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Abstract Video data consists of a sequence of shots. Over the past several years, substan

tial progress has been made in automatically detecting shot boundaries based 

on changes of visual and/or audio characteristics. There has also been consider

able progress in indexing such video shots by automatically extracting keywords 

using techniques such as speech and text recognition. Shots detected by those 

techniques, however, are very fragmental. A single shot itself is rarely self

contained and therefore may not carry enough information to be a meaningful 

unit. A meaningful interval that interests common users generally spans several 

consecutive shots. There hardly exists any reliable technique for identifying all 

such meaningful intervals in advance so that any possible query can be answered. 

In this paper, rather than identifying. meaningful intervals beforehand, we 

shift our focus on how to compute them dynamically from fragmentarily indexed 

shots, when queries are issued. We achieve our goal by using two techniques -

glues and filters. Glues are algebraic operations for composing all the longer in

tervals, which can be meaningful answers to a given query, from a set of shorter 

indexed shots. Glue operations do not count on any limit to the length of result

ing intervals. Consequently, lengthy intervals containing several irrelevant shots 

are also expected to be composed as possible answers. Therefore, we provide fil

ter functions so that such lengthy intervals are excluded from the answer set and 

only few relevant intervals are returned to the user. Both glues and filters possess 

certain algebraic properties that are useful for an efficient query processing. 
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1. INTRODUCTION 

Video segmentation is the most fundamental process for appropriate index

ing and retrieval of video intervals. In general, video streams are composed 

of shots 1 delimited by physical shot boundaries. Substantial work has been 

done on how to detect such shot boundaries automatically (Arman et aI., 1993) 

(Zhang et aI., 1993) (Zhang et aI., 1995) (Kobla et aI., 1997). Through the inte

gration of technologies such as image processing, speech/character recognition 

and natural language understanding, keywords can be extracted and associated 

with these shots for indexing (Wactlar et aI., 1996). A single shot, however, 

rarely carries enough amount of information to be meaningful by itself. Usu

ally, it is a semantically meaningful interval that most users are interested in re

trieving. Generally, such meaningful intervals span several consecutive shots. 

There hardly exists any efficient and reliable technique, either automatic or 

manual, to identify all semantically meaningful intervals within a video stream. 

Works by (Smith and Davenport, 1992) (Oomoto and Tanaka, 1993) (Weiss 

et aI., 1995) (Hjelsvold et aI., 1996) suggest manually defining all such inter

vals in the database in advance. However, even an hour long video may have 

an indefinite number of meaningful intervals. Moreover, video data is multi

interpretative. Therefore, given a query, what is a meaningful interval to an 

annotator may not be meaningful to the user who issues the query. In practice, 

manual indexing of meaningful intervals is labour intensive and inadequate. 

Some efforts have been made in automatically detecting and indexing mean

ingful intervals in advance for retrieval (Wactlar et aI., 1996) and for browsing 

(Yeung et aI., 1996). The former one (Wactlar et aI., 1996) decomposes a video 

stream into paragraph units which they consider to be pre-defined answers for 

pre-defined queries. The latter one (Yeung et aI., 1996) identifies story units 

within a video stream on the basis of visual similarity and temporal locality 

relationship among video shots. Although they are successful to some extent, 

there still remains the problem of discrepancies between the granularity of the 

answer intervals that have been detected and the granularity of the intervals 

that end users expect to retrieve. It is because unless a user issues a query, it is 

not clear what meaningful intervals are to be identified beforehand. 

Suppose we have a live video stream of a baseball match, which has been 

segmented into shots {8 1, 82, ... , 8n} and indexed (Figure 1). 

D 83 shows Matsui (a Japanese baseball player) preparing to face the next pitch. 

D 84 is the shot of Matsui hitting the ball. 

D 85 is the shot of the ball clearing the fence. 

D 86 shows a glimpse of spectators cheering. 

D 87 shows Matsui completing the run and touching home plate. 

1 A shot is a continuous sequence of frames captured from a single camera with no shutter interruption 
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Now let us consider this query: "retrieve a video interval which shows 

Matsui hitting a homer". Rarely would a user hope to retrieve only shot 84, 

which shows the actual moment of Matsui hitting the ball, or only 85 that 

shows the ball crossing the fence. It is clear that at shot level, there will be 

only fragmentary answers to this query. A user would hope to see, at least, the 

interval starting from the shot 84 till the end of 85. It is difficult to identify 

the exact answer interval to such queries beforehand. There are many intervals 

(intervals represented by s3-s7, s3-s5, s4-s5, s4-s7 in Figure 1) that can be con

sidered meaningful and thus should be returned as answers to the above query. 

Only the query issuer knows which is the best among these four intervals for 

him or her. 

This paper takes a different approach towards answering keywords-based 

video queries. We assume that video streams are segmented only at shot level 

since that is the best we can do with the present technology. We also assume 

that keywords are associated fragmentarily with these shots. Generally, we 

are less interested in what kinds of queries are going to be issued and what 

intervals are to be indexed to answer such queries. Instead, we focus our work 

on how to compose intervals that could possibly be the answers to a given set 

of keywords. In order to do so, we define a set of new algebraic operations, 

what we call glue operations that dynamically composes answer intervals from 

a set of indexed shots. Intuitively, these operations will enable us to compose 

all possible answer intervals to a given query; first by selecting the valid video 

shots for each query keyword and then by gluing those shots together. It should 

be noted here that our approach to retrieving meaningful intervals is syntactic 

I I 
s3-s7 s3-s5 S4-55 s4-s7 

Figure 1 Video stream segmented into shots and indexed 
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rather than semantic.2 The glue operations possess certain algebraic properties 

which allow a simple and efficient composition of answer intervals. 

