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A NEW ALGEBRAIC APPROACH
TO MICROLOCALIZATION OF FILTERED RINGS

MARIA J. ASENSIO, MICHEL VAN DEN BERGH AND FREDDY VAN OYSTAEYEN

Abstract. Using the construction of the Rees ring associated to a filtered ring
we provide a description of the microlocalization of the filtered ring by using
only purely algebraic techniques.

The method yields an easy approach towards the study of exactness prop-
erties of the microlocalization functor. Every microlocalization at a regular
multiplicative Ore set in the associated graded ring can be obtained as the com-
pletion of a localization at an Ore set of the filtered ring.

0. Introduction

Microlocal differential operators appear in the theory of D-modules where
they are defined and treated by analytic methods. In search of an algebraic
theory of microlocalization, T. Springer [7] introduced algebraic microlocaliza-
tion of a filtered ring A at a multiplicatively closed subset S in A in the case
where the associated graded ring G(A) is a commutative domain. The tech-
nique could be extended to microlocalization at a multiplicative subset S of
A such that a(S) in G (A) is a left Ore set without further restrictions on the
filtered ring A (cf. [8]). The algebraic theory expounded in loc. cit. is not as
"algebraic" as most algebraists would like because the methods and results all
depend on rather technical calculations with pseudo-norms and completions for
these.

In this paper we present a purely algebraic approach by passing through the
Rees ring R = ®neZFnR, associated to the filtration {FnR,n e Z} on the
ring R, and establishing an equivalence of categories between the category R-
filt of filtered left Tc-modules and AT% , the category of X-torsion free graded
7<-modules where X stands for the element of R representing 1 as an element
of FXR = Rx . The relations R/(X) = G(R), R/(X - 1) = R, and Rx =
R[X ,X~ ] allow the interesting interplay on which the results in this paper
depend. It is clear that filtered properties of objects in 7<-filt will translate to
graded properties in ATX and vice versa; this in its own right provides interesting
applications, short elegant proofs of earlier results as well as new perspectives.
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538 M. J. ASENSIO ET AL.

The body of the paper deals with the formulation of microlocalization in the
category R-gr stressing its homological properties.

In the theory of D-modules the sheaves of microlocal differential operators
are of main interest, therefore it makes sense to consider microlocalizations
associated to open sets (that are not necessarily corresponding to multiplicity
closed sets) and we point out briefly how our theory extends to that situation (for
algebraic microlocalization at 5 this was not possible in the earlier formalism).

One of the interesting results of this paper is Theorem 3.19(2) where we es-
tablish flatness of microlocalization at a multiplicative set S ; it follows from
this that for regular saturated multiplicative sets S in a filtered ring R, sub-
jected only to the condition that R is Noetherian, the microlocalization at 5sat
equals the completion of S~t R (hence in this case S^ is automatically a real
Ore set).

For general theory of filtered rings we refer to [2 and 6], the second is also
our basic reference for results concerning graded rings. We repeat definitions
and some fundamental facts in § 1, develop the constructions and their general
properties that we need in §2, and focus on microlocalization in §3.

1. Preliminaries

1.1. All rings are associated with identity. A module is always a left module
unless otherwise mentioned. A filtration on a ring R is given by an ascending
chain of additive subgroups {FnR,n e Z} such that FnRFmR c Fn+mR, 1 G
FQR, for all n , m e Z. An 7?-module M is a filtered module if there is an
ascending chain of additive subgroups {FnM,n e Z} satisfying FnRFmM c
Fn+mM for every n,m e Z. Throughout this paper allfiltrations considered
will be exhaustive, i.e. (J„ F„R — R and U„ FnM = M •

A filtration FM (short for {FnM, n e Z}) is discrete if there is an n0 e Z
such that FjM = 0 for all j < n0 . A filtration FR is separated if f|„ FnM = 0.
The trivial filtration on M is given by F{M = 0 for t < 0 and F$M = M for
5 > 0. An /Minear map between 7?-modules M and N, f say, is said to be a
filtered morphism of degree p e Z if f(FjM) c F¡+p(N) for all i e Z. Homo-
morphisms of finite degree form a subgroup HOMR(M ,N) of HomR(M, N)
that may be filtered by taking for F HOMR(M ,N) the morphisms of degree
p . We write HomFR(M ,N) = FQ HOMR(M, N) for the morphisms in the cat-
egory 7?-filt of filtered left Ä-modules. Arbitrary direct sums, direct products,
direct limits and projective limits exist in R-ñlt; the category is pre-abelian but
not abelian. An M G Tc-filt is said to be complete if FM is separated and all
Cauchy sequences (for the topology of FM) converge in M. The completion
of M with respect to FM is given by limnMjFnM (for more detail cf. §11,
p. 283 of [6]).

1.2. A ring A is said to be Z-graded if A = 0„ez^„, where the An are
additive subgroups satisfying AnAm c An+m for all n,m e Z. A graded A-
module M is given by M = ®„6Z Mn with AnMm c Mn+m and it is clear how
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MICROLOCALIZATION OF FILTERED RINGS 53')

to define graded morphisms, etc. (cf. [6]). The graded morphisms of degree zero
from M to N, where M and N are graded /(-modules, are the morphisms
in the category ^4-gr. This category is a Grothendieck category.

