A New Additive Homomorphic Encryption
based on the co-ACD Problem

Jung Hee Cheon?, Hyung Tae Lee?, and Jae Hong Seo?

1Seoul National University, Korea
2Nanyang Technological University, Singapore

3Myongji University, Korea

ACM CCS 2014, November 04, 2014

/18



Applications of Additive Homomorphic Encryption

@ Basic applications: Statistics as encrypted

» Computing average on encrypted data
@ Advanced applications: Before the appearance of FHE, AHE enables
us to construct various applications.

Oblivious pseudorandom functions, Oblivious transfer

Private information retrieval, Private set operation protocols
Electronic voting, Commitment scheme and so on

o Still, AHE-based applications are more efficient than FHE-based
applications.
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Our Results

o Strategy: Follow the technique to construct the recent SHE
@ Construct secure private-key AHE

* Using modular reduction with several moduli and inserting Noise
* Analyze the hardness of a new problem by applying known attacks
@ Convert into a public-key version

* M+ > Enc(0) and leftover hash lemma over lattices
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o Strategy: Follow the technique to construct the recent SHE
@ Construct secure private-key AHE

* Using modular reduction with several moduli and inserting Noise
* Analyze the hardness of a new problem by applying known attacks
@ Convert into a public-key version

* M+ > Enc(0) and leftover hash lemma over lattices

o Implementation result (128-bit security)

| [ Cxt | PK [ KeyGen [ Enc Dec Add

Paillier || 6144 bit | 1.5 KB 437.39s | 62.46 ms | 40.38 ms | 12.40 us
Ours 3072 bit | 1.3 MB 0.35s 0.72 ms 4.00 us 0.40 us

@ Provide applications of our construction and general AHE



Ring Homomorphism: Chinese Remainder Theorem

Chinese Remainder Theorem

k
CRT(Pl,---,pk) : Hi:l Zpi = ZH;(:]. Pi

(mla"'amk) = m

(]

Enc(my, -+ ,mg) = CRT (. py(m1+e1Qr, -+, my + ex Q)

("]

At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic
encryption using this homomorphism.

(%]

Enc(my,- -, mg) = CRT (go py,..p0) (rsm1 + e1Qr, -+, my + e, Qi)

("]

Semantically secure under the (extended)-ACD assumption
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Ring Homomorphism: Chinese Remainder Theorem

Chinese Remainder Theorem

K
CRT(py,....00) [1i1 Zy, - Zl‘[k

i=1 Pi
(m17"'vmk) = ’In

o Enc(mi,---,my) = CRT(p, . py(m +e1Q, -, my + ex Q)

At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic
encryption using this homomorphism.

Enc(mlﬁ o ‘,mk) — CRT(qo.p1 ..... Pk)(r? my + elQl- s, My eka)

Semantically secure under the (extended)-ACD assumption
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Ring Homomorphism: Chinese Remainder Theorem

Chinese Remainder Theorem

_ K
GRINE [1i21 Zp: — ZH,-kzl pi
(ml7 DRI 9 mk) 0—) m

Enc(my, - ,my) = CRT(m,..,,pk)(ml +e1Qu, -, me + e Q)

At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic
encryption using this homomorphism.

Enc(my, -+, mi) = CRT gy, p) (ry M1+ €1Quy -+ myc + e Q)

Semantically secure under the (extended)-ACD assumption
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Ring Homomorphism: Inverse of a Homomorphism

@ The inverse of a ring homomorphism is also a ring homomorphism!
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Ring Homomorphism: Inverse of a Homomorphism

@ The inverse of a ring homomorphism is also a ring homomorphism!

