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Abstract

This paper aims to develop a surrogate model for dynamics analysis of a magnetorheological

damper (MRD) in the semi-active seat suspension system. An improved fruit fly optimization

algorithm (IFOA) which enhances the global search capability of the original FOA is proposed

to optimize the structure of a back propagation neural network (BPNN) in establishing the

surrogate model. An MRD platform was fabricated to generate experimental data to feed the

IFOA-BPNN model. Intrinsic patterns about the MRD dynamics behind the datasets have been

discovered to establish a reliable MRD surrogate model. The outputs of the surrogate model

demonstrate satisfactory dynamics characteristics in consistence with the experimental results.

Moreover, the performance of the IFOA-BPNN based surrogate model was compared with that

produced by the BPNN based, genetic algorithm-BPNN based, and FOA-BPNN based surrogate

models. The comparison result shows better tracking capacity of the proposed method on the

hysteresis behaviors of the MRD. As a result, the newly developed surrogate model can be used

as the basis for advanced controller design of the semi-active seat suspension system.

Supplementary material for this article is available online

Keywords: magnetorheological damper, surrogate model, artificial intelligence

(Some figures may appear in colour only in the online journal)

1. Introduction

Human beings suffer an adverse reaction because of the high

vibration intensity in a vehicle [1]. A seat suspension with

excellent comfort and stability is an effective tool to solve the
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hostile vibration problem. Compared to other existing seat sus-

pension systems, semi-active seat suspension based on magne-

torheological damper (MRD) has the advantages of simple

structure, low power consumption and fast response. More

importantly, the natural frequencies and damping characteristics

of the semi-active seat suspension can be adjusted according to

the external excitations [2–4]. As a result, by a suitable control

strategy the MRD-suspension system can reduce the vibration

level of the vehicles and provide smooth riders for passengers.

An accurate dynamic model of the MRD is essential to

achieve the desirable vibration control for the suspension sys-

tem. However, it is always a challenging task to establish an

accurate MRD dynamic model due to strong nonlinear hysteresis

[5]. Recent researches show the capability of artificial intelli-

gence (AI)-based techniques in modeling the MRD dynamics by

performing machine learning and data mining [6, 7]. In [8], a

new algorithm named establishing neuro-fuzzy system was

proposed to identify the dynamic characteristics of smart dam-

pers, and the effectiveness of the proposed algorithm was ver-

ified. In [9], an adaptive neuro-fuzzy inference system was used

to establish dynamic models for non-parametric smart dampers,

and the superiority of the modeling method was demonstrated.

Prior professional information and exact MRD parameters are

not required in establishing the AI-based surrogate model.

Among existing popular AI techniques back propagation neural

network (BPNN) [10–13] has been widely used in information

classification, pattern recognition, dynamic modeling and system

prediction because of its simple structure, strong feasibility and

parallel computing ability. However, the local optimum issue in

the BPNN training process often affects the network perfor-

mance and the steepest decent method reduces the learning

efficiency [14, 15]. In order to solve this problem, intelligent

optimization algorithms such as fruit fly optimization algorithm

(FOA) [16] have been applied to BPNN optimization. FOA is a

global optimization algorithm established by simulating the

foraging behavior of the fruit flies, and has been proven effective

in parameter optimization [17–19]. However, proper initializa-

tion parameters of FOA should be determined; meanwhile, the

flight distance of individual fruit fly is usually fixed and

the searching direction is blind, resulting in degradation of the

probability diversity of the FOA searching [20–22]. To address

issue, an improved fruit fly optimization algorithm (IFOA) is

developed, and the IFOA optimized BPNN is proposed to

improve the modeling capability for the MRD.

The reminders of this study are organized as follows. In

section 2, a literature review is performed. In section 3, the

proposed IFOA-BPNN surrogate model is introduced. In

section 4, the damping characteristics of the MRD are

experimentally described. In section 5, the surrogate model of

the MRD is established and the modeling accuracy is analyzed.