As we have no prior knowledge about the boundaries of meaningful inter

vals, glue operations will go on composing longer intervals as far as valid shots 

associated with the query keywords are found for gluing together. In the worst 

case, if two query keywords happen to fall at the beginning and at the final 

shot of the video stream, there is always a possibility of returning the full one 

hour video as a valid answer. However, lengthy intervals containing plenty 

of unnecessary shots are usually irrelevant to users and as many of them as 

possible should be excluded from the answer set. We propose filtering tech

niques for discarding answer intervals that can be thought of irrelevant to users. 

Intuitively, we provide a filter function that takes a set of video intervals as in

put, and returns the subset that meets some necessary conditions for a query 

match. Importantly the proposed filter functions also possess certain algebraic 

properties and can be well-integrated with the glue operations. As a result, 

considerable number of irrelevant intervals can be removed at the initial stage 

of query processing, which eventually leads to a groundwork for an efficient 

query mechanism. The detailed explanation is given later. 

2. INTERVAL COMPOSITION TECHNIQUES 

A great deal of work has been done in the past for composing new video 

intervals from a set of intervals. Various interval operations such as union, in

tersection, concatenation and their set-variants have been defined and redefined 

in (Oomoto and Tanaka, 1993) (Weiss et aI., 1995) (Hwang and Subrahmanian, 

1996) (Hjelsvold et aI., 1996). However, given a set of fragmentarily indexed 

video shots, these operations generally produce fragmentary intervals and thus 

cannot always produce appropriate intervals which users generally intend to 

find in the first place. 

2.1. QUERY INTERPRETATION 

Let us again consider the query "retrieve a video interval which shows 

Matsui hitting a homer (Figure 1). In conventional approaches, a query result 

is computed by simply taking the intersection between those video intervals 

with an attribute value Matsui and those with an attribute value homer. An 

actual scene of 'Matsui hitting a homer', however, usually consists of sev

eral shots. It is primarily because video productions involve lots of switching 

21n other words, we do not consider the semantics in the keywords themselves. For example, a keyword 

like bat may mean either a bird or a wooden stick used in sports. Nor do we consider any semantics in the 

way they are ordered. For example, a query like {dog, run, man} may retrieve intervals showing not only 

"a dog running after a man" but also "a man running after a dog". 
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between the cameras, camera movements, zooming, and panning. It rarely 

happens that each shot in that scene contains both Matsui and homer (see 

Figure 1). Some of them may show only either of them, and there may even 

be a filler shot showing none of them but simply a glimpse of spectators. It 

should be noted that such filler shots are even more common in edited motion 

pictures. Therefore, the user who issues this query in the first place does not 

necessarily expect a video interval that shows Matsui and/or homer in each 

shot throughout its play. Intuitively, the above query can be interpreted as: "re

trieve a contiguous video interval in which each keyword Matsui and homer 

emerges somewhere at least once", or a sequence of shots in which each key

word emerges in at least one shot. 

Producing appropriate intervals from the actual video data to answer even 

such a simple query asks for new interval operations. Our goal is to develop 

such a set of operations that can compute answers to queries on a video data

base. The database simply contains video shots that are fragmentarily indexed 

by descriptive keywords. 

2.2. VIDEO INTERVAL 

A video interval3 is a stream of contiguous frames and is uniquely defined 

by a pair of frame numbers- starting frame number and ending frame number 

which are represented by fs and fe respectively. We write fs(i) and fe(i) to 

indicate the starting frame number and the ending frame number respectively 

of an interval i, where fs < fe. An interval is denoted by i[fs, fel, or simply 

by i whenever [fs, fel can be omitted. 

A video interval is indexed by a set of keywords {k1 , k2 , ... , kn }. To a 

query keyword k, valid shots are the ones which are associated with the key

word k. 

2.3. GLUE OPERATIONS 

Here, we present formal definitions of our interval operations required to 

compute all possible answer intervals to a keywords-based query. Their prop

erties will clearly reflect the query semantics that we informally stated above. 

2.3.1 Interval glue. Given two video intervals x and y, the operation 

interval glue (EEl) on these two intervals yields a single interval i as follows: 

x EEl y = i[fs, fel where 

fs = minUs(x), fs(y)) and 

fe = maxUe(x), fe(Y)) 

3 A shot is also a video interval, but not necessarily a meaningful interval. Interval is used instead wherever 

no distinction is necessary. 
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x 

y 

x$y 

(a) Nnn·nv.,lapping, nntl·abUltit/g (b) Overlapping (c) Abul/it/g (nr cnt/tigl/nl/s) 

Figure 2 Interval Glue between x and y 

Thus supposing there are two video intervals x[100, 160] and y[180 , 210] 

then x EB y = i[100, 210] (Figure 2). 

