A New Additive Homomorphic Encryption based on the co-ACD Problem

Jung Hee Cheon ${ }^{1}$, Hyung Tae Lee ${ }^{2}$, and Jae Hong Seo ${ }^{3}$
${ }^{1}$ Seoul National University, Korea
${ }^{2}$ Nanyang Technological University, Singapore
${ }^{3}$ Myongji University, Korea
ACM CCS 2014, November 04, 2014

Applications of Additive Homomorphic Encryption

- Basic applications: Statistics as encrypted
- Computing average on encrypted data
- Advanced applications: Before the appearance of FHE, AHE enables us to construct various applications.
- Oblivious pseudorandom functions, Oblivious transfer
- Private information retrieval, Private set operation protocols
- Electronic voting, Commitment scheme and so on
- Still, AHE-based applications are more efficient than FHE-based applications.

Applications of Additive Homomorphic Encryption

- Basic applications: Statistics as encrypted
- Computing average on encrypted data
- Advanced applications: Before the appearance of FHE, AHE enables us to construct various applications.
- Oblivious pseudorandom functions, Oblivious transfer
- Private information retrieval, Private set operation protocols
- Electronic voting, Commitment scheme and so on
- Still, AHE-based applications are more efficient than FHE-based applications.

Applications of Additive Homomorphic Encryption

- Basic applications: Statistics as encrypted
- Computing average on encrypted data
- Advanced applications: Before the appearance of FHE, AHE enables us to construct various applications.
- Oblivious pseudorandom functions, Oblivious transfer
- Private information retrieval, Private set operation protocols
- Electronic voting, Commitment scheme and so on
- Still, AHE-based applications are more efficient than FHE-based applications.

Our Results

- Strategy: Follow the technique to construct the recent SHE
(1) Construct secure private-key AHE
* Using modular reduction with several moduli and inserting Noise
* Analyze the hardness of a new problem by applying known attacks
(2) Convert into a public-key version
* $M+\sum \operatorname{Enc}(0)$ and leftover hash lemma over lattices
- Implementation result (128-bit security)

	Ctxt	PK	KeyGen	Enc	Dec	Add
Paillier	6144 bit	1.5 KB	437.39 s	62.46 ms	40.38 ms	$12.40 \mu \mathrm{~s}$
Ours	3072 bit	1.3 MB	0.35 s	0.72 ms	$4.00 \mu \mathrm{~s}$	$0.40 \mu \mathrm{~s}$

- Provide applications of our construction and general AHE

Our Results

- Strategy: Follow the technique to construct the recent SHE
(1) Construct secure private-key AHE
* Using modular reduction with several moduli and inserting Noise
* Analyze the hardness of a new problem by applying known attacks
(2) Convert into a public-key version
* $M+\sum \operatorname{Enc}(0)$ and leftover hash lemma over lattices
- Implementation result (128-bit security)

	Ctxt	PK	KeyGen	Enc	Dec	Add
Paillier	6144 bit	1.5 KB	437.39 s	62.46 ms	40.38 ms	$12.40 \mu \mathrm{~s}$
Ours	3072 bit	1.3 MB	0.35 s	0.72 ms	$4.00 \mu \mathrm{~s}$	$0.40 \mu \mathrm{~s}$

- Provide applications of our construction and general AHE

Our Results

- Strategy: Follow the technique to construct the recent SHE
(1) Construct secure private-key AHE
* Using modular reduction with several moduli and inserting Noise
* Analyze the hardness of a new problem by applying known attacks
(2) Convert into a public-key version
* $M+\sum \operatorname{Enc}(0)$ and leftover hash lemma over lattices
- Implementation result (128-bit security)

	Ctxt	PK	KeyGen	Enc	Dec	Add
Paillier	6144 bit	1.5 KB	437.39 s	62.46 ms	40.38 ms	$12.40 \mu \mathrm{~s}$
Ours	3072 bit	1.3 MB	0.35 s	0.72 ms	$4.00 \mu \mathrm{~s}$	$0.40 \mu \mathrm{~s}$

- Provide applications of our construction and general AHE

Ring Homomorphism: Chinese Remainder Theorem

Chinese Remainder Theorem

$$
\operatorname{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}: \begin{array}{clc}
\prod_{i=1}^{k} \mathbb{Z}_{p_{i}} & \rightarrow \mathbb{Z}_{\prod_{i=1}^{k} p_{i}} \\
\left(m_{1}, \cdots, m_{k}\right) & \mapsto \\
m
\end{array}
$$

$-\operatorname{Enc}\left(m_{1}, \cdots, m_{k}\right)=\operatorname{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}\left(m_{1}+e_{1} Q_{1}, \cdots, m_{k}+e_{k} Q_{k}\right)$

- At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic encryption using this homomorphism.
- $\operatorname{Enc}\left(m_{1}, \cdots, m_{k}\right)=\operatorname{CRT}_{\left(q_{0}, p_{1}, \ldots, p_{k}\right)}\left(r, m_{1}+e_{1} Q_{1}, \cdots, m_{k}+e_{k} Q_{k}\right)$
- Semantically secure under the (extended)-ACD assumption

Ring Homomorphism: Chinese Remainder Theorem

Chinese Remainder Theorem

$$
\mathrm{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}: \begin{array}{cl}
\prod_{i=1}^{k} \mathbb{Z}_{p_{i}} & \rightarrow \mathbb{Z}_{\prod_{i=1}^{k} p_{i}} \\
\left(m_{1}, \cdots, m_{k}\right) & \mapsto \underset{m}{m}
\end{array}
$$

$-\operatorname{Enc}\left(m_{1}, \cdots, m_{k}\right)=\operatorname{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}\left(m_{1}+e_{1} Q_{1}, \cdots, m_{k}+e_{k} Q_{k}\right)$