1.3. If R is a filtered ring and M e Tc-filt then we define the abelian groups

G(R) = ®FnR/Fn_xR,        G(M) = ®FnM/Fn_xM.
nez nez

If m e FM then m. . denotes the image of m in G(M) = F M/F .M.
For a e F.R and m e F.M we define a^.m.j. = (am),i+j) and extend it to
a Z-bilinear p: G(R) x G(M) -► G(M). For M = R, p makes G(R) into a
graded ring and in general G(M) is a graded G(7?)-module. It is easily checked
that G defines a functor 7?-filt —> G(R)-gr which commutes with direct sums,
products, direct and projective limits. Clearly, if FM is separated then M = 0
if and only if G(M) = 0.

A filtered morphism /: M —► N is said to be a strict morphism if f(F M) =
ImfnFN for all p e Z. A sequence in i?-filt:

(*) L-^M-^Nf       g
is strict exact if it is an exact sequence viewed as a sequence in R-mod, such
that / and g are strict morphisms in R-hlt. A filtered morphism /: M —► N
is an isomorphism in R-ñlt if and only if / is bijective and strict. Obviously,
a surjection /: M —» A7 is a strict morphism if and only if FN is the quotient
filtration defined by /, i.e. F N = f(F M). If (*) is a strict exact sequence
then G(*) is exact (cf. Theorem III.3, p. 288 in [6]). Hence by the foregoing
remarks we have G(M/N) = G(M)/G(N) if M/N has the quotient filtration
of FM and N has the induced filtration F N = F MtlN for all p e Z. Also,
if FM is separated then an f e HomFR(M ,N) is surjective and strict if and
only if G(f) is injective (note: the inclusion M c N is strict if and only if M
has the induced filtration).

1.4. We say that M e R-hlt is filt-free if it is a free Ä-module having a basis
{x¡,i e AT} such that FM = @ier F R • x¡ for some family of integers
{n., i e AT} . Note that 'filt-free' is stronger than being filtered and free as an
7?-module!

An M G 7<-filt is said to be filt-finitely generated if for all p e Z, FM =
52"i=\E R- Xj for a finite family of x¡ e M, «; g Z, or equivalently if
there is a filt-free L that is finitely generated together with a strict surjection
n : L —► M. For a filt-finitely generated M we have that G(M) is a finitely
generated graded C7(7<)-module but the converse is true only under some addi-
tional hypotheses (cf. Proposition IV.3 on p. 294 of [6] and Proposition 1.10 of
[1]). If M is filt-finitely generated then we say that FM is good.

1.5. In the study of completions one uses a notion of equivalence for ni-
trations FM and F'M on an 7î-module M that is inspired by topological
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considerations only, i.e. FM and F M are said to be topologically equivalent
if they determine the same topology, i.e. for each s ,t eZ there exist s , t' e Z
such that Fs,M c FSM, Ft,M c FtM. For the study of finiteness properties,
e.g. good nitrations, we introduce a stronger notion of equivalence that does
reduce to the former only when the suitable finiteness conditions hold. The ni-
trations FM and F'M on the Tc-module M are said to be equivalent if there
exists a positive integer w such that Fm_u,M c F'nM c F    tM for all neZ.

1.6. Proposition. If the R-module has a good filtration then all good filtra-
tions on M are equivalent.
Proof Well known, cf. [2, 8].

1.7. In the next result we recall part of Theorem 2.11 of [1]. It shows that
several conditions on nitrations appearing in the literature will actually come
down to the same thing. Recall that FM is said to be faithful if G(M) =
0 implies M = 0 ; FR is a faithful filtration if FM is faithful for every
good filtration FM on a finitely generated 7?-module M. We say that FR
is Zariskian if (7(7?) is Noetherian and if for any pair N c M of filt-finitely
generated Tî-modules (i.e. with good nitrations) we have

FnN = f] (FnN + FmM)     for all neZ.
mez

1.8. Theorem [1]. Let R be a filtered ring such that G(R) is left Noetherian.
The following statements are equivalent:

(1) FR is faithful and good filiations induce good filiations.
(2) Good filiations are separated and good filiations induce good filiations

on finitely generated R-submodules.
(3) FR is Zariskian.
(4) FR is IL-Noetherian in the sense of [8, Definition 6.10].

1.9. Example. If FR is complete, and G(R) is left Noetherian then the prop-
erties mentioned in the theorem do hold.

1.10. Remark. In [1] the list of equivalent conditions is somewhat longer but
the omited conditions involved the comparison condition, and in [ 1 ] the proofs
of equivalences involving the comparison condition have gaps. We will establish
the result we actually need in Proposition 2.6 in terms of a finiteness condition
on the Rees ring R associated to FR .