The basic idea of this operation is that even if two input intervals are not 

abutted, the resulting interval will be contiguous. This operation is important 

because of our assumption that keywords are associated with only fragmentary 

intervals. Moreover, it is clear from the example above that related shots are 

often separated by filler shots, which may not be indexed by the keywords that 

appear in the query. Readers must note that the concatenation operation be

tween two non-contiguous intervals, which is used in many existing researches, 

does not produce a contiguous interval thus losing the original context of the 

data. Our interval glue operation is more appropriate than the concatenation 

operation in the context of video interval composition. 

Some important algebraic properties of interval glue operation are: 

• Commutativity: x EB y = y EB x (by the definition of interval glue) 

• Associativity: (x EB y) EB z = x EB (y EB z). Hence, hereafter we write 

(x EB y) EB z = x EB Y EB z (proof omi tted for space reason) 

• Idempotence: x EB x = x (by the definition of interval glue) 

2.3.2 Pairwise glue. This is the set-variant of interval glue operation. 

Given two sets of video intervals X and Y, the operation pairwise glue (EB) 
returns a set of video intervals yielded by pairwise interval glue operation (EB) 

between the elements of the two input sets. (See Figure 3) 

XEBY = {x EB y I x E X and y E Y} 

For a given set of intervals X = {iI , ... , in }( n ~ 1 ),EB(X) denotes il EB 

... EB in. This notation will be used in the definition of powerset glue operation 

below. 

The pairwise glue has the following algebraic properties. 

• Commutativity: X EB Y = Y EB X (by the definition of pairwise glue) 

• Associativity : (X EB Y) EB Z = X EB(Y EB Z) (proof omitted) 
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However, the following example clarifies that the idempotence law does not 

hold. Suppose, X = {il,i2}. Then (XEBX) = {(i l EB id , (i2 EB i2), (il EB 

i2)} = {il , i2 , (i l EB i2)} whichisdifferentfromX. Hence,X I- (XEBX). 

It should also be noted that (X EB X) = (X EB X EB X) = (X EB · .. EB X). 

This property is used in transformation of the powerset glue operation, which 

will be explained in the following subsection. 

Supposing SkI and Sk2 are two sets of shots associated with the keywords 

kl and k2 respectively. Assuming that each shot does not contain both the key

words, then SkI EB Sk2 represents a set of intervals such that for any keyword 

kl' k2, each interval will contain exactly one shot. 

x={ ~ 

y= { r---- t---

i I 
i2 
iJ 
14 

Figure 3 Pairwise Glue Operation 

between X and Y 

} 

} 

x={ 1--------1 

y={ I 
t---

I I 

iz 
13 

i4 
15 

Figure 4 Powerset Glue Operation 

between X and Y 

} 

} 

2.3.3 Powerset glue. Given two sets of video intervals X and Y, the 

operation powerset glue (®) returns a set of video intervals. These intervals 

are yielded by applying interval glue operation (EB) to an arbitrary number (but 

not 0) of elements in X and Y. 

X®Y = {EB(X' U Y') I X' ~ X , Y' ~ Y, 
X' I- (/) and Y' I- (/)} 

In Figure 4, intervals i l , ... ,i4 are yielded by applying interval glue opera

tion on pairs of intervals; each pair consisting of one element from both X and 

Y . The interval i5 is yielded by the same operation on a set of intervals, the 

set consisting of two elements from X and either one or two elements from Y. 

We may also consider intervals produced by taking two elements from Y and 

one from X, but the results will be the same as i2 and i3. 

The powerset glue operation between X and Y is formulated as: 

X®Y = (XEBY) U (XEBXEBY)U 

(XEBYEBY) U (XEBXEBXEBY)U 

(XEBXEBYEBY) U (XEBYEBYEBY)U 
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The primary difference between the pairwise glue (ED) and powerset glue 

(®) operations with two sets of intervals is that the former considers only 

one interval from each set whereas the latter considers one or more than one 

interval from each set. The powerset glue is the operation that we actually use 

for computing answer intervals to a query. It should be noted that the pairwise 

glue operation is not enough to compute all the possible answer intervals, since 

it considers only one interval from each set of valid shots. However, powerset 

glue is able to compute each possible answer interval, no matter how many 

valid shots are required to make up such an interval. 

Again, supposing Skl and Sk2 are two sets of shots associated with the 

keywords kl and k2 respectively. Then Skl ® Sk2 represents a set of intervals 

such that for any keyword kl' k2 , each interval will contain one or more than 

one valid shots. 

It is obvious that the definition of powerset glue operation is complex. It will 

take an enormous amount of computation, especially when the number of inter

vals contained in X or Y is large. However, the original definition of powerset 

glue can be transformed into a simpler and more efficient expression which 

involves only three pairwise glue operations. This is one big contribution of 

this paper. The following theorem states the newly transformed expression. 

Theorem 1 For any intervals sets X and Y, the following equation holds. 

X®Y = (XEDX)ED(YEDY) 

Proof: See Appendix. 

x=! 
y={ 

x e x= { 

y e y = { 

~- } 
} 

= = } :~ i 3 

i4 
i , 

Figure 5 Transformation of 

Powerset Glue definition into 

a simpler expression 

In Figure 5, the operations (XEDX) and (YEDY) produce two sets each 

consisting three intervals. Further pairwise glue operation on these two sets 

yields five intervals i 1, .. . ,i5 which is the same desired set of results (See 

Figure 4). 
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2.4. ANSWER TO A QUERY 

A query Q is represented by a set of keywords {k l , ... ,kn }, which is inter

preted as "retrieve contiguous video intervals in which each keyword kl' ... kn 

appear somewhere. The answer to this query will be a set of intervals - each 

interval containing at least one valid shot for every query keyword kl, ... , kn . 

