{Z}_Q is the message space.
- Enc(pk, M):
 - ▶ Choose $s_j \leftarrow \{0,1\}$, $t_i \leftarrow [0,2^{\mu}) \cap \mathbb{Z}$ for $j \in \{1,\ldots,m\}$ and $i \in \{0,1\}$.
 - Compute

$$ec{c} = (M, M) + \sum_{i=1}^m s_j \vec{x_j} + \sum_{i=1}^2 t_i \vec{b_i}$$

where '+' is a binary operation meaning an addition in $\mathbb{Z} \times \mathbb{Z}$.

Public-key Version of Our Scheme

Setup(1^λ):

- ▶ $\vec{b}_1 = \mathsf{ModRed}_{(p_1,p_2)}(e'_1Q)$ and $\vec{b}_2 = \mathsf{ModRed}_{(p_1,p_2)}(e'_2Q)$ so that the determinant of the lattice generated by \vec{b}_1 and \vec{b}_2 are sufficiently large.
- ▶ $\vec{x_j} = \text{ModRed}_{(p_1,p_2)}(e_j Q)$ for $1 \leq j \leq m$ which are contained in the half-open parallelepiped generated by $\vec{b_1}$ and $\vec{b_2}$.
- ▶ $pk = \{Q, \vec{b}_1, \vec{b}_2, \vec{x}_1, \dots, \vec{x}_m\}$ and $sk = \{p_1, p_2\}$, where \mathbb{Z}_Q is the message space.
- Enc(pk, M):
 - ▶ Choose $s_j \leftarrow \{0,1\}$, $t_i \leftarrow [0,2^{\mu}) \cap \mathbb{Z}$ for $j \in \{1,\ldots,m\}$ and $i \in \{0,1\}$.
 - Compute

$$\vec{c} = (M, M) + \sum_{j=1}^{m} s_j \vec{x}_j + \sum_{i=1}^{2} t_i \vec{b}_i,$$

where '+' is a binary operation meaning an addition in $\mathbb{Z} \times \mathbb{Z}$.

Efficiency: Parameter Sizes

Table: Parameter Sizes

	λ	η	ρ	m	μ	log Q	log A	γ	PK
Pai99	128	1536	_	_	_	3072	∞	6144	1.5 KB
NLV11	120	_	_	_	_	10	20	61440	7.6 KB
JL13	128	1536	_	_	_	256	∞	3072	0.8 KB
Ours	128	1536	1792	3328	142	256	1134	3072	1.3 MB
		2194	2450	4645			1536	4388	2.6 MB
		2706	2962	5659			2048	5412	3.9 MB

Efficiency: Implementation Results

System: Intel Core i7-2600 CPU running at 3.4 GHz with 16 GB RAM

Table: Parameter Sizes, Implementation Results, and Comparison

	λ	log A	Setup	Enc	Dec	Add
Pai99	128	∞	437.39 s	62.46 ms	40.38 ms	$12.40~\mu s$
NLV11 [†]	120	20	0.11 s	164.00 ms	4.00 ms	$\leq 1.00~\text{ms}$
JL13	128	∞	250.32 s	2.07 ms	903.36 ms	$2.40~\mu s$
		1134	0.35 s	0.72 ms	$4.00~\mu$ s	$0.40~\mu s$
Ours	128	1536	1.18 s	1.07 ms	$8.00~\mu s$	$0.80~\mu { m s}$
		2048	2.34 s	1.29 ms	$8.80~\mu s$	$0.80~\mu s$

 $^{^\}dagger$ We referred to the implementation results in [NLV11] and they were done on a 2.1 GHz Intel Core 2 Duo, with 3 MB L3 cache and 1 GB of memory.

Applications

- Symmetric polynomial evaluation
 - A symmetric polynomial of degree (d < n) in n variables can be represented by the sum of power-sum polynomials of degree at most d.
 - Modify an encryption algorithm by

$$\mathcal{E}_d(pk,M) := (\mathsf{Enc}(pk,M),\mathsf{Enc}(pk,M^2),\dots,\mathsf{Enc}(pk,M^d))$$

- \blacktriangleright Compute the variance of 1000 128-bit integers: 120 μ s
- Private set operations based on a polynomial representation of a set
 - ▶ Polynomial representation of $S = \{s_1, \dots, s_\ell\}$: $f_S(x) = \prod_{i=1}^{\ell} (x s_i)$
 - ▶ To recover a set from a polynomial: Need a root finding algorithm
 - ★ For a root finding algorithm, the message space should be a field.
 - * Previous additive homomorphic encryption scheme: \mathbb{Z}_{σ} for a composite or hidden prime σ
 - ★ The message space of our scheme can be a field.