2. Filtered modules as graded modules over the Rees ring

Let 7? be a filtered ring (exhaustive, as usual), then R = ®n&zFnR is ob-
viously a Z-graded ring. We may also view R as a subring of R[X ,X~ ], X
a variable, R = ¿~2n€zFnRX" w'tn X e Rx . The canonical element of degree
one in R is the 1 G FXR in R, i.e. we write it as X to conform with the second
presentation of R. The ideal generated in R by the central element X, i.e.
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MICROLOCALIZATION OF FILTERED RINGS 541

Y,nezFnRX"+X ' wil1 be denoted by l throughout this paper. We let FR be
the 7-adic filtration on R, FR = I~" for n < 0 and FmR = R for m > 0. If
M is a filtered 7<-module then M = @neZFnM is in the obvious way a graded
Ä-module (and it may also be viewed as M = Y^nÇ.zFnMXn). Obviously each
M is X-torsionfree because the maps FnM —> Fn+XM are injective.

Conversely, to an AMorsionfree graded Ä-module M there corresponds a
filtered /c-module M that is obtained as limnMn where the maps in the in-
ductive system are given by 'multiplication by X ' and these are injective. The
canonical images of Mn in M then define an exhaustive filtration on M (the
Tc-module structure is obvious). All these observations may be combined in the
following lemma; all claims are easily verified or just immediate consequences
of the definitions.

2.1. Lemma. Let R be a filtered ring, M e ATX, the latter being the full sub-
category in R-gr of the X-torsionfree graded R-modules.

(l)R/I = G(R), M/IMJiG(M).
(2) R/R(X - 1) = R, M/(X - l)M = M ; as observed earlier we may use

multiplication by X as an identification map in constructing M from M.
(3) The localization of R at the central multiplicatively closed set {1, X,

X2, .,.}, denoted by Rx, equals R[X,X~1]. Also Mx = M[X,X~l] (uses
the fact that FM is exhaustive).

(4) The functor ~: R-hlt —► R-gr defines an equivalence of categories between
7<-filt and ATX.

Making use of the correspondence between R, R and G(R), in particular
Lemma 2.1(4), it is straightforward to verify the properties mentioned in the
following lemmas.

2.2. Lemma.  With notations as in the foregoing lemma:
(1) For an M e Tc-filt, FM is a separated filtration if and only if the I-adic

filtration on M is separated, i.e. when f|„ X"M = 0.
(2) A filtered R-module M is filt-finitely generated (or equivalently FM is

good) if and only if M is finitely generated as a graded R-module.
(3) A filtered R-module M is filt-free (e.g. as defined in [6]) if and only if M

is gr-free in R-gr.
(4) A filtered morphism f: M —► N in 7<-filt is a strict morphism if and only

if f: M —► N is a graded morphism (of degree zero) such that Coker(f) e ATX .
So if f is strict then Ker(/) and Coker(/) are both in ATX. A strict exact
sequence in 7c-filt transforms to a graded exact sequence in ATX .

2.3. Lemma. (1) If P e Tc-filt is filt-projective (the definition is the obvious one,
see also §VI, p. 306, [6]) then P is gr-projective and conversely.

(2) If E e R-ñlt is an injective object then E is an injective object of Tx .
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2.4. Note. 1. In Lemma 2.3(1) one should bear in mind Corollary 1.2.2, p. 7
of [6], yielding that the notion of gr-projectivity is the same as projectivity for
any graded module.

2. In Lemma 2.3(2), E need not be injective in R-mod and in fact not even
gr-injective in 7?-gr.

3. Lemma 2.1 provides methods for transporting properties from M to
G(M) and vice versa, usually through M. Let us just mention here that Cohen-
Macaulay properties may be studied this way because we go from R to G(R) by
reducing modulo a central element. Such lifting—and descent—results depend
on properties of the functors: - ®~ R/I and - ®~ R/(X - l)R. To this end
we include

2.5. Lemma. The functor G = - <g>~ R/I is exact on ATX ; the functor
- ®RR/(X - l)R is exact on R-gr.
Proof. Easy.    D

Let us investigate in some detail when R is left Noetherian. Since R is Z-
graded we know that R is left Noetherian if and only if it is left gr-Noetherian,
in view of Theorem II.3.5 on p. 88 in [6]. In view of Lemma 2.2(2) we see that
R is gr-Noetherian if and only if every filtered submodule N of a filt-free R-
module E of finite rank is filt-finitely generated. Note that FN is not induced
by FE unless E/Ñ is X-torsionfree (cf. Lemma 2.2(4)). Because of this fact
the equivalence established in Proposition 1.1.7, p. 57 in [10] is wrong; of course
the condition that R is left Noetherian will entail that good nitrations induce
good nitrations on submodules but the converse will hold only in the presence
of the condition G(R) Noetherian. In view of Lemma 2.1 (4) we do obtain that
R is left Noetherian if and only if R is /-Noetherian, that is R then satisfies
the ascending chain condition with respect to X-closed left ideals, but for R
to be left Noetherian we really do need extra assumptions.

2.6. Proposition. Let R be a filtered ring. Then the following are equivalent:
1. (a) Good filtrations induce good filiations on R-submodules.

(b) G(R) is Noetherian.
2. R is Noetherian.

Proof. First note that condition 1 (a) is equivalent with the following:

If M c N are in ATX with N finitely generated and such that
N/M is in ATX , then M is finitely generated.

