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Applications of Additive Homomorphic Encryption

Basic applications: Statistics as encrypted
I Computing average on encrypted data

Advanced applications: Before the appearance of FHE, AHE enables
us to construct various applications.

I Oblivious pseudorandom functions, Oblivious transfer

I Private information retrieval, Private set operation protocols

I Electronic voting, Commitment scheme and so on

Still, AHE-based applications are more efficient than FHE-based
applications.
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Our Results

Strategy: Follow the technique to construct the recent SHE

1 Construct secure private-key AHE

F Using modular reduction with several moduli and inserting Noise

F Analyze the hardness of a new problem by applying known attacks

2 Convert into a public-key version

F M +
∑

Enc(0) and leftover hash lemma over lattices

Implementation result (128-bit security)

Ctxt PK KeyGen Enc Dec Add

Paillier 6144 bit 1.5 KB 437.39 s 62.46 ms 40.38 ms 12.40 µs

Ours 3072 bit 1.3 MB 0.35 s 0.72 ms 4.00 µs 0.40 µs

Provide applications of our construction and general AHE
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Ring Homomorphism: Chinese Remainder Theorem

Chinese Remainder Theorem

CRT(p1,...,pk ) :
∏k

i=1 Zpi → Z∏k
i=1 pi

(m1, · · · ,mk) 7→ m

Enc(m1, · · · ,mk) = CRT(p1,...,pk )(m1 + e1Q1, · · · ,mk + ekQk)

At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic
encryption using this homomorphism.

Enc(m1, · · · ,mk) = CRT(q0,p1,...,pk )(r ,m1 + e1Q1, · · · ,mk + ekQk)

Semantically secure under the (extended)-ACD assumption
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Ring Homomorphism: Inverse of a Homomorphism

The inverse of a ring homomorphism is also a ring homomorphism!

Inverse of Chinese Remainder Theorem

ModRed(p1,...,pk ) : Z∏k
i=1 pi

→
∏k

i=1 Zpi

m 7→ ([m]p1 , · · · , [m]pk )

With this homomorphism, we expect an efficient SHE where

I the message space is comparable to Cheon et al.’s construction

I the ciphertext size is smaller than Cheon et al.’s construction
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Our Private-key Homomorphic Encryption Scheme (I)

Setup(λ):
I Choose η-bit distinct primes p1, . . . , pk satisfying gcd(Q, pi ) = 1
I N :=

∏k
i=1 pi

I Output the private key sk = (p1, . . . , pk)

Enc(sk ,m):
I Randomly and uniformly choose e from (−2ρ, 2ρ)
I Compute

ModRed(p1,...,pk )(m + eQ) = ~c = ([m + eQ]p1 , . . . , [m + eQ]pk )

Dec(sk, ~c):
I Compute

m = [CRT(p1,...,pk )(~c)]Q = [m + eQ]Q
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Our Private-key Homomorphic Encryption Scheme (II)

Add(sk , ~c1, ~c2): Output ~c1 + ~c2 through the component-wise integer
additions

Mul(sk, ~c1, ~c2): Output ~c1 × ~c2 through the component-wise integer
multiplications

Correctness
I ~c : homomorphically generated ciphertext

I ~c = ModRed(f (m1 + e1Q, . . . ,m` + e`Q)) for some f

I If |f (m1 + e1Q, . . . ,m` + e`Q)| < N
2 ,

f (m1+e1Q, . . . ,m`+e`Q) = CRT(ModRed(f (m1+e1Q, . . . ,m`+e`Q)))

I Otherwise,

f (m1 + e1Q, . . . ,m` + e`Q) 6= ([f (m1 + e1Q, . . . ,m` + e`Q)]N)

= CRT(ModRed(f (m1 + e1Q, . . . ,m` + e`Q)))
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The co-ACD Problem

Definition ((ρ, η, 2;Q)-co-ACD Problem)

D̂ρ,Q(p1, p2) := {ModRed(p1,p2)(eQ)|e ← Z ∩ (−2ρ, 2ρ)} for hidden
η-bit primes pj ’s.