- At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic encryption using this homomorphism.
- $\operatorname{Enc}\left(m_{1}, \cdots, m_{k}\right)=\operatorname{CRT}{ }_{\left(q_{0}, p_{1}, \ldots, p_{k}\right)}\left(r, m_{1}+e_{1} Q_{1}, \cdots, m_{k}+e_{k} Q_{k}\right)$
- Semantically secure under the (extended)-ACD assumption

Ring Homomorphism: Chinese Remainder Theorem

Chinese Remainder Theorem

$$
\mathrm{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}: \begin{array}{cl}
\prod_{i=1}^{k} \mathbb{Z}_{p_{i}} & \rightarrow \mathbb{Z}_{\prod_{i=1}^{k} p_{i}} \\
\left(m_{1}, \cdots, m_{k}\right) & \mapsto \underset{m}{ }
\end{array}
$$

- $\operatorname{Enc}\left(m_{1}, \cdots, m_{k}\right)=\operatorname{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}\left(m_{1}+e_{1} Q_{1}, \cdots, m_{k}+e_{k} Q_{k}\right)$
- At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic encryption using this homomorphism.
- $\operatorname{Enc}\left(m_{1}, \cdots, m_{k}\right)=\operatorname{CRT}_{\left(q_{0}, p_{1}, \ldots, p_{k}\right)}\left(r, m_{1}+e_{1} Q_{1}, \cdots, m_{k}+e_{k} Q_{k}\right)$
- Semantically secure under the (extended)-ACD assumption

Ring Homomorphism: Chinese Remainder Theorem

Chinese Remainder Theorem

$$
\mathrm{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}: \begin{array}{cl}
\prod_{i=1}^{k} \mathbb{Z}_{p_{i}} & \rightarrow \mathbb{Z}_{\prod_{i=1}^{k} p_{i}} \\
\left(m_{1}, \cdots, m_{k}\right) & \mapsto \underset{m}{ }
\end{array}
$$

$-\operatorname{Enc}\left(m_{1}, \cdots, m_{k}\right)=\operatorname{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}\left(m_{1}+e_{1} Q_{1}, \cdots, m_{k}+e_{k} Q_{k}\right)$

- At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic encryption using this homomorphism.
- $\operatorname{Enc}\left(m_{1}, \cdots, m_{k}\right)=\operatorname{CRT}_{\left(q_{0}, p_{1}, \ldots, p_{k}\right)}\left(r, m_{1}+e_{1} Q_{1}, \cdots, m_{k}+e_{k} Q_{k}\right)$
- Semantically secure under the (extended)-ACD assumption

Ring Homomorphism: Chinese Remainder Theorem

Chinese Remainder Theorem

$$
\operatorname{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}: \quad \prod_{\left(m_{1}, \cdots, m_{k}\right)}^{k} \mathbb{Z}_{p_{i}} \quad \rightarrow \mathbb{Z}_{\prod_{i=1}^{k} p_{i}}
$$

$-\operatorname{Enc}\left(m_{1}, \cdots, m_{k}\right)=\operatorname{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}\left(m_{1}+e_{1} Q_{1}, \cdots, m_{k}+e_{k} Q_{k}\right)$

- At Eurocrypt 2013, Cheon et al. proposed a somewhat homomorphic encryption using this homomorphism.
- $\operatorname{Enc}\left(m_{1}, \cdots, m_{k}\right)=\operatorname{CRT}_{\left(q_{0}, p_{1}, \ldots, p_{k}\right)}\left(r, m_{1}+e_{1} Q_{1}, \cdots, m_{k}+e_{k} Q_{k}\right)$
- Semantically secure under the (extended)-ACD assumption

Ring Homomorphism: Inverse of a Homomorphism

- The inverse of a ring homomorphism is also a ring homomorphism!

Inverse of Chinese Remainder Theorem

$$
\begin{aligned}
\operatorname{ModRed}_{\left(p_{1}, \ldots, p_{k}\right)}: \mathbb{Z}_{\prod_{i=1}^{k} p_{i}} & \rightarrow \quad \prod_{i=1}^{k} \mathbb{Z}_{p_{i}} \\
m & \mapsto\left([m]_{p_{1}}, \cdots,[m]_{p_{k}}\right)
\end{aligned}
$$

- With this homomorphism, we expect an efficient SHE where
- the message space is comparable to Cheon et al.'s construction
- the ciphertext size is smaller than Cheon et al.'s construction

Ring Homomorphism: Inverse of a Homomorphism

- The inverse of a ring homomorphism is also a ring homomorphism!

Inverse of Chinese Remainder Theorem

$$
\begin{array}{rlcc}
\operatorname{ModRed}_{\left(p_{1}, \ldots, p_{k}\right)}: \mathbb{Z}_{\prod_{i=1}^{k} p_{i}} & \rightarrow & \prod_{i=1}^{k} \mathbb{Z}_{p_{i}} \\
m & \mapsto & \left([m]_{p_{1}}, \cdots,[m]_{p_{k}}\right)
\end{array}
$$

- With this homomorphism, we expect an efficient SHE where
- the message space is comparable to Cheon et al.'s construction
- the ciphertext size is smaller than Cheon et al.'s construction

Ring Homomorphism: Inverse of a Homomorphism

- The inverse of a ring homomorphism is also a ring homomorphism!