2 => 1 . This is clear.
1 => 2. Let M c Ñ be in ATX with N finitely generated. Then we claim

that M is finitely generated. This proves that R is Noetherian since we may
take Ñ = R. _     _ _

If M' is the graded module such that M c M' c Ñ and Ñ/M' is in ATX
then  M'  is finitely generated by 1(a).   Hence we may assume that  N/M is
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X-torsion. It follows that there is some u such that XUÑ c M. Jlence M
is an extension of XUÑ and modules Ut = X'Ñ n M/Xt+lÑ n M for t =
0,... ,u- 1. Each {7r embeds in X'Ñ/Xt+ N and hence is finitely generated
by 1(b). Therefore M is finitely generated.   D

Recall that the graded Jacobson radical J8(f) of a graded Ä-module f
(note that we do not assume that T comes from some T e R-hlt but we stick
to this notation with ~ for /(-modules, hoping that it will be clear from the
context whether the module is in ATX or not, i.e. when it comes from a module
in R-hlt or not) is defined to be the intersection of the gr-maximal submodules
of f, i.e. Jg(R) is the largest proper graded ideal of R such that I + ar is
invertible for all a e Jg(R) n R0 and r e RQ. Basic properties of Jg may be
looked up in [6, Lemma 1.7.4, p. 53].

2.7.    Proposition. The following statements are equivalent for a filtered ring R:
(l)F_xRcJ(FQR).
(2)XeJg(R). _    _ _
(3) For a finitely generated M e R-gr, XM = M if and only if M = 0.
(4) For a finitely generated M e ATX, XM = M if and only if M = 0.
(5) If M e R-hlt has good filtration then G(M) = 0 if and only if M = 0.
(6) FR is a faithful filtration.
If R is left Noetherian then the foregoing conditions are all equivalent to

the properties mentioned in Theorem 1.8.

Proof (1) & (2) Clearly F_XR c J(FQR) if and only if l + (F_xR)X c U(R0)
if and only if X eJg(R).

(2) <=> (3) The graded version of Nakayama's lemma, cf. Lemma 1.7.5, p. 54
in [6].

(3) => (4) Obvious.
(4) =>■ (3) Let M be any finitely generated graded .R-module such that

XM = M and let txoo(M) be the submodule {m e M,X"m = 0 for some
«GN}.

From the exact diagram in R-gr:

0 - tXx(M) - M - M/txoo(M) -» 0

I I I

0 - txoo(M) -+ M -> M/txoo(X) - 0

where the vertical arrows are given by multiplication by X, we derive that
M/tXoo(M) = 0 using hypothesis (4). Hence M is X-torsion but as M is
finitely generated this means that X" M = 0 for a suitable n e N ; however
M = XM=-- = X"M,thus M = 0.
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(4) o (5) Just the translation for the category equivalence R-hlt <-> ATX .
(5) o (6) Definition of faithful filtration,   a

After these results we may conclude that the Zariskian condition, equivalent
to R being Noetherian and F_XR c J(FQR), is the appropriate generalization
of the notion of Zariski ring in commutative algebra, i.e. a Noetherian com-
mutative ring C with an Z-adic filtration for an ideal I of C contained in
the Jacobson radical J(C). However, as far as microlocalization is concerned
the weaker condition that R is (left) Noetherian will suffice to guarantee the
good behavior of the microlocalization functor. Before dealing with these prob-
lems, let us look at the compatibility between the functor ~ and the completion
functor A.

Consider M e ATX and let (Mfg be the graded completion of M at the
graded ideal 7 of R,

(Mfg = lim*M/XnM
n

the inverse limit taken in R-gr. Now calculate

(M)pg = lim FpM/Fp_nM = lim FpM/FrM,
71 r<p

but the latter is exactly FM for the filtration FM defined on the completion
of M at FM (this is well known, see the bottom line of p. 283 of [6]), hence
we have established

2.8.    Proposition. Let M be a filtered R-module, then

(M)~ = (M)Ag = limgM/XnM.
77

In the terminology we are about to introduce in §3, the foregoing proposition
just states that microlocalization at the trivial multiplicative set {1} is nothing
but the completion.

3. Algebraic microlocalization

Let R be a separated filtered ring. Consider a multiplicatively closed subset
S (containing 1) in R. If x e FnR - Fn XR we let a(x) be the image of x in
G(R)n. On S we put this condition that a(S) = {a(s),s e S} is multiplica-
tively closed too. It then follows that o(st) = a(s)a(t) for all s,t e S. Clearly
a(S) consists of homogeneous elements in G(R). We construct S in R as
follows: if s eS is such that a(s) e G(R)n then we let s e Rn be the element
5 G FnR but viewed as an element in ®n<EZFnR .