Inverse of Chinese Remainder Theorem
ModRed(p,, . py = Zppt p — 1.z,

m = ([m]Pla"' 7[m]Pk)

o With this homomorphism, we expect an efficient SHE where

» the message space is comparable to Cheon et al.’s construction

> the ciphertext size is smaller than Cheon et al.’s construction



Our Private-key Homomorphic Encryption Scheme (1)

o Setup()\):
» Choose 7-bit distinct primes p1, ..., px satisfying gcd(Q, p;) =1

k
> N:=]li_1pi
» Output the private key sk = (p1, ..., pk)
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o Setup()):
» Choose 7-bit distinct primes py, ..., px satisfying gcd(Q, p;) =1

k
> No=I[-1pi
» Output the private key sk = (p1, ..., pk)

e Enc(sk, m):
» Randomly and uniformly choose e from (—27,27)
» Compute

ModRed(ph“_,pk)(m +eQ)=C=([m+eQlp,...,[m+eQlp)
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Our Private-key Homomorphic Encryption Scheme (1)

o Setup()):
» Choose 7-bit distinct primes py, ..., px satisfying gcd(Q, p;) =1

k
> No=I[-1pi
» Output the private key sk = (p1, ..., pk)

e Enc(sk, m):
» Randomly and uniformly choose e from (—27,27)

» Compute

ModRed(ph“_,pk)(m +eQ)=C=([m+eQlp,...,[m+eQlp)

e Dec(sk, C):
» Compute
m = [CRT(,, . p)()]e = [m+ eQlq
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Our Private-key Homomorphic Encryption Scheme (1)

o Add(sk, ci, &) Output & + & through the component-wise integer
additions

e Mul(sk, ci, c3): Output ¢i x & through the component-wise integer
multiplications
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Our Private-key Homomorphic Encryption Scheme (1)

o Add(sk, ci, &) Output & + & through the component-wise integer
additions

e Mul(sk, ci, c3): Output ¢i x & through the component-wise integer
multiplications

o Correctness
» ¢: homomorphically generated ciphertext
» ¢ = ModRed(f(m + &1 Q,...,m;+ eQ)) for some f
> Uf |f(m +eaQ,....m+ Q)| < %

f(m+eQ,...,m+eQ) = CRT(ModRed(f(mi+e1Q, ..., m+eQ)))
» Otherwise,

flm+eaQ,....m+eQ) # (flm+eaQ,...,m+eQ)n)
= CRT(ModRed(f(m + e1Q, ..., m: + eQ)))



The co-ACD Problem

Definition ((p,n,2; Q)-co-ACD Problem)

o D,o(p1,p2) = {ModRed (eQ)|e <~ Z N (—27,2P)} for hidden
n-bit primes p;’s.

p1,P2)

@ Given polynomially many samples from IA)p,Q(pl,pg), the
(p,1,2; Q)-co ACD problem is to find a certain p;.
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The co-ACD Problem

Definition ((p,n,2; @)-co-ACD Problem)

o D,o(p1,p2) = {ModRed (eQ)|e <~ Z N (—27,2P)} for hidden
n-bit primes p;’s.

p1,P2)

@ Given polynomially many samples from @p’Q(pl,pz), the
(p,1,2; Q)-co ACD problem is to find a certain p;.

@ The difference between the ACD problem and the co-ACD problem is
the distribution that samples generated.

D,(p1, p2; Q1, Q2; o) = {x = CRT gy py.....p) (€0, €1 Q1, €2 Q2)]
e — ZNJ0,qo), e < ZN(=2°,2°)}



Security of Our Construction

Decisional version

Given polynomially many samples from @%Q and the uniform distribution
on Zp, X Zp,, determine whether the target vector X is sampled from D, o
or the uniform distribution on Z,, X Zp,.

@ Our scheme is semantically secure under the assumption that the
decisional version of the (p,n, k; @)-co-ACD problem is hard.
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Security of Our Construction

Decisional version

Given polynomially many samples from @p@ and the uniform distribution
on Zp, X Zp,, determine whether the target vector X is sampled from D, o
or the uniform distribution on Z,, X Zp,.

@ Our scheme is semantically secure under the assumption that the
decisional version of the (p,n, k; @)-co-ACD problem is hard.

@ There is no reduction between the co-ACD assumption and other
well-known cryptographic assumptions.

@ To show the hardness of the co-ACD problem, apply known attacks to
solve the co-ACD problem.