Conclusions and future work are summarized in section 6.

2. Related works

This section summarizes current researches in the field of

MRD dynamic modeling and the improvement of FOA.

2.1. Dynamic modeling of MRD

Many investigations have been performed to model the nonlinear

hysteretic characteristics of MRDs. Yu et al [23] divided the

typical hysteresis loop into two curves, namely one backbone

curve and one branch curve, the MRD dynamic model was

simplified by capturing the characteristics of these two curves

using exponential family function. Krauze et al [24] presented a

new approach to establish the force–velocity characteristics

model of the MRD. The model was able to simulate the hys-

teretic behavior using all-pass delay filters located in the velocity

dedicated signal path, and could accurately reflect the MRD

dynamic characteristics. Choi et al [25] proposed a hysteresis

MRD model and the model accuracy was experimentally ver-

ified. Seong et al [26] established a Preisach hysteresis model for

MRDs, and the first-order descending curves were experimen-

tally identified. Subsequently, a feedforward hysteretic compen-

sator associated with the biviscous model and inverse Bingham

model was proposed to control the damping force. Dominguez

et al [27] took the effect of each individual term of the Bouc–

Wen model over the hysteretic loop into consideration, and

established the dynamic model for MRD. Domínguez-González

et al [28] proposed a new practical MRD model, which con-

sidered the displacement, velocity, acceleration and current as

input variables, meanwhile, the hysteresis damping forces pre-

dicted by the proposed model were experimentally validated.

However, modeling the nonlinear hysteresis of MRDs is a still

challenge. Traditional analytical and experimental models are

usually applicable to specific research objectives; and once the

operation situations change the calculation accuracy of these

models would significantly decay. AI and machine learning

provide an effective alternative to model the MRD dynamics.

Khalid et al [29] studied a small scale MRD model with a valve

mechanism using dynamic regression neural network. Ni et al

[30] established a nonlinear MRD dynamic model by a Bayesian

inference framework. Nguyen et al [31] used an adaptive neural

fuzzy reasoning system to establish the MRD dynamic model.

Ayala et al [32] proposed a procedure for input selection and

parameter estimation based on the radial basis functions neural

networks to establish the MRD dynamic model. Imaduddin et al

[33] developed a new parametric modeling approach based on

the LuGre friction operator to reduce the number of involved

parameters when modeling the MRD. Hemanth et al [34]

established the mathematic MRD model based on the Boolean

operation. Zhao et al [35] proposed a sigmoid modeling method

to present the Stribeck effect of the MRD, and experimentally

verified that the model can predict the damping forces.

2.2. Improvement of FOA

FOA has been found in many applications. Niu et al [36] opti-

mized the FOA based on differential evolution (DFOA) and

verified that the DFOA possessed strong global search capability

and convergence stability. Liu et al [37] improved FOA using the

cloud model algorithm. Xu et al [38]modified the flying range of

FOA and showed the ability of avoiding local optimum for

individual fruit fly using simulations and experiments. Han et al

[39] proposed a new optimization algorithm based on FOA with
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trend search and coevolution, and experimentally verified that the

proposed algorithm had better precision and convergence speed.

Lei et al [40] developed a FOA-based clustering algorithm to

identify dynamic protein complexes by combining FOA and

gene expression profiles. Zheng et al [41] proposed a knowledge-

guided fruit fly optimization algorithm (KGFOA) and showed

that KGFOA was more effective than FOA in solving the dual-

resource constrained flexible job-shop scheduling problem.

2.3. Discussion

Literature has reported many dynamic models to improve the

modeling accuracy of MRDs using AI-based techniques.