Inverse of Chinese Remainder Theorem

$$
\begin{array}{rlcc}
\operatorname{ModRed}_{\left(p_{1}, \ldots, p_{k}\right)}: \mathbb{Z}_{\prod_{i=1}^{k} p_{i}} & \rightarrow & \prod_{i=1}^{k} \mathbb{Z}_{p_{i}} \\
m & \mapsto & \left([m]_{p_{1}}, \cdots,[m]_{p_{k}}\right)
\end{array}
$$

- With this homomorphism, we expect an efficient SHE where
- the message space is comparable to Cheon et al.'s construction
- the ciphertext size is smaller than Cheon et al.'s construction

Our Private-key Homomorphic Encryption Scheme (I)

- Setup (λ) :
- Choose η-bit distinct primes p_{1}, \ldots, p_{k} satisfying $\operatorname{gcd}\left(Q, p_{i}\right)=1$
- $N:=\prod_{i=1}^{k} p_{i}$
- Output the private key $s k=\left(p_{1}, \ldots, p_{k}\right)$
- $\operatorname{Enc}(s k, m):$

Randomly and uniformly choose e from ($-2^{p}, 2^{p}$)

- Compute
- $\operatorname{Dec}(s k, \vec{c}):$
- Compute

$$
m=\left[\operatorname{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}(\vec{c})\right]_{Q}=[m+e Q]_{Q}
$$

Our Private-key Homomorphic Encryption Scheme (I)

- Setup (λ) :
- Choose η-bit distinct primes p_{1}, \ldots, p_{k} satisfying $\operatorname{gcd}\left(Q, p_{i}\right)=1$
- $N:=\prod_{i=1}^{k} p_{i}$
- Output the private key $s k=\left(p_{1}, \ldots, p_{k}\right)$
- Enc(sk, m):
- Randomly and uniformly choose e from $\left(-2^{\rho}, 2^{\rho}\right)$
- Compute

$$
\operatorname{ModRed}_{\left(p_{1}, \ldots, p_{k}\right)}(m+e Q)=\vec{c}=\left([m+e Q]_{p_{1}}, \ldots,[m+e Q]_{p_{k}}\right)
$$

- $\operatorname{Dec}(s k, \vec{c}):$
- Compute

$$
m=\left[\operatorname{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}(\vec{c})\right]_{Q}=[m+e Q]_{Q}
$$

Our Private-key Homomorphic Encryption Scheme (I)

- Setup (λ) :
- Choose η-bit distinct primes p_{1}, \ldots, p_{k} satisfying $\operatorname{gcd}\left(Q, p_{i}\right)=1$
- $N:=\prod_{i=1}^{k} p_{i}$
- Output the private key $s k=\left(p_{1}, \ldots, p_{k}\right)$
- Enc(sk, m):
- Randomly and uniformly choose e from $\left(-2^{\rho}, 2^{\rho}\right)$
- Compute

$$
\operatorname{ModRed}_{\left(p_{1}, \ldots, p_{k}\right)}(m+e Q)=\vec{c}=\left([m+e Q]_{p_{1}}, \ldots,[m+e Q]_{p_{k}}\right)
$$

- $\operatorname{Dec}(s k, \vec{c}):$
- Compute

$$
m=\left[\operatorname{CRT}_{\left(p_{1}, \ldots, p_{k}\right)}(\vec{c})\right]_{Q}=[m+e Q]_{Q}
$$

Our Private-key Homomorphic Encryption Scheme (II)

- $\operatorname{Add}\left(s k, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$: Output $\overrightarrow{c_{1}}+\overrightarrow{c_{2}}$ through the component-wise integer additions
- $\operatorname{Mul}\left(s k, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$: Output $\overrightarrow{c_{1}} \times \overrightarrow{c_{2}}$ through the component-wise integer multiplications
- Correctness

Our Private-key Homomorphic Encryption Scheme (II)

- $\operatorname{Add}\left(s k, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$: Output $\overrightarrow{c_{1}}+\overrightarrow{c_{2}}$ through the component-wise integer additions
- $\operatorname{Mul}\left(s k, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$: Output $\overrightarrow{c_{1}} \times \overrightarrow{c_{2}}$ through the component-wise integer multiplications
- Correctness
- \vec{c} : homomorphically generated ciphertext

```
- \(\vec{c}=\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)\) for some \(f\)
- If \(\left|f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right|<\frac{N}{2}\),
\(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)=\operatorname{CRT}\left(\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)\right)\)
```

- Otherwise,

Our Private-key Homomorphic Encryption Scheme (II)

- $\operatorname{Add}\left(s k, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$: Output $\overrightarrow{c_{1}}+\overrightarrow{c_{2}}$ through the component-wise integer additions
- $\operatorname{Mul}\left(s k, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$: Output $\overrightarrow{c_{1}} \times \overrightarrow{c_{2}}$ through the component-wise integer multiplications
- Correctness
- \vec{c} : homomorphically generated ciphertext
- $\vec{c}=\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)$ for some f
- If $\left|f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right|<\frac{N}{2}$,
$f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)=\operatorname{CRT}\left(\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)\right)$
- Otherwise,

$=\operatorname{CRT}\left(\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)\right)$

Our Private-key Homomorphic Encryption Scheme (II)

- $\operatorname{Add}\left(s k, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$: Output $\overrightarrow{c_{1}}+\overrightarrow{c_{2}}$ through the component-wise integer additions
- $\operatorname{Mul}\left(s k, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$: Output $\overrightarrow{c_{1}} \times \overrightarrow{c_{2}}$ through the component-wise integer multiplications
- Correctness
- \vec{c} : homomorphically generated ciphertext
- $\vec{c}=\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)$ for some f
- If $\left|f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right|<\frac{N}{2}$,
$f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)=\operatorname{CRT}\left(\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)\right)$
- Otherwise,
$f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right) \neq\left(\left[f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right]_{N}\right)$
$=\operatorname{CRT}\left(\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)\right)$

Our Private-key Homomorphic Encryption Scheme (II)