Formally, it is represented as: 

Ans(Q) = Skl® ... ®Skn, 

where SkI . .. Skn are the sets of valid shots for the query keywords kl ... kn 

respectively. 

When a query is issued, valid shots are first selected for each query term. 

Then the operation powerset glue which we derived in Theorem 1 is applied to 

these sets of valid shots to produce answer intervals. If the query consists of 

more than two query terms, powerset glue is performed first between any two 

arbitrary sets of valid shots, which produces an intermediate set of intervals. 

The powerset glue operation is recursively performed between the intermediate 

set and each remaining set of valid shots until no sets of valid shots are left. 

Consider again the query Q = {Matsui, homer} that we mentioned in Sec

tion 2.1. Suppose, we have the following shots indexed by the corresponding 

keywords (See Figure 1 in Introduction). 

o i3[1350,1429]---) {Matsui} 

o i4[1430, 1469] ---) {Yamada, straight, Matsui, hit} 

o i5[1470,1499] ---) {homer} 

o i6 [1500,1529] ---) {} 

o i7[1530,1550] ---) {Matsui, home plate} 

Supposing Al and A2 are the sets of valids shots for Matsui and homer 

respectively, then Al = {i3, i4, i7} and A2 = {id. Then the answer to this 

query will be: 

A = {i37[1350, 1550], i35 [1350,1470]' i45 [1430,1470]' 

i47[1430, 1550], i57 [1470, 1550]} 

Up to this point we have not considered any lengthy intervals that glue oper

ations produce if any temporally far-off shot associated with the keyword either 

Matsui or homer is available within the video stream. The following section 

explains how to avoid considering such intervals by using filter techniques. 

3. FILTERING TECHNIQUES 

One problem we encountered while defining our glue operations is the ex

istence of 'noise' within an answer interval. Intuitively, 'noise' is a single shot 

or a sequence of shots that cannot be matched with any of the terms appearing 

in a query. Existing interval operations such as intersection, union, concatena

tion defined in (Oomoto and Tanaka, 1993) (Weiss et a1., 1995) (Hwang and 
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Subrahmanian, 1996) (Hjelsvold et aI., 1996) do not offer adequate support for 

computing answer intervals containing 'noise ' . It is mainly because keywords

based queries are generally interpreted as - "In an answer interval, 

o all query keywords must appear throughout it (AND-type), 

o at least one of the query keywords must appear throughout it (OR-type)". 

In the actual video, however, as we mentioned above, a meaningful interval 

(83 to 87 in Figure 6) may contain a short sequence that act only as afiller shot. 

If we strictly interpret a video query as an AND/OR-type query, an interval, 

even if it contains only a filler shot, will not be included in the query result. 

In practical applications of video databases, such a strict interpretation of the 

query makes little sense. 

I 

I .1 

3.1. IRRELEVANT INTERVALS 

Figure 6 A possible mean

ingful interval (53-57) con

taining a filler shot (56) and 

an irrelevant interval (s5-s30) 

containing noisy shots 

Given a query, our initial goal is to compute as many considerable answer 

intervals as possible. While we have achieved this goal successfully by defin

ing the glue operations, we have also created a new problem for ourselves. Our 

assumption is that video streams are segmented only on the basis of physical 

shot boundaries and that we have no prior knowledge about the boundaries of 

meaningful intervals. As a result, under the pretext of composing answer inter

vals, the glue operations will go on considering longer intervals as far as valid 

shots associated with the query keywords are found for gluing together. In the 

worst case, if two query keywords happen to fall at the beginning and at the 

final shot of the video stream, there is always a possibility of returning the full 

one hour video as a valid answer. This will ultimately result in a large set of 

unwanted intervals. For example in Figure 6, an answer interval represented 

by 85 to 830 is one such unwanted interval to a query {MatSUi, homer}, con

sidering that the keyword Mastui is associated with a distantly separated shot 
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830 in the same video stream. An answer set should exclude as many unwanted 

intervals as possible if we are to achieve an effective query mechanism. 

3.2. INTERVAL FILTERS 

Here, we discuss our filtering techniques for discarding intervals that can 

be thought of irrelevant to a given query. Intuitively, we provide a filter func

tion that takes a set of video intervals as input, and returns the subset that 

meets some necessary conditions for a query match. As far as query process

ing is concerned, excluding irrelevant intervals only after computing all the 

possible answer intervals will have very little impact on query efficiency. A 

great amount of computation can be reduced if, at the initial stage of query 

processing, we can discard intervals that will eventually become useless for 

computing relevant answer intervals. In order to do so, the filter function must 

possess certain algebraic properties which we will describe below. Given that 

a filter function possesses such properties, it can be safely integrated with the 

glue operations. 

The simplified definition of powerset glue that we stated in Theorem 1 must 

be well-supported by the filter function. Formally, for any two interval sets X 

and Y, the following must hold: 

F(X@Y) = F(F(XEBX)EBF(YEBY)) 
where F is an interval filter function. 