However, several issues still need to be addressed. Firstly, the

parameters of artificial neural networks such as a BPNN need

to be optimized to improve the precision for modeling the

hysteretic behavior of MRDs. FOA is able to optimize the

neural network parameters to establish the MRD surrogate

model while very limited work has been done for this pur-

pose. Secondly, an AI surrogate model requires a large

amount of training datasets to perform the knowledge learn-

ing; hence, an MRD testing platform is a must to generate

reliable datasets of the MRD dynamics in different operation

conditions. In order to bridge these research gaps in MRD

dynamic modeling, an IFOA optimized BPNN is proposed

and an MRD testing platform is developed to produce the

required datasets for training the IFOA-BPNN model.

3. The proposed method

This section describes the proposed IFOA-BPNN method for

modeling the MRD dynamics.

3.1. BPNN

BPNN is a multilayer feedforward neural network based on

error inverse propagation algorithm, which is proposed in

1986 [42]. It consists of an input/output layer and an implicit

layer. BPNN learn and save the corresponding relationship

between the input and output data, when their mathematical

relationship has not been accurately determined. The data

samples obtain the output values of the network character-

istics by training the neural network, the error between the

output of network and original data is considered as a feed-

back signal of fixed network, which travels in the opposite

direction of data transmission, the network is corrected

according to error gradient descent method to continuously

reduce the sum of error squares of network training [43]. The

structure diagram of a three-layer BPNN is shown in figure 1.

The input of node i in the hidden layer:
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1

( )
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where wij and qi are the connection weight and threshold of

input neurons, f is the transfer function of implicit layer, ψ is

the transfer function of output layer, wkj and ak are the con-

nection weights and thresholds of network layer neurons, yk is

the output of node k in output layer.

Assuming that the input of the network is Pm and

the target vector of the network is TL, the error value of the

feedback can be expressed as = -e T y .k k
p

k
p Then the

obtained feedback signal is e=(e1, e2, ···, ep). The correction
matrix of weight and threshold is shown in equation (5):
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Figure 1. Structure diagram of three-layer BPNN.
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Equation (5) indicates that the weight and threshold

values are corrected along the opposite direction of the data

flow by the correction matrix, so as to achieve the aim of

reducing the output error.

3.2. The FOA and proposed IFOA

During the process of foraging, the fruit fly determines the

location of the food according to the smell, the other indivi-

duals gather around the food through the connections between

them. The implementation of FOA can be summarized as

following steps [37].

Step 1. The population amount (P), the maximum iteration

number (INmax), the flying distance range (FR), the group

location range and the initial location (X_axis, Y_axis) of fruit fly

population are determined.

Step 2. Calculate the random flight direction and distance to

search for food of the fruit fly individual.

= + ´ ´ -
= + ´ ´ -

X X FR Rand FR

Y Y FR Rand FR

_ 2

_ 2
. 6

i axis i

i axis i

⎧
⎨
⎩

( )

Step 3. Calculate the distance between the fruit fly individual

and the origin, and then calculate the flavor concentration

parameter which is the reciprocal of the distance.

= +Dist X YDistance : 7i i i
2 2 ( )

=S DistConcentration parameter: 1 . 8i i ( )/

Step 4. Substitute Si into the fitness function, calculate the

value of flavor concentration function Smelli and find out the

best flavor concentration in the fruit fly population. The

Figure 2. Flowchart of the IFOA.

Table 1. The optimal solution of the four test functions.

Algorithm Ackely Rastrigin Griewank Matyas

FOA 0.039 614 3.741 703 0.010 74 2.90E-06

GA 0.040 588 0.0068 0.003 745 0.001303

IFOA 0.000 698 0.001 12 0.001 252 2.46E-06
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minimum value is taken as the best flavor concentration in

this paper.

=Smell Function S 9i i( ) ( )

=best Smell bestindex Smell, min . 10[ ] ( ) ( )

Step 5. Obtain the best flavor value and the coordinates of

(X_axis, Y_axis), the fruit fly population flies to that location

through vision at this point.