Analysis of the Hardness of the co-ACD Problem

Simplified co-ACD Problem

Given many samples ModRed,,, ., )(€iQ) := (€;Q mod p;)1<j<k for n-bit
hidden primes p;'s and an integer ¢; € (—27,2”), the co-ACD problem is
to find some prime p;.
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Analysis of the Hardness of the co-ACD Problem

Simplified co-ACD Problem

Given many samples ModRed,,, ., )(€iQ) := (€;Q mod p;)1<j<k for n-bit
hidden primes p;'s and an integer ¢; € (—27,2”), the co-ACD problem is
to find some prime p;.

@ Using one component
» Statistical distance from the uniform distribution: p > n + A
» Chen-Ngyuen's attack: p > 2\
o Using multiple components
» Coppersmith attack: p > n+ A
» Orthogonal lattice attack: p > (k — 1)n
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Parameters of Our Private-key Scheme

o Parameters
» 1 = O(\?) to resist factoring attack of N
p >n+ A to avoid Coppersmith’s attack

p > (k —1)n to avoid orthogonal lattice attack
» k = 2 for the efficiency

v

v
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Parameters of Our Private-key Scheme

o Parameters
» 1 = O(\?) to resist factoring attack of N

> p>n+ A to avoid Coppersmith’s attack
» p > (k — 1)1 to avoid orthogonal lattice attack
» k = 2 for the efficiency

@ The bit size p of noise is too large to support a multiplication.

@ For correct decryption, (m; + e1Q) x (m2 + e2Q) is less than %
However,

(m1 + e Q) x (my + Q) ~ 2% > 22k=1n 5 okn

@ As a result, we obtain an efficient private-key AHE where

> the ciphertext size is smaller than Paillier
> the computational cost is lower than Paillier
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Convert into a Public-key Version

@ The distribution of Y Enc(0) and M+)_ Enc(0)

AN
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Convert into a Public-key Version
@ The distribution of ) Enc(0) and M+)_ Enc(0)
SN

@ By shifting the subset-sum of Enc(0)’s, we can obtain the following
distribution: >° ; 5;Enc;(0) + >_7; tiEnc;(0) where s; < {0,1} and
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Convert into a Public-key Version

@ The distribution of Y Enc(0) and M+)_ Enc(0)
VNN

@ By shifting the subset-sum of Enc(0)’s, we can obtain the following
distribution: >°7 ; siEnc;(0) + >_7; tiEnc;(0) where s; - {0,1} and
ti [07 2#)
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Leftover Hash Lemma over Lattices

Lemma (Leftover Hash Lemma over Lattices; CLT13)

@ L C 7Z": a lattice of rank n of a basis B = (51, ol En)

o Dg: a distribution of outputting a random element sampled from the
half-open parallelepiped generated by B

o x;<Dgforl<i<m
o y=>"15%+>1, t:b; where sj < {0,1} and t; + [0,2*)NZ

o y' < Dyup for 2B = (2"by, ..., 2"b,)
= (X1,...,Xm,Y) and (Xi,...,Xm,Y') are e-statistically close, with
det L
=

v

e.g.)n=1536 (= |detL]| <23072) m=3328, n=2, up =142, e < 27128
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Public-key Version of Our Scheme

o Setup(1*):
> by = ModRed,, ,)(e1 Q) and by = ModRedp,, pz)(ez ) so that the
determinant of the lattice generated by b1 and b2 are sufficiently large.
» X; = ModRed(,, ,)(&;Q) for 1 < j < m which are contained in the
half-open parallelepiped generated by b; and b;.

» pk=1{Q, 51, 52,2’1, ...y Xm} and sk = {py, p2}, where Zg is the
message space.
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Public-key Version of Our Scheme

o Setup(1*):
> by = ModRed,, ,)(e1 Q) and by = ModRedp,, pz)(ez ) so that the
determinant of the lattice generated by b1 and b2 are sufficiently large.
» X; = ModRed(,, ,)(&;Q) for 1 < j < m which are contained in the
half-open parallelepiped generated by b; and b;.