- $\operatorname{Add}\left(s k, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$: Output $\overrightarrow{c_{1}}+\overrightarrow{c_{2}}$ through the component-wise integer additions
- $\operatorname{Mul}\left(s k, \overrightarrow{c_{1}}, \overrightarrow{c_{2}}\right)$: Output $\overrightarrow{c_{1}} \times \overrightarrow{c_{2}}$ through the component-wise integer multiplications
- Correctness
- \vec{c} : homomorphically generated ciphertext
- $\vec{c}=\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)$ for some f
- If $\left|f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right|<\frac{N}{2}$,

$$
f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)=\operatorname{CRT}\left(\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)\right)
$$

- Otherwise,

$$
\begin{aligned}
f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right) & \neq\left(\left[f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right]_{N}\right) \\
& =\operatorname{CRT}\left(\operatorname{ModRed}\left(f\left(m_{1}+e_{1} Q, \ldots, m_{\ell}+e_{\ell} Q\right)\right)\right)
\end{aligned}
$$

The co-ACD Problem

Definition ($(\rho, \eta, 2 ; Q)$-co-ACD Problem)

- $\hat{\mathcal{D}}_{\rho, Q}\left(p_{1}, p_{2}\right):=\left\{\operatorname{ModRed}_{\left(p_{1}, p_{2}\right)}(e Q) \mid e \leftarrow \mathbb{Z} \cap\left(-2^{\rho}, 2^{\rho}\right)\right\}$ for hidden η-bit primes p_{j} 's.
- Given polynomially many samples from $\hat{\mathcal{D}}_{\rho, Q}\left(p_{1}, p_{2}\right)$, the $(\rho, \eta, 2 ; Q)$-co ACD problem is to find a certain p_{j}.
- The difference between the ACD problem and the co-ACD problem is the distribution that samples generated.

$$
\begin{aligned}
\mathcal{D}_{\rho}\left(p_{1}, p_{2} ; Q_{1}, Q_{2} ; q_{0}\right):= & \left\{x=\operatorname{CRT}_{\left(q_{0}, p_{1}, \ldots, p_{k}\right)}\left(e_{0}, e_{1} Q_{1}, e_{2} Q_{2}\right) \mid\right. \\
& \left.e_{0} \leftarrow \mathbb{Z} \cap\left[0, q_{0}\right), e_{i} \leftarrow \mathbb{Z} \cap\left(-2^{\rho}, 2^{\rho}\right)\right\}
\end{aligned}
$$

The co-ACD Problem

Definition ($(\rho, \eta, 2 ; Q)$-co-ACD Problem)

- $\hat{\mathcal{D}}_{\rho, Q}\left(p_{1}, p_{2}\right):=\left\{\operatorname{ModRed}_{\left(p_{1}, p_{2}\right)}(e Q) \mid e \leftarrow \mathbb{Z} \cap\left(-2^{\rho}, 2^{\rho}\right)\right\}$ for hidden η-bit primes p_{j} 's.
- Given polynomially many samples from $\hat{\mathcal{D}}_{\rho, Q}\left(p_{1}, p_{2}\right)$, the $(\rho, \eta, 2 ; Q)$-co ACD problem is to find a certain p_{j}.
- The difference between the ACD problem and the co-ACD problem is the distribution that samples generated.

$$
\begin{aligned}
\mathcal{D}_{\rho}\left(p_{1}, p_{2} ; Q_{1}, Q_{2} ; q_{0}\right):= & \left\{x=\operatorname{CRT}_{\left(q_{0}, p_{1}, \ldots, p_{k}\right)}\left(e_{0}, e_{1} Q_{1}, e_{2} Q_{2}\right) \mid\right. \\
& \left.e_{0} \leftarrow \mathbb{Z} \cap\left[0, q_{0}\right), e_{i} \leftarrow \mathbb{Z} \cap\left(-2^{\rho}, 2^{\rho}\right)\right\}
\end{aligned}
$$

The co-ACD Problem

Definition ($(\rho, \eta, 2 ; Q)$-co-ACD Problem)

- $\hat{\mathcal{D}}_{\rho, Q}\left(p_{1}, p_{2}\right):=\left\{\operatorname{ModRed}_{\left(p_{1}, p_{2}\right)}(e Q) \mid e \leftarrow \mathbb{Z} \cap\left(-2^{\rho}, 2^{\rho}\right)\right\}$ for hidden η-bit primes p_{j} 's.
- Given polynomially many samples from $\hat{\mathcal{D}}_{\rho, Q}\left(p_{1}, p_{2}\right)$, the $(\rho, \eta, 2 ; Q)$-co ACD problem is to find a certain p_{j}.
- The difference between the ACD problem and the co-ACD problem is the distribution that samples generated.

$$
\begin{aligned}
\mathcal{D}_{\rho}\left(p_{1}, p_{2} ; Q_{1}, Q_{2} ; q_{0}\right):= & \left\{x=\operatorname{CRT}_{\left(q_{0}, p_{1}, \ldots, p_{k}\right)}\left(e_{0}, e_{1} Q_{1}, e_{2} Q_{2}\right) \mid\right. \\
& \left.e_{0} \leftarrow \mathbb{Z} \cap\left[0, q_{0}\right), e_{i} \leftarrow \mathbb{Z} \cap\left(-2^{\rho}, 2^{\rho}\right)\right\}
\end{aligned}
$$

Security of Our Construction

Decisional version

Given polynomially many samples from $\hat{\mathcal{D}}_{\rho, Q}$ and the uniform distribution on $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}}$, determine whether the target vector \vec{x} is sampled from $\hat{\mathcal{D}}_{\rho, Q}$ or the uniform distribution on $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}}$.

- Our scheme is semantically secure under the assumption that the decisional version of the $(\rho, \eta, k ; Q)$-co-ACD problem is hard.
- There is no reduction between the co-ACD assumption and other well-known cryptographic assumptions.
- To show the hardness of the co-ACD problem, apply known attacks to solve the co-ACD problem.