=smellbest bestSmell 11( )

=
=

X X bsetindex

Y Y bsetindex

_

_
. 12

axis

axis

⎧
⎨
⎩

( )

( )
( )

Step 6. When the smell concentration reaches the preset

precision value or the iteration number reaches the maximal

INmax, the searching stops. Otherwise, repeat Steps 2–4.

It can be obtained from steps 1–6 that the flight distance

of individual fruit fly in FOA is within a fixed interval and the

searching direction is blind, the probability of falling into

local optimum greatly increases, and then some individual

fruit flies cannot escape from the local optimum. Furthermore,

the convergence precision is reduced in the later iteration,

which severely limits the search capability of FOA.

In order to improve the global search capability of FOA,

An IFOA is proposed in this paper. In IFOA, a heuristic factor

Qi was added into the FOA, which could push some indivi-

duals escape from the local optimal position and searching for

the next optimal position with a greater searching distance.

The heuristic factor Qi is presented as follows:

å

h
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⎜
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⎠
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( )

where Smellb is the minimum flavor concentration in fruit fly

population, nra is a coefficient which make the optimal value of

fruit fly population is constant, hi is the number of fruit fly
individual within (Smellb, a.Smellb), a is a coefficient that

determines the range of flavor concentrations of fruit flies, m is

the number of fruit fly individual escaped from the local optimal

Figure 3. The convergence curves of the test functions.
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Figure 4. The modeling process of IFOA-BPNN.

Figure 5. The physical figure and structure diagram of MRD. (1)–(3): left end cover of main cylinder, piston rod of main cylinder, piston of
main cylinder, cylinder of main cylinder, left end cover of auxiliary cylinder, connector of auxiliary cylinder, piston rod of auxiliary cylinder,
cylinder of auxiliary cylinder, coil, piston of auxiliary cylinder, hexagon nut, backflow port and right end cover of main cylinder,
respectively.
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position, FRi is the searching distance of fruit fly individuals

which is updated by the heuristic factor, IN is the current

iteration number. The flow chart of IFOA is shown in figure 2.

In order to verify the search capability of the IFOA, four

tests were conducted using four popular functions (i.e., Ackely,

Rastrigin, Griewank and Matyas). The convergence trend and

optimization precision of the tests were compared using FOA,

genetic algorithm (GA) and IFOA. Table 1 shows the optimal

solutions of the four test functions. The initialization conditions

were the same for the three algorithms; that is, the population

quantity was 30 and the iteration number was 100. Figure 3

shows the convergence curves of the test functions.

As can be seen in table 1, the smallest optimal solution of

the four test functions is produced by the proposed IFOA

method. Figure 3 shows that the proposed IFOA has a faster

convergence speed and a higher convergence precision than

the other two methods, which indicates that the search cap-

ability of the IFOA is better than original FOA and GA.

3.3. IFOA-BPNN

The basic principle for using the IFOA to optimize the BPNN

is that the direction and distance of fruit fly individual are

regarded as the weight and threshold of the BPNN, the fitness

function is established by using the training error and test

error of BPNN, which is also used to evaluate the position

information of fruit fly individual. The flowchart of IFOA-

BPNN is shown in figure 4, the fitness function is presented

as follows:

d d d= ´ + - ´ Îf error error1 , 0, 1 , 16t m( ) ( ) ( )

where errort and errorm are the training error and test error of

the BPNN, respectively. δ is the weight value between the

training error and test error. The mean square error value is

selected as the evaluation index, which is shown as follows:

å= -
=

error
K

x x
1

. 17
i

K

i i

1

2( ) ( )

The implementation of IFOA-BPNN can be summarized as

following steps.

Step 1. Initialize the BPNN; determine the number of neurons

in the input layer, hidden layer and output layer of the BPNN,

respectively; and then calculate the number of weights and

thresholds according to the number of neurons in each layer.

Step 2. Each weight and threshold is considered as a fruit fly

individual, and initialize their position.

Step 3. Assign values to random direction and distance for

each weight and threshold by random function, which are in

searching global optimal value.