3.1.    Lemma. The set S is multiplicatively closed in R.
Proof. Since a(S) is multiplicatively closed it follows that o(st) = a(s)a(t)
for every s ,t e S and therefore si = st in R follows. Hence si e S and the
claim is proved.   □
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3.2. Lemma. If o(S) satisfies the left Ore conditions in G(R) then for each
n G N, S maps to a homogeneous left Ore set S in R/l" .
Proof. Suppose first that rs = 0 in R/In , where s and r are the images of
s e S and r e R, resp. The Ore conditions for a(S) entail that there is an
sx e S such that sxr = Xux, some w, G R/I" . From sxrs = 0 we obtain
that Xuxs = X"b in R, hence uxs = 0 in R/I and using the Ore conditions
again we obtain an s2 with s2 e S such that s2ux = Xu2 with u2 e R/In.
Consequently, s2sx r = X U2 and repeating this procedure, taking into account
that X" = 0 in R/I" , we arrive at Sn • • • sx F = 0 with sn- ■ -sx e S. So we
verified the first Ore condition for S in R/I" . For the second Ore condition
we consider s,r e R/I" for s an image of some s e S and r arbitrary. We
have to establish the existence of sx, rx such that sxr = rxs , with sx an image
of an s~x in S. Using the second Ore condition in R/I it is clear that we
may find s', t in R/In with s' in 5 such that s'r = ts + Xux , Ux e R/I".
Repetition of the same argument leads to s"üx = axs+Xü2 with as,u2e R/I".
Hence

s"s'r = s"ts + Xaxs + X2u2 = (s"t + Xax)s + X2U2.
After at most n- 1 repetitions we arrive at sxr = rxs with sx equal to the prod-
uct of s',s", ... (in the correct order) and rx the element in R/In obtained
at the final step.   D

For every n e N we may define Qj(R/In) obtained by inverting the ho-
mogeneous left Ore set 5 of R/In in the classical way. We obtain an inverse
system of graded morphisms in R-gr: {Q^(R/l") -> Q^(R/In~l), n e N} , so
we can take its inverse limit in R-gr and we write

Qt(R) = limsQ§(R/In)
n

(caution: S depends on n) for the graded ring (and /(-module) we obtain this
way. For a filtered /(-module M we define

Q~(M) = limgQ§(M/l"M)
77

and it is not hard to verify that this defines a graded Q~(R)-module.
This construction may be generalized considerably. To a kernel functor k

on /(-mod (cf. [6] for some details on localization theory), we correspond k on
R-mod by defining the Gabriel filter Sf(k) to be generated by the graded left
ideals L of R such that L = H for some H eSf(ic) (it is not hard to verify
that the family of graded left ideals in Sf(k) is a basis for the filter and that
we could have defined k to be the kernel functor on /(-mod corresponding to a
"rigid graded kernel functor" k on R-gr as defined in [6]). For every n e N we
define K{n) to be the (graded) kernel functor on R/In induced by the graded
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ring morphism /"' : R -» R/l" (i.e. an /?//"-module T will be «r^'-torsion
exactly then when j[n)T is /c-torsion). Let Qg be the localization functor on
R/l"-gr corresponding to /c(n), then define

(%'M) = limgQgn(M/InM)
n

and so we arrive at the microlocalization at k , Qf(M), in a way similar to
what will follow for Qßs . We do not dwell upon this material here but we point
out that it has some use in particular cases where k corresponds to an open
set in the Zariski topology on some projective variety or when /c corresponds
to the generically closed set of height one prime ideals of a ring over which
differential operators are being considered.

3.3. Lemma.  With notations as above Q~(M) is in ¡Tx.

Proof. If a e Q~(M) is annihilated by X then Xa,. = 0 for 0 / a e
Qj(M/T"M) representing a. There is an s in the image of S in R/In such
that Xsa(n) = 0 with sa{n) £ 0 in Imp, tp: M/I" M - Q§(M/InM) the
natural localization homomorphism. If b,n) G M/l" M represents sa,, then
b{n) is not S-torsion since sa,n) is not ¿'-torsion. From Xsa. , = 0 it then

follows that sxXb.n) = 0 hence s.b,n) G /""' M/i" M and b, , as well as a(n)

must then be in Q|(7" M /In M), i.e. a._X) = 0. Since this argument works

for any n it follows that a = 0 and therefore Q~(M) is X-torsionfree.    D

3.4. Corollary. To the X-torsionfree graded R-module Q~(M) there corre-
sponds a filtered R-module Q^(M) obtained as

QMs(M) = Q~(M)/(X-l)&~(M).

The ring Q^(R), thus obtained, is called the microlocalization of R at S.
Similarly, Qßs(M) is the microlocalization of M and it is a filtered /(-module.
We have to justify the terminology introduced above by verifying that Qßs(R)
satisfies the universal property characterizing the microlocalization in the sense
of [8] a.o.

3.5. Proposition. Let R be a separated filtered ring, let js be the canonical
ring morphism R —> Q^(R) ■ Given a complete filtered ring B and a filtered
ring homomorphism h: R —► B such that for all s e S, h(s) is invertible in
B with h(s)~l e F nB if a(s) G G(R)n. There exists a unique filtered ring
homomorphism g: Qf'.(R) —> B such that h factorizes as R -^js Q^(R) —*g B.

Proof. Since h is a filtered morphism it yields a map of graded /(-modules
h: R —<• B, which is of degree zero. From h(lR) = lB it follows that h(X) =
XB , where XB is lB viewed as an element of Bx . It is trivial to verify that B
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is in fact a ring and that h is a graded ring morphism. From h(In) = XBh(R)
it follows that h induces graded morphisms R/I" —► h(R)/X"Bh(R) —► B/l"B ,
where IB = BXB .