Security of Our Construction

Decisional version

Given polynomially many samples from $\hat{\mathcal{D}}_{\rho, Q}$ and the uniform distribution on $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}}$, determine whether the target vector \vec{x} is sampled from $\hat{\mathcal{D}}_{\rho, Q}$ or the uniform distribution on $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}}$.

- Our scheme is semantically secure under the assumption that the decisional version of the $(\rho, \eta, k ; Q)$-co-ACD problem is hard.
- There is no reduction between the co-ACD assumption and other well-known cryptographic assumptions.
- To show the hardness of the co-ACD problem, apply known attacks to solve the co-ACD problem.

Security of Our Construction

Decisional version

Given polynomially many samples from $\hat{\mathcal{D}}_{\rho, Q}$ and the uniform distribution on $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}}$, determine whether the target vector \vec{x} is sampled from $\hat{\mathcal{D}}_{\rho, Q}$ or the uniform distribution on $\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}}$.

- Our scheme is semantically secure under the assumption that the decisional version of the $(\rho, \eta, k ; Q)$-co-ACD problem is hard.
- There is no reduction between the co-ACD assumption and other well-known cryptographic assumptions.
- To show the hardness of the co-ACD problem, apply known attacks to solve the co-ACD problem.

Analysis of the Hardness of the co-ACD Problem

Simplified co-ACD Problem

Given many samples $\operatorname{ModRed}_{\left(p_{1}, \ldots, p_{k}\right)}\left(e_{i} Q\right):=\left(e_{i} Q \bmod p_{j}\right)_{1 \leq j \leq k}$ for η-bit hidden primes p_{j} 's and an integer $e_{i} \in\left(-2^{\rho}, 2^{\rho}\right)$, the co-ACD problem is to find some prime p_{j}.

- Using one component
- Statistical distance from the uniform distribution: $\rho>\eta+\lambda$
- Chen-Ngyuen's attack: $\rho>2 \lambda$
- Using multiple components
- Coppersmith attack: $\rho>\eta+\lambda$
- Orthogonal lattice attack: $\rho>(k-1) \eta$

Analysis of the Hardness of the co-ACD Problem

Simplified co-ACD Problem

Given many samples $\operatorname{ModRed}_{\left(p_{1}, \ldots, p_{k}\right)}\left(e_{i} Q\right):=\left(e_{i} Q \bmod p_{j}\right)_{1 \leq j \leq k}$ for η-bit hidden primes p_{j} 's and an integer $e_{i} \in\left(-2^{\rho}, 2^{\rho}\right)$, the co-ACD problem is to find some prime p_{j}.

- Using one component
- Statistical distance from the uniform distribution: $\rho>\eta+\lambda$
- Chen-Ngyuen's attack: $\rho>2 \lambda$
- Using multiple components
- Coppersmith attack: $\rho>\eta+\lambda$
- Orthogonal lattice attack: $\rho>(k-1) \eta$

Analysis of the Hardness of the co-ACD Problem

Simplified co-ACD Problem

Given many samples $\operatorname{ModRed}_{\left(p_{1}, \ldots, p_{k}\right)}\left(e_{i} Q\right):=\left(e_{i} Q \bmod p_{j}\right)_{1 \leq j \leq k}$ for η-bit hidden primes p_{j} 's and an integer $e_{i} \in\left(-2^{\rho}, 2^{\rho}\right)$, the co-ACD problem is to find some prime p_{j}.

- Using one component
- Statistical distance from the uniform distribution: $\rho>\eta+\lambda$
- Chen-Ngyuen's attack: $\rho>2 \lambda$
- Using multiple components
- Coppersmith attack: $\rho>\eta+\lambda$
- Orthogonal lattice attack: $\rho>(k-1) \eta$

Parameters of Our Private-key Scheme

- Parameters
- $\eta=O\left(\lambda^{2}\right)$ to resist factoring attack of N
- $\rho>\eta+\lambda$ to avoid Coppersmith's attack
- $\rho>(k-1) \eta$ to avoid orthogonal lattice attack
- $k=2$ for the efficiency
- The bit size ρ of noise is too large to support a multiplication.
- For correct decryption, $\left(m_{1}+e_{1} Q\right) \times\left(m_{2}+e_{2} Q\right)$ is less than $\frac{N}{2}$.
- However,

$$
\left(m_{1}+e_{1} Q\right) \times\left(m_{2}+e_{2} Q\right) \approx 2^{2 \rho}>2^{2(k-1) \eta}>2^{k \eta} \approx N
$$

- As a result, we obtain an efficient private-key AHE where
- the ciphertext size is smaller than Paillier
- the computational cost is lower than Paillier

Parameters of Our Private-key Scheme

- Parameters
- $\eta=O\left(\lambda^{2}\right)$ to resist factoring attack of N
- $\rho>\eta+\lambda$ to avoid Coppersmith's attack
- $\rho>(k-1) \eta$ to avoid orthogonal lattice attack
- $k=2$ for the efficiency
- The bit size ρ of noise is too large to support a multiplication.
- For correct decryption, $\left(m_{1}+e_{1} Q\right) \times\left(m_{2}+e_{2} Q\right)$ is less than $\frac{N}{2}$.
- However,

$$
\left(m_{1}+e_{1} Q\right) \times\left(m_{2}+e_{2} Q\right) \approx 2^{2 \rho}>2^{2(k-1) \eta}>2^{k \eta} \approx N
$$

- As a result, we obtain an efficient private-key AHE where
- the ciphertext size is smaller than Paillier
- the computational cost is lower than Paillier