Figure 6. MTS Landmark 370.50 test system.

Table 2. Main technical parameters of MTS Landmark 370.50 test
system.

Parameters Values

Static test force (kN) ±500, precision �±0.5%

Dynamic test force (kN) ±500, precision�±0.5%

Maximum frequency (Hz) 80

Sampling frequency range (kHz) 0–122

Maximum amplitude (mm) ±625

Table 3. Main technical parameters of DP811A programmable
power.

Parameters Values

Voltage range (V) 0–40

Current range (A) 0–5

Transient response time (μs) <50

Resolution (mVmA−1
) 1/0.5
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Step 4. Calculate the distance D between the individual and

origin, and then calculate the flavor concentration judgment

value, which is the reciprocal of D.

Step 5. The training data are used to train the BPNN, and the

test data are substituted into the trained BPNN for

verification.

Step 6. Substitute flavor concentration judgment value in Step

4 into the fitness function to obtain the minimum value, and

record the corresponding weights and thresholds.

Step 7. Optimize the value of fitness function by using the

obtained minimum value in Step 6, and then store the

coordinates of weights and thresholds.

Step 8. Repeat steps 3 and 6, and determine whether the

fitness function is better than the previous generation. If so,

perform step 7.

Step 9. The optimal weights and thresholds obtained in the

iteration process are substituted into the BPNN for modeling.

4. MRD dynamics testing and analysis

4.1. A new MRD testing platform

This study designed and fabricated a new MRD, as shown in

figure 5. This new MRD includes a main cylinder and an

auxiliary cylinder. The main cylinder is used to bear external

Figure 7. The damping characteristic curves: (a) damping force–velocity and (b) damping force–displacement when the amplitude of MRD is
5 mm and the excitation frequency is 1.66 Hz.

Figure 8. The damping characteristic curves: (a) damping force–velocity and (b) damping force–displacement when the amplitude of MRD is
5 mm and the excitation frequency is 3.32 Hz.
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loads and the auxiliary cylinder is used to control the damping

forces. The excitation coil is wound around the piston of

auxiliary cylinder, and a damping channel is formed between

the piston and the cylinder of auxiliary cylinder. When a force

is applied on the piston rod of main cylinder, the piston of

main cylinder will be driven to move, then the magne-

torheological fluid (MRF) on one side of the main cylinder

will enter the auxiliary cylinder through the backflow port

under the action of pressure. In this process, the MRF in

auxiliary cylinder will move from one end to another end

through damping channel, meanwhile, the rheological effect

of MRF is exhibited under the action of magnetic field, due to

the shear yield stress of MRF can be controlled in real-time by

adjusting the current intensity, the continuous control of the

piston rod of main cylinder could be realized. The piston and

cylinder of auxiliary cylinder are designed with an inclined

plane, which has an angle of 3° with the axial direction. The

piston rod of the auxiliary cylinder is connected with the left

end cover by thread, the axial position of the piston of the

auxiliary cylinder can be adjusted so as to control the size of

damping channel by rotating the piston rod. The piston and

cylinder of auxiliary cylinder are made of steel 45, the end

cover of auxiliary cylinder is made of stainless steel. The

length and diameters at both ends of piston of auxiliary

cylinder are 110 mm, 36 mm and 25 mm, respectively. The

damping channel clearance is adjustable within 0–2 mm.

Figure 9. The damping characteristic curves: (a) damping force–velocity and (b) damping force–displacement when the amplitude of MRD is
15 mm and the excitation frequency is 1.66 Hz.

Figure 10. The damping characteristic curves: (a) damping force–velocity and (b) damping force–displacement when the amplitude of MRD
is 15 mm and excitation frequency is 3.32 Hz.
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The damping characteristics of the MRD were obtained

by the load test system (MTS Landmark 370.50), as shown in

figure 6, which consists of a 370 load bracket, a hydraulic

power source and a digital controller (FlexTest 60). The main

technical parameters of the system are shown in table 2. The

programmable current source (DP811A) was used to provide

current for the excitation coil; the relevant technical para-

meters are shown in table 3.