Given polynomially many samples from D̂ρ,Q(p1, p2), the
(ρ, η, 2;Q)-co ACD problem is to find a certain pj .

The difference between the ACD problem and the co-ACD problem is
the distribution that samples generated.

Dρ(p1, p2;Q1,Q2; q0) := {x = CRT(q0,p1,...,pk )(e0, e1Q1, e2Q2)|
e0 ← Z ∩ [0, q0), ei ← Z ∩ (−2ρ, 2ρ)}
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Security of Our Construction

Decisional version

Given polynomially many samples from D̂ρ,Q and the uniform distribution
on Zp1 × Zp2 , determine whether the target vector ~x is sampled from D̂ρ,Q
or the uniform distribution on Zp1 × Zp2 .

Our scheme is semantically secure under the assumption that the
decisional version of the (ρ, η, k ;Q)-co-ACD problem is hard.

There is no reduction between the co-ACD assumption and other
well-known cryptographic assumptions.

To show the hardness of the co-ACD problem, apply known attacks to
solve the co-ACD problem.
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Analysis of the Hardness of the co-ACD Problem

Simplified co-ACD Problem

Given many samples ModRed(p1,...,pk )(eiQ) := (eiQ mod pj)1≤j≤k for η-bit
hidden primes pj ’s and an integer ei ∈ (−2ρ, 2ρ), the co-ACD problem is
to find some prime pj .

Using one component
I Statistical distance from the uniform distribution: ρ > η + λ

I Chen-Ngyuen’s attack: ρ > 2λ

Using multiple components
I Coppersmith attack: ρ > η + λ

I Orthogonal lattice attack: ρ > (k − 1)η
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Parameters of Our Private-key Scheme

Parameters
I η = O(λ2) to resist factoring attack of N

I ρ > η + λ to avoid Coppersmith’s attack
I ρ > (k − 1)η to avoid orthogonal lattice attack
I k = 2 for the efficiency

The bit size ρ of noise is too large to support a multiplication.

For correct decryption, (m1 + e1Q)× (m2 + e2Q) is less than N
2 .

However,

(m1 + e1Q)× (m2 + e2Q) ≈ 22ρ > 22(k−1)η > 2kη ≈ N

As a result, we obtain an efficient private-key AHE where
I the ciphertext size is smaller than Paillier
I the computational cost is lower than Paillier
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Convert into a Public-key Version

The distribution of
∑

Enc(0) and M+
∑

Enc(0)

By shifting the subset-sum of Enc(0)’s, we can obtain the following
distribution:

∑m
j=1 sjEncj(0) +

∑n
i=1 tiEnci (0) where sj ← {0, 1} and

ti ← [0, 2µ)
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Leftover Hash Lemma over Lattices

Lemma (Leftover Hash Lemma over Lattices; CLT13)

L ⊂ Zn: a lattice of rank n of a basis B = (~b1, . . . , ~bn)

DB: a distribution of outputting a random element sampled from the
half-open parallelepiped generated by B

xi ← DB for 1 ≤ i ≤ m

~y =
∑m

j=1 sj~xj +
∑n

i=1 ti
~bi where sj ← {0, 1} and ti ← [0, 2µ) ∩ Z

~y ′ ← D2µB for 2µB = (2µ~b1, . . . , 2
µ~bn)

=⇒ (~x1, . . . , ~xm, ~y) and (~x1, . . . , ~xm, ~y
′) are ε-statistically close, with

ε = mn
2µ + 1

2 ·
√
| det L|
2m .

e.g.) η = 1536 (⇒ | det L| ≤ 23072), m = 3328, n = 2, µ = 142, ε < 2−128
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Public-key Version of Our Scheme

Setup(1λ):

I ~b1 = ModRed(p1,p2)(e
′
1Q) and ~b2 = ModRed(p1,p2)(e

′
2Q) so that the

determinant of the lattice generated by ~b1 and ~b2 are sufficiently large.