If an arbitrary filter function holds this property, it will ensure that all the 

desired intervals will be included in the answer set. However, in order to ex

clude the irrelevant intervals at the initial stage of processing, the followings 

also must hold. 

F(x EEl y) = F(F(x) EEl F(y)) and 

F(X EB Y) = F(F(X) EB F(Y)), 
where F is an interval filter function. 

In the following sections, we describe two interval filters - time-window and 

maximal noise-width that are practically applicable to video queries. We will 

also show that the proposed glue operations can be well-integrated with these 

filters. 

3.2.1 Time-Window Filter. A video interval has a temporal duration 

that is generally expressed either in temporal unit such as seconds, minutes or 

in number of frames. It is natural for a query issuer to assume that meaningful 

intervals fall within a certain time-window such as 40 seconds or 1200 frames. 

Users should be able to specify such a time-window filter so that any answer 

interval longer than the specified duration will be filtered out from the response 

set. Below, we will show that time-window filter not only excludes unwanted 
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intervals from the answer set but also reduces the number of candidate intervals 

to be considered even before composing the answer intervals. 

Suppose I i I denotes the temporal duration of an interval, i.e. I i I = 

fe(i) - fs(i). We define a time-window filter Fw as a mapping from a set of 

intervals X to a subset of X. We first define Fw for each interval i in X as: 

F (i) _ {i, if I i I ::; W; 
w - undefined, otherwise 

where w is a specified time-window. 

For any interval set X, we extend this definition to the following: 

Fw(X) = {i liE X and I i I ::; w}. 

3.2.2 Maximal Noise-Width Filter. As mentioned above, while a 

short 'noise' that act only as filler shots within a meaningful interval are sig

nificant for its semantic continuity, a long 'noise' can simply be thought of as 

a sequence of shots that splits off intervals which are temporally far-off. Here, 

we give the formal definition of a 'noise' and provide a new interval filter for 

discarding intervals containing a long 'noise'. 

For a keyword k, we define 'noise' as a set of intervals in which the key

word k does not appear. Supposing X is the set of all the intervals where the 

keyword k appears and U is the set of all the subintervals of the video data in 

the database. Then, for the keyword k, noise is computed as: 

Noise(k) = max(X) where 

X = {i E U I (Vi'(=/= i) E X)(i' n i = 0)} and 

max(Z) = {i liE Z and 

(Vi'(i' =/= i) E Z)(i ~ i' or in i' = 0)} 

For a set of keywords K = {kl' k2, ... , kn }, 'noise' is defined as a set of 

those intervals in which none of keyword {kl' k2' ... , kn } appear at all. In 

order to compute the 'noise' for a set of keywords, we need to provide the 

usual definition of interval intersection operation and its set-variant. 

Given two video intervals il and i2, the operation interval intersection (8) 

on these two video intervals yields a single video interval i as follows: 

il 8 i2 = i[fs, feJ wh~re fs < fe and 

fs = max(fs(il ), fs(i2)) and 

fe = min(fe(it), fe(i2)) 

Thus supposing there are two video intervals iillO, 20J and i2[15, 40J then 

il 8 i2 == i[15, 20J. 

The interval set intersection (0) operation on two sets of video intervals X 

and Y returns a set of video intervals constituting the pairwise intersection (8) 
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between the elements of the two input sets. 

x 0 y = {X 0 Y I x E X and y E Y} 

o 
.I 

30 40 50 60 70 80 90 

I I I 

120 150 
I 

I I xII I I I I I '2 I I 
X={ XI. x21 appearing kl I c::::::J I I I C====:J I 

I I I I I IY2 I I I I 

Y={YI . n l appearing k2 : : ~ ~: : : 

Nnise(kx) ~ : ! I I I I I : 
Noise (ky) I I r ~ I I I I 

Noise(K) K={kl. k2) ~ ~ p ~ 
I I I I I 

i ='IE9 n: k<xxx+x}xJ 

NK(i) : 9 
I 

Figure 7 Definition of 

'Noise' 

Now, supposing Xl , X 2 , ... , Xn are the sets of intervals associated with 

the the keywords kl ' k2, ... ,kn respectively, then the 'noise' for such a set of 

keywords is defined as: 

Noise(K) = Nois e(kd 0 ... o Noise(kn ) 

= max(Xd 0··· Omax(Xn) 

As it is obvious that, to a given query consisting of a set of keywords, 'noise' 

can be easily computed by applying these definitions. For example, in Figure 7, 

X = { X l [30, 50] , X2 [90, 120]} is a set of intervals associated with the keyword 

kx . Similarly, Y = {yd40 , 60], Y2 [70, 80]} is another set of intervals associ

ated with the keyword kyo 'Noise' for each kx and ky can be computed by 

Noise(kx ) and Noise(ky) respectively as shown in the figure . By perform

ing interval intersection operation on these two sets of intervals, we get the 

set of noisy intervals (containing 'noise') Noise(K) for the combined set of 

keywords K = {kx, ky}. 

For a set of keywords K, we can easily compute 'noise ' contained in an 

arbitrary interval i by applying the following. 

NK(i) = {i}ONoise(K) 

For a set of keywords K, Figure 7 shows the 'noise' NK(i) contained in an 

interval i = X l EB Y2, which is an intersection operation between the interval i 

and each interval of the set N oise(K). 