The MRF-250 was used in this study. It is comprised of

soft magnetic carbonyl iron particles (average diameter: 8 μm,

density: 7.86 g cm−3; Beijing DK Nano Technology Co.,

Ltd), dimethyl silicone oil (viscosity: 100 cSt at 25 °C, den-

sity: 0.965 g cm−3; Shin-Etsu, Japan), sodium dodecyl ben-

zene sulfonate, oleic acid (purity 90%), graphite, and

diatomite powder. The zero field viscosity, saturation yield

stress and working temperature of MRF-250 are 242.5 mPa s,

55.25 kPa and –40 °C to 150 °C, respectively.

4.2. MRD dynamics analysis

The damping characteristics of the MRD were tested under

harmonic excitations. In the experiments, the amplitudes of

the MRD were 5 mm, 15 mm and 25 mm, respectively; the

excitation frequencies were 1.66 Hz and 3.32 Hz, respec-

tively; the excitation currents were 0 A, 0.4 A, 0.8 A, 1.2 A

and 1.6 A, respectively; and the sampling frequency was

500 Hz. The piston was forced to return to the original

position, and the power supply was turned off to avoid the

Figure 11. The damping characteristic curves: (a) damping force–velocity and (b) damping force–displacement when the amplitude of MRD
is 25 mm and excitation frequency is 1.66 Hz.

Figure 12. The damping characteristic curves: (a) damping force–velocity and (b) damping force–displacement when the amplitude of MRD
is 25 mm and excitation frequency is 3.32 Hz.
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Table 4. Training sample data.

Serial No. Current/A Speed/(m s−1
) Amplitude/mm Frequency/(Hz) Force/N Normalization

1 0 0.004 54 5 1.66 18.44 0 0.004 54 0.1 0.5 0.005 269

2 0 0.0096 5 1.66 155.4 0 0.0096 0.1 0.5 0.0444

3 0 0.011 12 5 1.66 106.47 0 0.011 12 0.1 0.5 0.030 42

M M M M M M M M M M M

803 0 0.011 51 15 1.66 −64.71 0 0.011 51 0.3 0.5 −0.018 49

804 0 0.019 47 15 1.66 65.85 0 0.019 47 0.3 0.5 0.018 814

805 0 0.032 45 15 1.66 51.8 0 0.032 45 0.3 0.5 0.0148

M M M M M M M M M M M

2723 0 −0.103 72 25 3.32 −442.376 0 −0.103 72 0.5 1 −0.126 39

2724 0 −0.076 03 25 3.32 −351.185 0 −0.076 03 0.5 1 −0.100 34

2725 0 0.055 43 25 3.32 −156.014 0 0.055 43 0.5 1 −0.044 58

M M M M M M M M M M M

13622 1.6 −0.103 72 25 3.32 −2525.46 0.8 −0.103 72 0.5 1 −0.721 56

13623 1.6 −0.076 03 25 3.32 −1882.35 0.8 −0.076 03 0.5 1 −0.537 82

13624 1.6 −0.023 02 25 3.32 −1386.3 0.8 −0.023 02 0.5 1 −0.396 09

Table 5. Testing sample data.

Serial No. Current/A Speed/(m s−1
)