Parameters of Our Private-key Scheme

- Parameters
- $\eta=O\left(\lambda^{2}\right)$ to resist factoring attack of N
- $\rho>\eta+\lambda$ to avoid Coppersmith's attack
- $\rho>(k-1) \eta$ to avoid orthogonal lattice attack
- $k=2$ for the efficiency
- The bit size ρ of noise is too large to support a multiplication.
- For correct decryption, $\left(m_{1}+e_{1} Q\right) \times\left(m_{2}+e_{2} Q\right)$ is less than $\frac{N}{2}$.
- However,

$$
\left(m_{1}+e_{1} Q\right) \times\left(m_{2}+e_{2} Q\right) \approx 2^{2 \rho}>2^{2(k-1) \eta}>2^{k \eta} \approx N
$$

- As a result, we obtain an efficient private-key AHE where
- the ciphertext size is smaller than Paillier
- the computational cost is lower than Paillier

Parameters of Our Private-key Scheme

- Parameters
- $\eta=O\left(\lambda^{2}\right)$ to resist factoring attack of N
- $\rho>\eta+\lambda$ to avoid Coppersmith's attack
- $\rho>(k-1) \eta$ to avoid orthogonal lattice attack
- $k=2$ for the efficiency
- The bit size ρ of noise is too large to support a multiplication.
- For correct decryption, $\left(m_{1}+e_{1} Q\right) \times\left(m_{2}+e_{2} Q\right)$ is less than $\frac{N}{2}$.
- However,

$$
\left(m_{1}+e_{1} Q\right) \times\left(m_{2}+e_{2} Q\right) \approx 2^{2 \rho}>2^{2(k-1) \eta}>2^{k \eta} \approx N
$$

- As a result, we obtain an efficient private-key AHE where
- the ciphertext size is smaller than Paillier
- the computational cost is lower than Paillier

Parameters of Our Private-key Scheme

- Parameters
- $\eta=O\left(\lambda^{2}\right)$ to resist factoring attack of N
- $\rho>\eta+\lambda$ to avoid Coppersmith's attack
- $\rho>(k-1) \eta$ to avoid orthogonal lattice attack
- $k=2$ for the efficiency
- The bit size ρ of noise is too large to support a multiplication.
- For correct decryption, $\left(m_{1}+e_{1} Q\right) \times\left(m_{2}+e_{2} Q\right)$ is less than $\frac{N}{2}$.
- However,

$$
\left(m_{1}+e_{1} Q\right) \times\left(m_{2}+e_{2} Q\right) \approx 2^{2 \rho}>2^{2(k-1) \eta}>2^{k \eta} \approx N
$$

- As a result, we obtain an efficient private-key AHE where
- the ciphertext size is smaller than Paillier
- the computational cost is lower than Paillier

Convert into a Public-key Version

- The distribution of $\sum \operatorname{Enc}(0)$ and $\mathrm{M}+\sum \operatorname{Enc}(0)$

- By shifting the subset-sum of Enc(0)'s, we can obtain the following distribution: $\sum_{j=1}^{m} s_{j} \operatorname{Enc}_{j}(0)+\sum_{i=1}^{n} t_{i} \operatorname{Enc}_{i}(0)$ where $s_{j} \leftarrow\{0,1\}$ and $t_{i} \leftarrow\left[0,2^{\mu}\right)$

Convert into a Public-key Version

- The distribution of $\sum \operatorname{Enc}(0)$ and $M+\sum \operatorname{Enc}(0)$

- By shifting the subset-sum of $\operatorname{Enc}(0)$'s, we can obtain the following distribution: $\sum_{j=1}^{m} s_{j} \operatorname{Enc}_{j}(0)+\sum_{i=1}^{n} t_{i} \operatorname{Enc}_{i}(0)$ where $s_{j} \leftarrow\{0,1\}$ and $t_{i} \leftarrow\left[0,2^{\mu}\right)$

Convert into a Public-key Version

- The distribution of $\sum \operatorname{Enc}(0)$ and $M+\sum \operatorname{Enc}(0)$

- By shifting the subset-sum of Enc(0)'s, we can obtain the following distribution: $\sum_{j=1}^{m} s_{j} \operatorname{Enc}_{j}(0)+\sum_{i=1}^{n} t_{i} \operatorname{Enc}_{i}(0)$ where $s_{j} \leftarrow\{0,1\}$ and $t_{i} \leftarrow\left[0,2^{\mu}\right)$

Leftover Hash Lemma over Lattices

Lemma (Leftover Hash Lemma over Lattices; CLT13)

- $L \subset \mathbb{Z}^{n}$: a lattice of rank n of a basis $\mathbf{B}=\left(\vec{b}_{1}, \ldots, \vec{b}_{n}\right)$
- $\mathcal{D}_{\mathbf{B}}$: a distribution of outputting a random element sampled from the half-open parallelepiped generated by \mathbf{B}
- $x_{i} \leftarrow \mathcal{D}_{\mathbf{B}}$ for $1 \leq i \leq m$
- $\vec{y}=\sum_{j=1}^{m} s_{j} \vec{x}_{j}+\sum_{i=1}^{n} t_{i} \vec{b}_{i}$ where $s_{j} \leftarrow\{0,1\}$ and $t_{i} \leftarrow\left[0,2^{\mu}\right) \cap \mathbb{Z}$
- $\vec{y}^{\prime} \leftarrow \mathcal{D}_{2^{\mu} \mathbf{B}}$ for $2^{\mu} \mathbf{B}=\left(2^{\mu} \vec{b}_{1}, \ldots, 2^{\mu} \vec{b}_{n}\right)$
$\Longrightarrow\left(\vec{x}_{1}, \ldots, \vec{x}_{m}, \vec{y}\right)$ and $\left(\vec{x}_{1}, \ldots, \vec{x}_{m}, \vec{y}^{\prime}\right)$ are ϵ-statistically close, with
$\epsilon=\frac{m n}{2^{n}}+\frac{1}{2} \cdot \sqrt{\frac{\text { det } L T}{2^{m}}}$.
e.g.) $\eta=1536\left(\Rightarrow|\operatorname{det} L| \leq 2^{3072}\right), m=3328, n=2, \mu=142, \epsilon<2^{-128}$