Based on this definition of 'noise', we now define a new filter. First, we 

specify N as the maximal noise-width that can be allowed in an answer inter

val. N is expressed in terms of temporal duration such as seconds or number 

of frames. Then for a query expressed by a set of keywords K, we define a 
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maximal noise-width filter FN,K as a mapping from a set of intervals X to a 

subset of X. We first define FN,K for each interval i in X as: 

FN,K(i) = {i, max{ I if I I if E NK(i)} ::; N; 
undefined, otherwise 

where N is a specified maximal noise-width. 

Again, for any interval set X, we extend this definition into the following: 

FN,K(X) = {i liE X and max{ I if I I if E NK(i)} ::; N} 

3.2.3 Glue Operations and Filter Functions. As stated above, in or

der to enable us to incorporate a filter function easily in our query mechanism, 

it must possess certain algebraic properties. The following theorem states the 

proposed filter functions can indeed be integrated with powerset glue operation 

for computing desired answer intervals to video queries. 

Theorem 2 For any interval sets X and Y, the following expression holds: 

F(X®Y) ~F(F(XEBX)EBF(YEBY)) 

where F is either a time-window (Fw) or a maximal noise-width (FN,K) filter. 

Proof: See Appendix. 

The following two lemmas present some fundamental properties which pro

vide key leverage for deriving Theorem 2. 

Lemma 1 For any two intervals x and y, the interval glue operation has the 

following property. 

F(x EEl y) = F(F(x) EEl F(y)), 

where F is either a time-window (F w) or a maximal noise-width (F N,K) filter. 

Proof: See Appendix. 

Lemma 2 For any two sets X and Y whose elements are indexed video inter

vals, the pairwise glue operation has the following property. 

F(XEBY) = F(F(X)EBF(Y)), 

where F is either a time-window (F w) or a maximal noise-width (F N,K) filter. 

Proof: See Appendix. 

Despite its computational complexity as compared to time-window, maxi

mal noise-width filter is one natural way of reducing the over-populated answer 

set. In practical applications, unlike time-window filter, a high value for max

imal noise-width filter can be assumed implicitly by the system. It is because 

we are concerned to filter out only those intervals which contain considerable 

length of 'noise' . 
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Theorem 2 is applied to compute desired answer intervals to a query while 

filtering out irrelevant intervals from the answer set. In Lemma 2, we showed 

that F(X EBX) = F(F(X) EBF(X)) . One big advantage of this property is 

that the number of candidate intervals to be considered are greatly reduced even 

at the initial stage of query processing by applying mapping functions F(X) 

and F(Y) with the time-window filter. Consequently, an efficient query mech

anism can be achieved by integrating filter functions with our video queries. 

4. EXPERIMENTAL EVALUATION 

We carried out an experiment to evaluate two performance gains. The first 

performance gain we anticipated was as an effect due to the transformation 

of the powerset glue operation into three pairwise glue operations. Theoret

ically, if X = {Xl , ... ,xm } and Y = {Yl, ... ,Yn} are two sets of inter

vals, the time complexity of powerset glue operation X ® Y becomes 2m+n. 

However, the time complexity of the transformed powerset glue operation 

(X EBX) EB(Y EB Y) is simply n 2m 2 . 

Naturally, we observed a very large performance gain from transformed def

inition of powerset glue operation. Given any query, it showed that the ratio of 

the time taken to compose the answer intervals without transformation to the 

time taken after the transformation was very large. 

Figure 8 A prototype system im

plemented in Java. A five minutes 

long MPEG video data of a live 

baseball match was used as exper

imental data. There were 31 shots 

fragmentarily indexed by 13 unique 

keywords. 

The second performance gain expected was as a result due to the application 

of the filter function to the queries. Although there was no reduction in time 

complexity of powerset glue operations, we could expect a considerable per

formance gain by reducing the candidate intervals before performing powerset 

glue operations on them. The experiment showed that the ratio of the time 

taken to compose the answer intervals without filter functions to the time taken 

after applying the filter functions was also substantially large. However, we 

observed that this type of performance gain totally depended upon the num

ber of candidate intervals that could be discarded at the initial stage. Further 

experiments are necessary to establish a ground theory for benchmarking our 

query mechanism. 
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5. RELATED WORK 

There is now growing interest in querying the large resources of digital 

video data. Allen's work on temporal intervals (Allen, 1983) laid the foun

dation for many researches concerned with time intervals (Little and Ghafoor, 

1993) (Lorentzos and Mitsopoulos, 1997). He showed that there are 13 dis

tinct temporal relationships that can exist between two arbitrary time intervals. 

Some researches on video databases have been greatly influenced by Allen's 

temporal model. In (Little and Ghafoor, 1993), temporal-interval-based mod

els have been presented for time-dependent multimedia data such as video. 

However, our work is orthogonal with the ones based on temporal logic. We 

were rather inter~sted in the semantics of a keywords-based video query and 

focused our work on the operations required for synthesizing new intervals in 

order to answer such queries. As we saw in the example above, in any mean

ingful video interval, the same keyword may emerge for an indefinite number 

·of times in no particular order. Further investigation is required if we are to in

tegrate the query condition specifications based on their temporal relationships 

into the current query mechanism4 . 