» pk=1{Q, 51, 52,2’1, ...y Xm} and sk = {py, p2}, where Zg is the
message space.

e Enc(pk, M):
» Choose s; < {0,1}, t; « [0,2*)NZ for j € {1,...,m} and i € {0,1}.

» Compute
= (M, M) Zs,xj th
j=1

where ‘+' is a binary operation meaning an addition in Z x Z.
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Efficiency: Parameter Sizes

Table: Parameter Sizes

] I A H N p m \ I \ log @ \ log A \ ~ \ PK
Pai99 | 128 || 1536 — — — 3072 o0 6144 | 1.5 KB
NLV11 | 120 — — — — 10 20 | 61440 | 7.6 KB
JL13 | 128 || 1536 — — — 256 00 3072 | 0.8 KB
1536 | 1792 | 3328 1134 3072 | 1.3 MB
Ours 128 2194 | 2450 | 4645 | 142 1536 4388 | 2.6 MB
2706 | 2962 | 5659 2048 5412 | 3.9 MB
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Efficiency: Implementation Results

@ System: Intel Core i7-2600 CPU running at 3.4 GHz with 16 GB RAM

Table: Parameter Sizes, Implementation Results, and Comparison

| A J[logA ] Setup | Enc Dec Add
Pai99 | 128 oo || 437.39s | 6246 ms | 40.38 ms 12.40 us
NLV11T | 120 20 0.11s | 164.00 ms 4.00 ms | < 1.00 ms
JL13 | 128 oo || 250.32 s 2.07 ms | 903.36 ms 2.40 us
1134 0.35s 0.72 ms 4.00 ps 0.40 ps
Ours 128 || 1536 1.18 s 1.07 ms 8.00 us 0.80 us
2048 2.34 s 1.29 ms 8.80 us 0.80 us

T We referred to the implementation results in [NLV11] and they were done on a 2.1 GHz
Intel Core 2 Duo, with 3 MB L3 cache and 1 GB of memory.

16
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Applications

@ Symmetric polynomial evaluation

» A symmetric polynomial of degree (d < n) in n variables can be
represented by the sum of power-sum polynomials of degree at most d.

» Modify an encryption algorithm by
Eq4(pk, M) := (Enc(pk, M), Enc(pk, M?), ..., Enc(pk, M?))

» Compute the variance of 1000 128-bit integers: 120 us
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Applications

@ Symmetric polynomial evaluation

» A symmetric polynomial of degree (d < n) in n variables can be
represented by the sum of power-sum polynomials of degree at most d.

» Modify an encryption algorithm by
Eq4(pk, M) := (Enc(pk, M), Enc(pk, M?), ..., Enc(pk, M?))

» Compute the variance of 1000 128-bit integers: 120 us

@ Private set operations based on a polynomial representation of a set
: . ¢
» Polynomial representation of S = {si,---,s/}: fs(x) = [[,_1(x — s7)
» To recover a set from a polynomial: Need a root finding algorithm

* For a root finding algorithm, the message space should be a field.

* Previous additive homomorphic encryption scheme: Z, for a composite
or hidden prime o
* The message space of our scheme can be a field.

17/18



Conclusions & Further Works

@ Provide an efficient AHE scheme based on the new assumption
@ Study on the co-ACD problem

More analysis of the hardness of the co-ACD problem
Relation between the computational version and decisional version

o IND-CCA2 PKE using Fujisaki-Okamoto conversion

Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster!
@ Reduce the ciphertext size excluding the factoring assumption
Ciphertext: 3072 bits = 800+2 x (log Q + log A) bits

o Generalize leftover hash lemma using large coefficients

PK Size: 1.3 MB = 3.3 KB (v = 1000 where s; + [0,2"))

'Crypto++ Library 5.6.2, available at http://www.cryptopp.com

Do
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Fkx** Thanks and Any Question?*****

1Crypto++ Library 5.6.2, available at http://www.cryptopp.com
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