Amplitude/
mm

Frequency/
(Hz) Force/N Normalization

1 0 0.013 08 5 1.66 238.64 0 0.013 08 0.1 0.5 0.068 183

2 0 0.019 42 5 1.66 268.73 0 0.019 42 0.1 0.5 0.076 78

3 0 0.023 97 5 1.66 298.35 0 0.023 97 0.1 0.5 0.085 243

M M M M M M M M M M M

201 0 0.026 66 15 1.66 88.67 0 0.026 66 0.3 0.5 0.025 334

202 0 0.0471 15 1.66 132.57 0 0.0471 0.3 0.5 0.037 877

203 0 0.061 14 15 1.66 234.42 0 0.061 14 0.3 0.5 0.066 977

M M M M M M M M M M M

679 0 −0.195 93 25 3.32 −750.66 0 −0.195 93 0.5 1 −0.214 47

680 0 −0.145 95 25 3.32 −615.45 0 −0.145 95 0.5 1 −0.175 84

681 0 0.023 02 25 3.32 −223.295 0 0.023 02 0.5 1 −0.0638

M M M M M M M M M M M

3404 1.6 −0.187 13 25 3.32 −2602.28 0.8 −0.187 13 0.5 1 −0.743 51

3405 1.6 −0.133 46 25 3.32 −2741.34 0.8 −0.133 46 0.5 1 −0.783 24

3406 1.6 0.055 43 25 3.32 −488.586 0.8 0.055 43 0.5 1 −0.1396

Figure 13. Iteration curves for fitness.

Figure 14. The experimental curves and modeling curves of damping
force when the amplitude of MRD is 15 mm and excitation
frequency is 1.16 Hz.
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residue effect when one test period was complete. The time

interval for each test was 1 min. Figures 7–12 show the

damping characteristic curves of the MRD.

Figures 7–12 indicate that the damping forces change

rapidly with the variation of velocity in the low speed region;

moreover, the significant hysteresis is found in this region.

The reason for this phenomenon is that a certain time is taken

to generate the rheological effect of MRF, furthermore, an

amount of air exists in the MRF, which results in the com-

pression of MRF. In the high speed region, the damping force

is basically kept in a steady state and the hysteresis effect

almost disappears. It can be seen from the figures 7–12 that

the damping force increases with the excitation current when

the velocity and displacement are in a constant state.

Although there is hysteresis in the damping force, it still

reaches the normal working state when the piston is not in the

extreme position. Once the piston reaches the extreme posi-

tion, the damping force rapidly attenuates to the zero state.

When the amplitude of damper is 25 mm, excitation fre-

quency is 3.32 Hz and the excitation current is 1.6 A, the

damping force reaches 3064.97 N. The large oscillation exists

in the test results is due to the error of sensor, meanwhile, the

diameter of the magnetic particle is not uniform, which results

in the difference in rheological effect.

5. Dynamic modeling using IFOA-BPNN

In this paper, BPNN, GA-BPNN [44], FOA-BPNN and

IFOA-BPNN were employed to establish the MRD surrogate

models, respectively. The performance of the AI surrogate

models was compared. The training data in table 4 is used to

obtain the network model, and the test data in table 5 is used

to test the performance of network. In order to avoid erro-

neous datasets, it is necessary to unify the samples in the

training and test by normalization processing. The training

error, learning rate and training times were 0.1, 0.01 and

1000, respectively. The function Logsig was used as activa-

tion function of the output layer, and function Tansig was

used as a negative gradient descent momentum method to

train the BPNN. The population quantity of fruit fly was 30

and the iteration number was 100.

Figure 13 shows the iteration curves for fitness during

modeling time. It indicates that the FOA-BPNN, GA-BPNN

and IFOA-BPNN are converged when the iteration number

are 38, 77 and 42, respectively. When the calculations reach a

steady state, the fitness values of FOA-BPNN, GA-BPNN

and IFOA-BPNN are 1.54, 1.44 and 1.09, respectively, which

indicate that the IFOA-BPNN has higher convergence

accuracy and faster convergence speed than FOA-BPNN and

GA-BPNN, moreover, the IFOA-BPNN is better in searching.

Taking the experimental results of MRD dynamic char-

acteristic as training and prediction samples. When the input

variables of the network are amplitude, frequency and speed

of excitation, current, the output variables are damping force.