Work by (Oomoto and Tanaka, 1993) (Weiss et aI., 1995) (Hwang and Sub

rahmanian, 1996) (Hjelsvold et aI., 1996) put emphasis on annotation model 

rather than on query model. As stated above, no matter what the annotation 

models are, defining all possible interval answers in advance in the indexing 

scheme itself is not feasible with the present technology. Although they have 

defined several interval operations to compute new intervals from existing in

tervals, they all lack the kind of algebraic operations required for our purpose. 

Informedia project (Wactlar et aI., 1996) uses the full text information re

trieval system based on well-known technique of tflidf(term frequency/inverse 

document frequency) for keywords-based queries on video databases. How

ever, it also presumes the answer intervals in terms of the granularity of the 

indexed units, or what is called video paragraphs. 

The idea of assuming two visually similar shots as components of different 

story units on the basis of temporal locality was first proposed in (Yeung et aI., 

1996). They have applied this idea to clustering video shots that are visually 

similar and temporally local. The basic assumption is that if two visually simi

lar shots do not fall within a certain time window, they can be considered as the 

shots from different story units. Our maximal noise-width filter is somewhat 

inspired by this concept. 

4The result of our preliminary work on an algebraic video query model is going to be published in the 

journal of IEEE Transactions on Knowledge and Data Engineering (Pradhan et a!.. 2000). Our recent work 

deals with temporal filters which allow us to specify temporal relationships between keywords in a video 

query. 



A New Algebraic Approach to Retrieve Meaningful Video Intervals 27 

6. CONCLUSIONS 

In any video database system with fragmentarily indexed intervals, end

users often have difficulty in retrieving the intervals that they desire to see. This 

is because the intervals they are hoping to find may not have not been defined 

as answer units in the database. In such cases, intervals need to be computed 

dynamically from the indexed units that currently exist in the database. 

Algebraic operations such as union, intersection, concatenation does not al

ways produce the desired answers since these operations do not consider the 

presence of 'noise' in a meaningful interval, which is so natural and common 

in video data. In order to compute interval answers to a video query repre

sented by a set of keywords, we defined a set of interval operations, called glue 

operations, which is the main contribution of this paper. Given a query, these 

operations enable us compute all the possible boundaries for interval answers 

from a set of stored video shots. 

We also proposed a set of interval filters that can be incorporated in video 

queries so that irrelevant answer intervals are excluded from the answer set. 

We then investigated the characteristics of each filter and found that the filters 

can be directly integrated into the proposed powerset glue operation. As a 

result, a considerable number of irrelevant intervals can be removed at the 

initial stage of query processing, which has led to a groundwork for an efficient 

query mechanism. 
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Appendix 

Theorem 1: For any intervals sets X and Y, the following expression holds. 

X@Y = (XEeX)Ee{YEeY) 

Proof Supposing U = X@Y and V = (XEeX)Ee{YEeY), then to prove U = V, we 

need to show that U ;2 V and U ~ V. First to prove, U ;2 V, consider an arbitrary element 

z E V. Then, there must be x E (X Ee X) and Y E (Y Ee Y) such that x ffi Y = z . By the 

definition of interval glue (ffi), the following four possible cases can be considered on the basis 

of what values z takes for its starting and ending frame . 

I. z == z lf s{x ), f e{Y)] if f s{x) ::; fs{Y) and f e{Y) :0:: f e{x) 

II. z == z[Js{Y) , f e{x)] if f s{Y) ::; f s{x) and f e{x) :0:: f e{Y) 

III. z == zlfs{x), f e{x )] if f s{x) ::; f s{Y) and f e{x ) :0:: f e{Y) 

IV. z == zlfs{Y) , f e{Y)] if f s{Y) ::; f s{x) and f e{Y) :0:: f e{x) 

We will first consider Case I. Since x E (X Ee X) , there must be x' E X such that f s (x') = 
f s (x) and f e (x') ::; fe (x). Similarly, since Y E (Y Ee Y), there must be Y' E Y such that 

f e{Y') = f e{Y) and f s{Y' ) :0:: fs{Y)· Now, since U is the powerset glue of X and Y , there must 

be z' E U such that z' = x' ffi y'. 

Since f s{x') = f s{x), f s{x) ::; f s{Y) and f s{Y') :0:: f s{Y) , we can conclude f s{x') ::; 
fs{Y') · Similarly, since f e{Y') = f e{Y), f e{Y) :0:: fe{x) and f e{x') ::; f e{x), we can conclude 

f e{Y') :0:: f e{x'). Therefore, z' == z'[Js{x'),fe{Y')] . Since f s{x') = f s{x) and f e{Y') = 

f e{Y) , we can say that z' = z. Therefore, there must be z E U too. Refer to Fig.9. 

Similar proof can be shown for Case II. The proof for Case III can be shown by considering 

two intervals in X and one in Y (Refer to the right hand side of Fig.9). Case IV can be proved 

in a similar manner. Hence, U ;2 V . 

Next we show that U ~ V. Again, consider an arbitrary element z E U. We know, U is 

the product of powerset glue operation between X and Y . Hence, we can write z = x ffi Y 

where x and yare yielded by performing pairwise glue operation on one or more elements of 

X and Y respectively. Here also, by the definition of interval glue (ffi), four possible cases can 

be considered on the basis of what values z takes for its starting and ending frame. 