Now note that an seS with a(s) G G(R)n has h(s)~i in F_nB - F_n_xB
because h(s)~l e F_n_xB leads to 1 = h(s)h(s)~l e FnBF_n_xB c F_XB, a
contradiction, while h(s)~ e F_nB holds by assumption. The assumptions on

S entail that S maps to left Ore sets S c R/l", ~Sh = h(S) c h(R)/XBh(R)
and the image of h (S) in B/IB is invertible in B/IB because h(S) is invertible
in B . Note that the latter fact really depends on the observation that h(s)~~ &
F_n_xB when a(s) e G(R)n ! After localization at the left Ore sets involved we
arrive at graded ring homomorphisms:

ßf (R/I") - Q§h(h(R)/X"Bh(R)) - B/I"B.

Taking inverse limits in the graded sense leads to graded morphisms:

g: Q~(R) - Q~(h(R)) ^B= lim8B/I"B.s sh <-
71

The filtered morphism g: Qßs(R) —► B corresponding to g is also a ring mor-
phism (not only an /(-module morphism) and from R —►-. Q~(R) —► B we
obtain R —>. ß^(/<) —►   B factorizing h as desired (this is trivial to check).    D

3.6. Corollary. (1) Qf¡(R) is the microlocalization of R at S in the sense of
[8].

(2) A similar proof establishes the same result for Qf¡(M).
(3) The fact that we keep track of the intermediate ring Q~ (h(R)) in the proof

shows that Qßs (h(R)) is a ring and that Qßs(R) -> Qßs (h(R)) is a filtered ring
homomorphism.

(4) The equality of norms as in Lemma 5.16 and Corollary 5.20 in [8] is a
consequence of our proof above, in fact here it follows from the very simple fact
that h(s)~ e F nB entails h(s)~ <£ F_n XB. This marks the advantage of our
method over the cumbersome norm-calculations used in [8].

3.7. Lemma.   FQ^(M) is separated.
Proof. Application of Lemma 2.2(1) shows that we only have to check whether
f)mXmQZ(M) = 0.But

f]XmQ<i(M) = linfx'" lim8Q§(M/X"M)
m m n

= Hm* lim8XmQ§(M/X"M)
m       ti

= lim* lim* Xm Q§(M/X" M) = 0.   D
71 777
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At this point we have to introduce a condition that enables us to calculate
lim in an easier way, i.e. making it right exact in some easy recognizable cases.
If one is given a sequence of homomorphisms of inverse systems 0 —► (A ) —>
(Bf) —► (Cn) —> 0 then we say that the system is exact if we have exact sequences
0 —> An —► Bn —> Cn —► 0 for each n . For an exact sequence 0 —> (An) —>
(Bn) -» (Cn) -»Owe have that 0 -+ lim^ -> hm^,, -► Hm„Cn is also
exact. If (yln) satisfies the Mittag-Leffer condition (M.L.) then it also follows
that

0 -> lim ¿n -► lim Bn -> lim Cn -> 0
71 71 77

is exact.
Recall M.L. (cf. p. 191 in [5]): the inverse system (An) satisfies M.L. if for

each n, the decreasing family of subgroups of An Wn,n(An,) c An,n' > n}
is stationary; in other words for each n there exists an nQ > n such that for
all n ,n" > n0, <Pn,„(An,) = Çn„n(An„), where the tpn,n are morphisms in the
inverse system.

3.8. Lemma (cf. [5, Proposition 9.1 and Example 9.1.1]). Let there be given a
short exact sequence of inverse systems of abelian groups:

0^(An)^(Bn)^(Cn)^0.
(1) If (Bf) satisfies M.L. so does (Cn).
(2) If (An) satisfies M.L. then 0 —► lim An -» lim Bn -* lim Cn —» 0 is an

exact sequence.
(3) If all the maps tpn,n : An, —> An are surjective then (Af) satisfies M.L.

When considering inverse systems of graded objects one may consider a
weaker version of the M.L. condition, i.e. the 'graded M.L. condition' by re-
stricting attention to the system <p'n,n\(AnA)t for a fixed degree teZ. However
in the sequel we will use only the full M.L. condition.

3.9. Proposition.   FQ^(M) is complete, for M e R-hlt.
Proof. It is enough to show that Q~(M) is graded (X)-adically complete. I.e.

ß|(M) = lim*Ql(M)/XmQ!t(M).
777

linfQM~(M)/XmQl(M)
777

= lim* (limgQ§(M/XnM)\ / flinfXmQ§(M/X"M)\

= lim8 lim8 Q§(M/X"M)/XmQ§(M/XnM)(ML\)
777 71

= lirrf lim8Q§(M/X"M)/XmQ§(M/X"M) = Q~(M).   D

But
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3.10. Proposition. The associated graded module of Q$(M) is G(Q^(M)) =
a(S)~XG(M).
Proof. To find G(Qß(M)) we have to compute Qt(M)/XQ~(M) ■ But

Q~(M)/XQZ(M) = lim*Q§(M/X"M)/ lmfXQ§(M/XnM)
71 77

= lmf Q§(M/X"M)/XQ§(M/X"M)(ML\)
71

= Q§(M/XM) = o(SylG(M).   D

3.11. Remarks. 1. It is clear that Qß is a functor from R-hlt -* Qßs(R)-hlt.
Indeed, it is clear that QUM/1"M) is a graded Qf (/(/7")-module for each n ,
so it is also clear that Qßs(M) is a Qßs(R)-module. Similarly one verifies the
action of Qç on filtered morphisms.