Public-key Version of Our Scheme

- $\operatorname{Setup}\left(1^{\lambda}\right)$:
- $\vec{b}_{1}=\operatorname{ModRed}_{\left(p_{1}, p_{2}\right)}\left(e_{1}^{\prime} Q\right)$ and $\vec{b}_{2}=\operatorname{ModRed}_{\left(p_{1}, p_{2}\right)}\left(e_{2}^{\prime} Q\right)$ so that the determinant of the lattice generated by \vec{b}_{1} and \vec{b}_{2} are sufficiently large.
- $\vec{x}_{j}=\operatorname{ModRed}_{\left(p_{1}, p_{2}\right)}\left(e_{j} Q\right)$ for $1 \leq j \leq m$ which are contained in the half-open parallelepiped generated by \vec{b}_{1} and $\overrightarrow{b_{2}}$.
- $p k=\left\{Q, \vec{b}_{1}, \vec{b}_{2}, \vec{x}_{1}, \ldots, \vec{x}_{m}\right\}$ and $s k=\left\{p_{1}, p_{2}\right\}$, where \mathbb{Z}_{Q} is the message space.
- Enc($p k, M)$:
- Choose $s_{j} \leftarrow\{0,1\}, t_{i} \leftarrow\left[0,2^{\mu}\right) \cap \mathbb{Z}$ for $j \in\{1, \ldots, m\}$ and $i \in\{0,1\}$.
- Compute

where ' + ' is a binary operation meaning an addition in $\mathbb{Z} \times \mathbb{Z}$.

Public-key Version of Our Scheme

- $\operatorname{Setup}\left(1^{\lambda}\right)$:
- $\vec{b}_{1}=\operatorname{ModRed}_{\left(p_{1}, p_{2}\right)}\left(e_{1}^{\prime} Q\right)$ and $\vec{b}_{2}=\operatorname{ModRed}_{\left(p_{1}, p_{2}\right)}\left(e_{2}^{\prime} Q\right)$ so that the determinant of the lattice generated by \vec{b}_{1} and \vec{b}_{2} are sufficiently large.
- $\vec{x}_{j}=\operatorname{ModRed}_{\left(p_{1}, p_{2}\right)}\left(e_{j} Q\right)$ for $1 \leq j \leq m$ which are contained in the half-open parallelepiped generated by \vec{b}_{1} and \vec{b}_{2}.
- $p k=\left\{Q, \vec{b}_{1}, \vec{b}_{2}, \vec{x}_{1}, \ldots, \vec{x}_{m}\right\}$ and $s k=\left\{p_{1}, p_{2}\right\}$, where \mathbb{Z}_{Q} is the message space.
- Enc $(p k, M)$:
- Choose $s_{j} \leftarrow\{0,1\}, t_{i} \leftarrow\left[0,2^{\mu}\right) \cap \mathbb{Z}$ for $j \in\{1, \ldots, m\}$ and $i \in\{0,1\}$.
- Compute

$$
\vec{c}=(M, M)+\sum_{j=1}^{m} s_{j} \vec{x}_{j}+\sum_{i=1}^{2} t_{i} \vec{b}_{i},
$$

where ' + ' is a binary operation meaning an addition in $\mathbb{Z} \times \mathbb{Z}$.

Efficiency: Parameter Sizes

Table: Parameter Sizes

	λ	η	ρ	m	μ	$\log Q$	$\log A$	γ	PK
Pai99	128	1536	-	-	-	3072	∞	6144	1.5 KB
NLV11	120	-	-	-	-	10	20	61440	7.6 KB
JL13	128	1536	-	-	-	256	∞	3072	0.8 KB
Ours	128	1536	1792	3328	142	256	1134	3072	1.3 MB
		2194	2450	4645			1536	4388	2.6 MB
		2706	2962	5659			2048	5412	3.9 MB

Efficiency: Implementation Results

- System: Intel Core i7-2600 CPU running at 3.4 GHz with 16 GB RAM

Table: Parameter Sizes, Implementation Results, and Comparison

	λ	$\log A$	Setup	Enc	Dec	Add
Pai99	128	∞	437.39 s	62.46 ms	40.38 ms	$12.40 \mu \mathrm{~s}$
NLV11 †	120	20	0.11 s	164.00 ms	4.00 ms	$\leq 1.00 \mathrm{~ms}$
JL13	128	∞	250.32 s	2.07 ms	903.36 ms	$2.40 \mu \mathrm{~s}$
Ours	128	1134	0.35 s	0.72 ms	$4.00 \mu \mathrm{~s}$	$0.40 \mu \mathrm{~s}$
		1.18 s	1.07 ms	$8.00 \mu \mathrm{~s}$	$0.80 \mu \mathrm{~s}$	
		2048	2.34 s	1.29 ms	$8.80 \mu \mathrm{~s}$	$0.80 \mu \mathrm{~s}$

\dagger We referred to the implementation results in [NLV11] and they were done on a 2.1 GHz Intel Core 2 Duo, with 3 MB L3 cache and 1 GB of memory.