I. z == z[J,{x) , f e{Y)] if f s{x) ::; f s{Y) and f e{Y) :0:: f e{x) 

II. z == z[Js{Y) , f e{x)] if f s{Y) ::; f s{x) and f e{x) :0:: f e{Y) 

III. z == z[Js{x), f e{x) ] if fs{x) ::; fs{Y) and f e{x) :0:: f e{Y) 

ze V 

xe (xex) ~-
ye (vev) 

... ,.1l.,~ x'e X 

'"" 
X;2 Xl 

Y-:Ji y'E v 
Y -:J y' 

z' ~ ,, ' e y' 

z'e U Z' E U 

Case I C."e 111 

ze V 

x E (xex) 

ye(VeVl 

x'. Xl' E X 

y'E V 

z'~,, ' e x" e y' 

Figure 9 Illustration for the Proof of Theorem I 
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IV. z == z[fs(Y), fe(Y)] if fs(Y) ~ fs(x) and fe(Y) ~ fe(x) 

We will first consider Case I. Since x is yielded by performing pairwise glue operation on 

one or more elements of X, there must be x' E X such that fs(x') = fs(x) and fe(x') ~ 
fe(x). Similarly, since Y is yielded by performing pairwise glue operation on one or more 

elements of Y, there must be Y' E Y such that fe (Y') = fe (y) and fe (Y') ~ fe (y). 
Again, since X EB X is a pairwise glue operation between X and X, any arbitrary element 

in X will definitely be in X EB X too. Hence, x' E (X EB X). Similarly, Y' E (Y EB Y). 

Therefore, there must be a z' E V such that z' = x' EB y'. 

Since fs(x') = fs(x), fs(x) ~ fs(Y) and fs(Y') ~ fs(Y), we can conclude fs(x') ~ 

fs(Y'). Similarly, since fe(Y') = fe(Y), fe(Y) ~ fe(x) and fe(x') ~ fe(x), we can conclude 

fe(Y') ~ fe(x'). Therefore, z' == z'[Js(x'), fe(Y')]. Since fs(x') = fs(x) and fe(Y') = 
fe(Y), we can say that z' = z. Therefore, there must be z E V too. 

Similar proof can be shown for Case II. The proof for Case III can be shown by considering 

two intervals in X and one in Y. Case IV can be proved in a similar manner. Hence, U ~ V. 

This completes the proof. D 

Lemma I: For any two intervals x and y, the interval glue operation has the following property. 

F(x EB y) = F(F(x) EB F(Y)), 

where F is either a time-window (Fw) or a maximal noise-width (FN,K) filter. 

Proof" Let W denotes either the specified time-window filter width w or the specified maxi

mal noise-width filter N. Also, let I i I denotes the temporal duration of an interval i in the case 

of time-window filter and the maximal noise it contains in the case of maximal noise-width filter. 

The proof is obvious if I x I ~ Wand I Y I ~ W. However, if I x I > Wor I Y I > W, 
then F(F( x) EB F(y)) = undefined. We know that I (x EB y) I ~ I x I , I Y I . Hence, it is obvious 

that I (x EB y) I > W if either I x I > Wor I Y I > W. Since F(x EB y) = undefined when 

I (x EB y) I > W, we thus complete the proof. D 

Lemma 2: For any two sets X and Y whose elements are indexed video intervals, the pairwise 

glue operation has the following property. 

F( X EB Y) = F(F( X) EB F(Y)), 

where F is either a time-window (Fw) or a maximal noise-width (FN,K) filter. 

Proof" Let U denotes F(X EB Y) and V denotes F(F(X) EB F(Y)), then in order to prove 

that U = V, all we have to show is U :2 V and U ~ V. 

Consider any arbitrary x E F(X). Naturally, x E X. Therefore X :2 F(X). Similarly, 

Y :2 F(Y). It follows that X EB Y :2 F( X) EB F(Y). Also, F( X EB Y) :2 F(F( X) EB F(Y)). 
Hence, U:2 V. 

Next, consider an arbitrary element z E U. Then I z I ~ Wand there must be x E X and 

Y E Y such that x EB Y = z. Since I z I ~ W implies I x I ~ W, we can say that x E F(X). 

Similarly, Y E F(Y). Also, since I (x EB y) I ~ w, (x EB y) E F(F(X) EBF(Y)). Therefore, 

z E F(F(X) EB F(Y)). Hence, U ~ V. The proof is now complete. D 

Theorem 2: For any interval sets X and Y, the following expression holds: 

F(X®Y) = F(F(XEBX)EBF(YEBY)) 

where F is either a time-window (Fw) or a maximal noise-width (FN,K) filter. 

Proof" By the definition of powerset glue, X ® Y = (X EB X) EB(Y EB Y). By applying 

the filterFin both sides, F(X ® Y) = F((X EBX) EB(Y EB Y)). Supposing, X EBX = X' 

andYEBY = y'. AccordingtotheLemma2,F(X'EBY') = F(F(X')EBF(Y')). By 

substitution, F( (X EB X) EB(Y EB Y)) = F(F( X EB X) EB F( X EB X)). 
Hence, F(X ® Y) = F(F(X EBX) EBF(X EBX)). This proves the theorem. D 