2. If S is an Ore set of R and FR is trivial then

R = R[X],    G(R) = R,    Q^(R)= lim8 S~\R[X]/X") = (S~1R)[X]
77

and
Qß(R) = (S~lR)[X]/(X-l) = S-iR.

3. If 5 is an Ore set of R and FR is any separated filtration then

Q~(R) = lim8 S~[(R/I") = lim8 S~lR/S~l I" = (S~lR)A
77 71

where A is the graded 5" /-adic completion. We obtain that Qßs(R) =
(S~ R) where A(FS) is a completion corresponding to the ¿-closure of
the filtration F. This Fs corresponds to the pseudo-norm associated to S in
[8].

4. If 5 = {1} then Qß(R) = R follows from 3.

So far we have obtained short elegant proofs of most important properties
of Qßs . Now we continue with a more systematic study of the funtor Qß .

For a graded /(-module T, T(n) with neZ stands for the shifted graded
module, i.e. the /(-module T with gradation shifted over n . We introduce the
notation tx„(T) = {t e T,X"t = 0} and txoo(T) = {t e T,Xnt = 0 for some
n G Z} . We write (tx„(T)(-n))n for the inverse system defined by the graded
morphisms tpn, n: tx„(T)(-n) -> tx„,(T)(-n), being multiplication by Xn   ".

We view tx„(T) as an /(//"-module in the obvious way. Then it makes
sense to consider the inverse system (again graded maps):

<Pnl,n:Qj{txÁT)(-n))-^Ql(txAT)(-n')).

An  A-module  M  is said to be prefinite if there is an  m e N  such that
XmtxUM) = 0.
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3.12. Lemma. // M is prefinite then the inverse system

(Ql(tx„(M)(-n)))n

satisfies M.L. and we have that its projective limit is zero.

Proof. Obvious,   a

3.13. Lemma. (I) Any finitely generated graded X-torsion module T in R-gr
is prefinite.

(2) If f: M —» N is a filtered morphism in R-hlt such that there exists an
m e N such that f(FnM) D Fn_mN then Coker(f) is prefinite.
Proof. (1) Trivial.

(2) Fp(N/f(M)) = FpN/Fpf(M) = FpN/f(FpM), hence we have a surjec-
tive map FpN/Fp_mN -> Fp(N/f(M)). Hence Ñ/XmÑ - Coker/ is surjec-
tive but then Coker(/) is prefinite.

3.14. Corollary. If FM and F'M are filiations on M such that the identity
of M satisfies Lemma 3.13(2), i.e. FnM d F'n_mM for all n e Z, then the
cokernelof\M is prefinite.

Our first result concerning exactness properties of Qßs can now be stated as
follows.

3.15. Theorem. Let 0—>,4—►/?—>C—>0 be an exact sequence of graded
R-modules such that either

(1) C is X-torsionfree (hence certainly prefinite),
(2) B and C are prefinite.

Then, with conventions on S as before, the following sequence is exact (in R-gr):

0-ßf(^~)-of(/i)-ßf(C)->0.
Proof. There is an exact sequence (in R-gr) of inverse systems:

0 - (Q¡(tx„(A)(-n)))n -+ (Q§(txn(B)(-n)))„

- (Q¡(txÁC)(-n)))n - (Q§(À/l"Â))n
- (Q§(B/l"B))n - (öf(C//nC))„ - 0.

It now suffices to apply Lemmas 3.12 and 3.8, taking into account that in case (2)
A is also prefinite, and by taking lim we obtain the desired exact sequence.   D

3.16. Corollary. (1) // 0 -* A -» Í -» C -» 0 is a strict exact sequence of
filtered R-modules then the sequence 0 -♦ Qß(A) - Qß(B) - Qß(C) - 0 is
also exact.

(2) If FM and F'M are equivalent filtrations on M then FQß(M) and
F'Qßs(M) are equivalent, i.e. the R-module Qßs(M) does not depend on the
chosen equivalent filtration on M.
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(3) If R is left Noetherian and 0 —> A —> B —► C —> 0 w a« exaci sequence of
filtered R-modules such that A, B, C are finitely generated R-modules then
the sequence

0 - Qß(A) -+ Qßs(B) -, Qß(C) - 0
is an exact sequence of filtered Qßs(R)-modules.
Proof. (1) Follows from Theorem 3.15(1).

(2) We may apply Theorem 3.15(2) and Lemma 3.13(2), and use exactness
of -®R/(X - \)R on R-gr.