Applications

- Symmetric polynomial evaluation
- A symmetric polynomial of degree $(d<n)$ in n variables can be represented by the sum of power-sum polynomials of degree at most d.
- Modify an encryption algorithm by

$$
\mathcal{E}_{d}(p k, M):=\left(\operatorname{Enc}(p k, M), \operatorname{Enc}\left(p k, M^{2}\right), \ldots, \operatorname{Enc}\left(p k, M^{d}\right)\right)
$$

- Compute the variance of 1000 128-bit integers: $120 \mu \mathrm{~s}$
- Private set operations based on a polynomial representation of a set
- Polynomial representation of $S=\left\{s_{1}, \cdots, s_{\ell}\right\}: f_{S}(x)=\prod_{i=1}^{\ell}\left(x-s_{i}\right)$
- To recover a set from a polynomial: Need a root finding algorithm
* For a root finding algorithm, the message space should be a field.
\star Previous additive homomorphic encryption scheme: \mathbb{Z}_{σ} for a composite or hidden prime σ
\star The message space of our scheme can be a field.

Applications

- Symmetric polynomial evaluation
- A symmetric polynomial of degree $(d<n)$ in n variables can be represented by the sum of power-sum polynomials of degree at most d.
- Modify an encryption algorithm by

$$
\mathcal{E}_{d}(p k, M):=\left(\operatorname{Enc}(p k, M), \operatorname{Enc}\left(p k, M^{2}\right), \ldots, \operatorname{Enc}\left(p k, M^{d}\right)\right)
$$

- Compute the variance of 1000 128-bit integers: $120 \mu \mathrm{~s}$
- Private set operations based on a polynomial representation of a set
- Polynomial representation of $S=\left\{s_{1}, \cdots, s_{\ell}\right\}: f_{S}(x)=\prod_{i=1}^{\ell}\left(x-s_{i}\right)$
- To recover a set from a polynomial: Need a root finding algorithm
\star For a root finding algorithm, the message space should be a field.
\star Previous additive homomorphic encryption scheme: \mathbb{Z}_{σ} for a composite or hidden prime σ
* The message space of our scheme can be a field.

Conclusions \& Further Works

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
- More analysis of the hardness of the co-ACD problem
- Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
- Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster ${ }^{1}$
- Reduce the ciphertext size excluding the factoring assumption
- Ciphertext: 3072 bits $\Rightarrow 800+2 \times(\log Q+\log A)$ bits
- Generalize leftover hash lemma using large coefficients
- PK Size: 1.3 MB $\Rightarrow 3.3 \mathrm{~KB}\left(\nu=1000\right.$ where $\left.s_{j} \leftarrow\left[0,2^{\nu}\right)\right)$

Conclusions \& Further Works

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
- More analysis of the hardness of the co-ACD problem
- Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
- Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster ${ }^{1}$
- Reduce the ciphertext size excluding the factoring assumption
- Ciphertext: 3072 bits $\Rightarrow 800+2 \times(\log Q+\log A)$ bits
- Generalize leftover hash lemma using large coefficients
- PK Size: 1.3 MB $\Rightarrow 3.3 \mathrm{~KB}\left(\nu=1000\right.$ where $\left.s_{j} \leftarrow\left[0,2^{\nu}\right)\right)$

Conclusions \& Further Works

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
- More analysis of the hardness of the co-ACD problem
- Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
- Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster ${ }^{1}$
- Reduce the ciphertext size excluding the factoring assumption
- Ciphertext: 3072 bits $\Rightarrow 800+2 \times(\log Q+\log A)$ bits
- Generalize leftover hash lemma using large coefficients
- PK Size: 1.3 MB $\Rightarrow 3.3 \mathrm{~KB}\left(\nu=1000\right.$ where $\left.s_{j} \leftarrow\left[0,2^{\nu}\right)\right)$

[^0]
Conclusions \& Further Works

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
- More analysis of the hardness of the co-ACD problem
- Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
- Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster ${ }^{1}$
- Reduce the ciphertext size excluding the factoring assumption
- Ciphertext: 3072 bits $\Rightarrow 800+2 \times(\log Q+\log A)$ bits
- Generalize leftover hash lemma using large coefficients
- PK Size: 1.3 MB $\Rightarrow 3.3 \mathrm{~KB}\left(\nu=1000\right.$ where $\left.s_{j} \leftarrow\left[0,2^{\nu}\right)\right)$

[^1]
Conclusions \& Further Works

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
- More analysis of the hardness of the co-ACD problem
- Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
- Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster ${ }^{1}$
- Reduce the ciphertext size excluding the factoring assumption
- Ciphertext: 3072 bits $\Rightarrow 800+2 \times(\log Q+\log A)$ bits
- Generalize leftover hash lemma using large coefficients
- PK Size: 1.3 MB $\Rightarrow 3.3 \mathrm{~KB}\left(\nu=1000\right.$ where $\left.s_{j} \leftarrow\left[0,2^{\nu}\right)\right)$

[^2]
Conclusions \& Further Works

- Provide an efficient AHE scheme based on the new assumption
- Study on the co-ACD problem
- More analysis of the hardness of the co-ACD problem
- Relation between the computational version and decisional version
- IND-CCA2 PKE using Fujisaki-Okamoto conversion
- Compared to RSA-OAEP, enc: 6 times slower, dec: 1000 times faster ${ }^{1}$
- Reduce the ciphertext size excluding the factoring assumption
- Ciphertext: 3072 bits $\Rightarrow 800+2 \times(\log Q+\log A)$ bits
- Generalize leftover hash lemma using large coefficients
- PK Size: 1.3 MB $\Rightarrow 3.3 \mathrm{~KB}\left(\nu=1000\right.$ where $\left.s_{j} \leftarrow\left[0,2^{\nu}\right)\right)$

***** Thanks and Any Question?*****

[^3]
[^0]: ${ }^{1}$ Crypto++ Library 5.6.2, available at http://www.cryptopp.com

[^1]: ${ }^{1}$ Crypto++ Library 5.6.2, available at http://www.cryptopp.com

[^2]: ${ }^{1}$ Crypto++ Library 5.6.2, available at http://www.cryptopp.com

[^3]: ${ }^{1}$ Crypto++ Library 5.6.2, available at http://www.cryptopp.com