The positive model of MRD is identified based on IFOA-

BPNN. When the input variables of the network are ampl-

itude, frequency and speed of excitation, damping force, the

output variables of the network is control current. The inverse

model of damper is identified based on IFOA-BPNN.

Figure 14 shows the variation curves of damping force and

velocity in different currents under the condition of amplitude

is 15 mm and excitation frequency is 1.66 Hz, which includes

the experimental results and the predicted results of IFOA-

BPNN positive model. The thick and thin lines represent the

experimental and the predicted results, respectively. It can be

seen from the figure 14 that the model established by IFOA-

BPNN accurately simulates the variation of damping force

with the velocity and current, and the hysteresis behavior of

MRD can be clearly exhibited.

Table 6 shows the training errors and test errors of

BPNN, FOA-BPNN, GA-BPNN and IFOA-BPNN in the

modeling process. In table 6, the training error of IFOA-

BPNN decreases by 19.89%, 14.07% and 6.09%, and the test

error of IFOA-BPNN decreases by 19.8%, 15.01% and 5.29%

compared with other methods, which indicates that the

modeling performance of IFOA-BPNN is superior to GA-

BPNN, FOA-BPNN and BPNN.

In order to further verify the accuracy of IFOA-BPNN in

modeling, 108 groups of test samples were extracted and

substituted into the dynamic models in the states of current

were 0 A, 0.8 A and 1.6 A, respectively. Figure 15 shows the

test error rate of BPNN, FOA-BPNN, GA-BPNN and IFOA-

BPNN. Figure 15 indicates test error rate is the smallest by

using the method of IFOA-BPNN, which demonstrates that

the accuracy of IFOA-BPNN in modeling is obviously higher

than other methods. The large errors are found between sample

50 and sample 60, and the corresponding speed between the

sample 50 and sample 60 are 0.2 m s−1
−0.35 m s−1 and

−0.35m s−1 to −0.2m s−1, which indicates that the modeling

effects of BPNN, GA-BPNN, FOA-BPNN and IFOA-BPNN

are poor in the transition zone, but the IFOA-BPNN is sig-

nificantly better than others.

In order to research the relationship between modeling

accuracy and current, average absolute error rates of the four

modeling methods were tested when the currents were 0 A,

0.4 A, 0.8 A, 1.2 A and 1.6 A, respectively, the corresponding

amplitude was 15 mm, and the excitation frequency was 3.32

Hz, as shown in figure 16. Figure 16 indicates that the that the

modeling accuracy of BPNN are greatly improved by adding

intelligent algorithms, and the modeling accuracy of IFOA-

BPNN is better than other methods, moreover, the modeling

accuracy increases with the current.

Table 6. Training error and test error.

Modeling method BPNN FOA-BPNN GA-BPNN IFOA-BPNN

Training error 3.157 2.943 2.683 2.529

Test error 1.116 1.053 0.943 0.895
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Figure 15. Test error rate of the four methods under the condition of the amplitude is 25 mm and excitation frequency is 3.32 Hz.
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6. Conclusions and future work

With the aim to improve the modeling accuracy for a MRD,

an IFOA-BPNN method was proposed. A new MRD testing

platform was established to generate experimental datasets for

the identification of modeling parameters. An IFOA-BPNN

surrogate model was then established to represent the

dynamics of the MRD. The performance of the IFOA-BPNN

was compared with BPNN, FOA-BPNN and GA-BPNN in

terms of modeling accuracy. The analysis results demon-

strated that the modeling accuracy of IFOA-BPNN was

satisfactory and was superior to its competitors.

Though the IFOA-BPNN is capable to improve the

modeling accuracy of the MRD in this study, there are still

some shortcomings need to be addressed. For example, the

modeling error of IFOA-BPNN is still large in the transition

zones of low speed and high speed. This issue will be solved

in future study. Moreover, based on the IFOA-BPNN surro-

gate model, an optimal controller will be developed to remove

hostile vibrations of the MRD-based semi-active seat sus-

pension system in the near future.
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