(3) Since R is left Noetherian, the complex 0->i-»5^C->0 has
finitely generated homology hence it is prefinite in view of Lemma 3.13(1) and
clearly it is also AMorsion. By repeated application of Theorem 3.15(2) we
obtain that the complex

0 - Ö~(i) - ôf(B) - ßf(C) - 0
has AMorsion homology. Therefore

0 ̂  Qß(A) ̂  Qß(B) ̂  Qß(C)-^ 0
is an exact sequence of filtered ß^(/?)-modules.   D

We present the following result in a rather general form, its corollaries provide
short and intrinsically graded proofs of a.o. Propositions 3.9 and 3.10.

3.17. Proposition. If M is a prefinite graded R-module then

R/I" ®z Q~{M) = Q§(M/I"M).
Proof. Apply Theorem 3.15 to the exact sequence

0^tx„(M)^M^M^ M/I" M -+ 0.

3.18. Corollaries. (I) If M e R-hlt then G(Qß(M)) = o(S)~[G(M).
(2) If S and T are multiplicative sets in R with properties as before and

if SVT is the multiplicative set generated by S U T then let us assume 0 £
(j(S)Vo(T) (just to avoid triviality of the statements).

Then Qßs(QßT(M)) s QfSVT(M). This follows from Proposition 3.17 and the
fact that ßfßf = Qjyf on graded R/1"-modules.

3.19. Theorem. Let R be left Noetherian.
(1) If M is a graded finitely generated R-module then

Ql(M) = Ql(R)®RM.
(2) Qß~(R) is flat.

Proof. (I) Since  Q~ commutes with finite direct sums the claim holds for

gr-free graded  /(-modules of finite rank.    For  M  consider a presentation
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G -+ F —> M —> 0 where F, G are gr-free of finite rank. Application of
Theorem 3.15 yields

ßf(Ö)      -      Qit(F)      -      ß£(M)      ->0
Qt(R)®~G -^ Qt(R)®~F - QZ(R)®~M  -  0

By the five lemma, the vertical map on the right is an isomorphism of graded
ß£(.R)-modules.

(2) The functor Q~(R)®~ - commutes with graded direct limits and it is
exact on finitely generated modules by the first part and Theorem 3.15(2).   D

3.20. Corollary. Let R be left Noetherian, then:
( 1 ) The functor Qßs (R)®R - preserves strict maps and it is exact on R-modules.
(2) If M e R-hlt is filt-finitely generated, i.e. M is finitely generated, then

Qß(R) ®RM = Qß(M) as filtered R-modules.
Proof. (1) Since Q~(R) is flat as an «-module, flatness of Q%(R) follows for

example from localization at {I ,X,X ,...}. A strict morphism / yields a
graded morphism / with A-torsionfree cokernel. Then the flatness of Q~(R)

yields that Q~(R) ® f has A-torsionfree cokernel too.
(2) Trivial from the foregoing.   D

3.21. Note. The second statement in the above corollary makes sense for non-
filtered modules. Indeed, if M is a finitely generated /(-module then we may de-
fine a good filtration on it and applying Corollary 3.20(2) to the filtered module
thus defined yields an isomorphism of /(-modules Q$(R) ®RM = Qßs(M).   D

A multiplicative set S is said to be saturated if S = {r g R, a(r) e o(S)} . J.
E. Björk pointed out to us that M. Kashiwara made the following observation in
his master's thesis: if FR is Zariskian and G(R) is a commutative Noetherian
domain then any saturated S is an Ore set. Now, making use of our approach
via the ring R we can extend this result to the situation where R is Noetherian
as follows. Put 5 equal to the multiplicative set of homogeneous elements in
S + RX ; then it is clear that ¿sat maps to S"at = {r e R,a(r) e cj(S)} (for a
multiplicatively closed set S such that o(S) is multiplicatively closed) under
the map R^ R = R/(X - l)R . If SSM is an Ore set in R then 5"sat is an Ore
set in R.

3.22. Proposition. // R is left Noetherian and S is a saturated multiplicatively
closed set R suchthat a(S) satisfies the second left Ore condition in G(R) then
S satisfies the second left Ore condition in R. In case o(S) is a regular left Ore
set in G(R), S is a left Ore set in R and Qß(R) = (5,"'/()A^ .
Proof. Clearly S = SsM since 5 is saturated. By Lemma 3.2, 5 maps to homo-
geneous sets satisfying the second left Ore condition in R/In for every n e N
(note: first or second refers to the order on the Ore conditions as used in Lemma
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3.2). Now 7 is an invertible ideal of a Noetherian ring R and 7 = RX is cen-
trally generated so it certainly satisfies the Artin-Rees condition with respect to
left ideals L of R, LnRXh{n) c LXn , for some h(n) associated to n e N.
Combining this Artin-Rees condition with the second left Ore conditions for
S , the image of S in R/RX", with n e N, one easily obtains the second
left Ore condition for S in R. It is obvious that the regularity of a (S) in
G(R) allows us to lift the first Ore condition as well. In view of Remark 3.11.3
it follows indeed that microlocalization at S is just a completion of S" R at
the localized filtration.   G

3.23. Corollary. For any S (with a(S) multiplicatively closed as always) we
have Qßs(R) = (SffR)AFSs" , i.e. microlocalization is always just a suitable com-
pletion of a localization at some Ore set in R.
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