I ~xj = ModRed(p1,p2)(ejQ) for 1 ≤ j ≤ m which are contained in the

half-open parallelepiped generated by ~b1 and ~b2.

I pk = {Q, ~b1, ~b2, ~x1, . . . , ~xm} and sk = {p1, p2}, where ZQ is the
message space.

Enc(pk,M):
I Choose sj ← {0, 1}, ti ← [0, 2µ) ∩ Z for j ∈ {1, . . . ,m} and i ∈ {0, 1}.
I Compute

~c = (M,M) +
m∑
j=1

sj~xj +
2∑

i=1

ti~bi ,

where ‘+’ is a binary operation meaning an addition in Z× Z.
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Efficiency: Parameter Sizes

Table: Parameter Sizes

λ η ρ m µ logQ logA γ PK

Pai99 128 1536 − − − 3072 ∞ 6144 1.5 KB
NLV11 120 − − − − 10 20 61440 7.6 KB

JL13 128 1536 − − − 256 ∞ 3072 0.8 KB

Ours 128
1536 1792 3328

142 256
1134 3072 1.3 MB

2194 2450 4645 1536 4388 2.6 MB
2706 2962 5659 2048 5412 3.9 MB
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Efficiency: Implementation Results

System: Intel Core i7-2600 CPU running at 3.4 GHz with 16 GB RAM

Table: Parameter Sizes, Implementation Results, and Comparison

λ logA Setup Enc Dec Add

Pai99 128 ∞ 437.39 s 62.46 ms 40.38 ms 12.40 µs
NLV11† 120 20 0.11 s 164.00 ms 4.00 ms ≤ 1.00 ms

JL13 128 ∞ 250.32 s 2.07 ms 903.36 ms 2.40 µs

Ours 128
1134 0.35 s 0.72 ms 4.00 µs 0.40 µs
1536 1.18 s 1.07 ms 8.00 µs 0.80 µs
2048 2.34 s 1.29 ms 8.80 µs 0.80 µs

† We referred to the implementation results in [NLV11] and they were done on a 2.1 GHz
Intel Core 2 Duo, with 3 MB L3 cache and 1 GB of memory.
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Applications

Symmetric polynomial evaluation

I A symmetric polynomial of degree (d < n) in n variables can be
represented by the sum of power-sum polynomials of degree at most d.

I Modify an encryption algorithm by

Ed(pk,M) := (Enc(pk ,M),Enc(pk ,M2), . . . ,Enc(pk ,Md))

I Compute the variance of 1000 128-bit integers: 120 µs

Private set operations based on a polynomial representation of a set

I Polynomial representation of S = {s1, · · · , s`}: fS(x) =
∏`

i=1(x − si )
I To recover a set from a polynomial: Need a root finding algorithm

F For a root finding algorithm, the message space should be a field.

F Previous additive homomorphic encryption scheme: Zσ for a composite
or hidden prime σ

F The message space of our scheme can be a field.
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Conclusions & Further Works

Provide an efficient AHE scheme based on the new assumption

Study on the co-ACD problem
I More analysis of the hardness of the co-ACD problem

I Relation between the computational version and decisional version

IND-CCA2 PKE using Fujisaki-Okamoto conversion
I Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster1

Reduce the ciphertext size excluding the factoring assumption
I Ciphertext: 3072 bits ⇒ 800+2× (logQ + logA) bits

Generalize leftover hash lemma using large coefficients
I PK Size: 1.3 MB ⇒ 3.3 KB (ν = 1000 where sj ← [0, 2ν))

***** Thanks and Any Question?*****

1Crypto++ Library 5.6.2, available at http://www.cryptopp.com
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