Applications

- Symmetric polynomial evaluation
 - A symmetric polynomial of degree (d < n) in n variables can be represented by the sum of power-sum polynomials of degree at most d.
 - Modify an encryption algorithm by

$$\mathcal{E}_d(pk,M) := (\mathsf{Enc}(pk,M),\mathsf{Enc}(pk,M^2),\dots,\mathsf{Enc}(pk,M^d))$$

- \blacktriangleright Compute the variance of 1000 128-bit integers: 120 μ s
- Private set operations based on a polynomial representation of a set
 - ▶ Polynomial representation of $S = \{s_1, \dots, s_\ell\}$: $f_S(x) = \prod_{i=1}^{\ell} (x s_i)$
 - ▶ To recover a set from a polynomial: Need a root finding algorithm
 - **★** For a root finding algorithm, the message space should be a field.
 - * Previous additive homomorphic encryption scheme: \mathbb{Z}_{σ} for a composite or hidden prime σ
 - ★ The message space of our scheme can be a field.

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
 - ▶ More analysis of the hardness of the co-ACD problem
 - ▶ Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
 - ► Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster¹
- Reduce the ciphertext size excluding the factoring assumption
 - ► Ciphertext: 3072 bits \Rightarrow 800+2 × (log Q + log A) bits
- Generalize leftover hash lemma using large coefficients
 - ▶ PK Size: 1.3 MB \Rightarrow 3.3 KB ($\nu = 1000$ where $s_j \leftarrow [0, 2^{\nu})$)

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
 - More analysis of the hardness of the co-ACD problem
 - ▶ Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
 - ► Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster¹
- Reduce the ciphertext size excluding the factoring assumption
 - ► Ciphertext: 3072 bits \Rightarrow 800+2 × (log Q + log A) bits
- Generalize leftover hash lemma using large coefficients
 - ▶ PK Size: 1.3 MB \Rightarrow 3.3 KB ($\nu = 1000$ where $s_j \leftarrow [0, 2^{\nu})$)

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
 - More analysis of the hardness of the co-ACD problem
 - ▶ Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
 - Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster¹
- Reduce the ciphertext size excluding the factoring assumption
 - ► Ciphertext: 3072 bits \Rightarrow 800+2 × (log Q + log A) bits
- Generalize leftover hash lemma using large coefficients
 - ▶ PK Size: 1.3 MB \Rightarrow 3.3 KB ($\nu = 1000$ where $s_j \leftarrow [0, 2^{\nu})$)

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
 - More analysis of the hardness of the co-ACD problem
 - ▶ Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
 - Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster¹
- Reduce the ciphertext size excluding the factoring assumption
 - ► Ciphertext: 3072 bits \Rightarrow 800+2 × (log $Q + \log A$) bits
- Generalize leftover hash lemma using large coefficients
 - ▶ PK Size: 1.3 MB \Rightarrow 3.3 KB ($\nu = 1000$ where $s_j \leftarrow [0, 2^{\nu})$)

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
 - More analysis of the hardness of the co-ACD problem
 - ▶ Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
 - Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster¹
- Reduce the ciphertext size excluding the factoring assumption
 - ► Ciphertext: 3072 bits \Rightarrow 800+2 × (log $Q + \log A$) bits
- Generalize leftover hash lemma using large coefficients
 - ▶ PK Size: 1.3 MB \Rightarrow 3.3 KB ($\nu = 1000$ where $s_j \leftarrow [0, 2^{\nu})$)

¹Crypto++ Library 5.6.2, available at http://www.cryptopp.com ⟨≥⟩ ⟨≥⟩ ≥

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
 - More analysis of the hardness of the co-ACD problem
 - ▶ Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
 - ► Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster¹
- Reduce the ciphertext size excluding the factoring assumption
 - ► Ciphertext: 3072 bits \Rightarrow 800+2 × (log $Q + \log A$) bits
- Generalize leftover hash lemma using large coefficients
 - ▶ PK Size: 1.3 MB \Rightarrow 3.3 KB ($\nu = 1000$ where $s_j \leftarrow [0, 2^{\nu})$)
 - ***** Thanks and Any Question?*****

 $^{^{1}}$ Crypto++ Library 5.6.2, available at http://www.cryptopp.com $\stackrel{\bullet}{\longrightarrow}$