
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.8, 2012

14 | P a g e

 www.ijacsa.thesai.org

A New Algorithm for Data Compression
Optimization

I Made Agus Dwi Suarjaya
Information Technology Department

Udayana University
Bali, Indonesia

Abstract— People tend to store a lot of files inside theirs storage.

When the storage nears it limit, they then try to reduce those files

size to minimum by using data compression software. In this

paper we propose a new algorithm for data compression, called j-

bit encoding (JBE). This algorithm will manipulates each bit of

data inside file to minimize the size without losing any data after

decoding which is classified to lossless compression. This basic

algorithm is intended to be combining with other data

compression algorithms to optimize the compression ratio. The

performance of this algorithm is measured by comparing

combination of different data compression algorithms.

Keywords- algorithms; data compression; j-bit encoding; JBE;

lossless.

I. INTRODUCTION

Data compression is a way to reduce storage cost by
eliminating redundancies that happen in most files. There are
two types of compression, lossy and lossless. Lossy
compression reduced file size by eliminating some unneeded
data that won’t be recognize by human after decoding, this
often used by video and audio compression. Lossless
compression on the other hand, manipulates each bit of data
inside file to minimize the size without losing any data after
decoding. This is important because if file lost even a single bit
after decoding, that mean the file is corrupted.

Data compression can also be used for in-network
processing technique in order to save energy because it reduces
the amount of data in order to reduce data transmitted and/or
decreases transfer time because the size of data is reduced [1].

There are some well-known data compression algorithms.
In this paper we will take a look on various data compression
algorithms that can be use in combination with our proposed
algorithms. Those algorithms can be classified into
transformation and compression algorithms. Transformation
algorithm does not compress data but rearrange or change data
to optimize input for the next sequence of transformation or
compression algorithm.

Most compression methods are physical and logical. They
are physical because look only at the bits in the input stream
and ignore the meaning of the contents in the input. Such a
method translates one bit stream into another, shorter, one. The
only way to understand and decode of the output stream is by
knowing how it was encoded. They are logical because look
only at individual contents in the source stream and replace
common contents with short codes. Logical compression

method is useful and effective (achieve best compression ratio)
on certain types of data [2].

II. RELATED ALGORITHMS

A. Run-length encoding

Run-length encoding (RLE) is one of basic technique for
data compression. The idea behind this approach is this: If a
data item d occurs n consecutive times in the input stream,
replace the n occurrences with the single pair nd [2].

RLE is mainly used to compress runs of the same byte [3].
This approach is useful when repetition often occurs inside
data. That is why RLE is one good choice to compress a bitmap
image especially the low bit one, example 8 bit bitmap image.

B. Burrows-wheeler transform

Burrows-wheeler transform (BWT) works in block mode
while others mostly work in streaming mode. This algorithm
classified into transformation algorithm because the main idea
is to rearrange (by adding and sorting) and concentrate
symbols. These concentrated symbols then can be used as input
for another algorithm to achieve good compression ratios.

Since the BWT operates on data in memory, you may
encounter files too big to process in one fell swoop. In these
cases, the file must be split up and processed a block at a time
[3]. To speed up the sorting process, it is possible to do parallel
sorting or using larger block of input if more memory
available.

C. Move to front transform

Move to front transform (MTF) is another basic technique
for data compression. MTF is a transformation algorithm which
does not compress data but can help to reduce redundancy
sometimes [5]. The main idea is to move to front the symbols
that mostly occur, so those symbols will have smaller output
number.

This technique is intended to be used as optimization for
other algorithm likes Burrows-wheeler transform.

D. Arithmetic coding

Arithmetic coding (ARI) is using statistical method to
compress data. The method starts with a certain interval, it
reads the input file symbol by symbol, and uses the probability
of each symbol to narrow the interval. Specifying a narrower
interval requires more bits, so the number constructed by the
algorithm grows continuously. To achieve compression, the
algorithm is designed such that a high-probability symbol

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.8, 2012

15 | P a g e

 www.ijacsa.thesai.org

narrows the interval less than a low-probability symbol, with
the result that high-probability symbols contribute fewer bits to
the output [2].

Arithmetic coding, is entropy coder widely used, the only
problem is its speed, but compression tends to be better than
Huffman (other statistical method algorithm) can achieve [6].
This technique is useful for final sequence of data compression
combination algorithm and gives the most for compression
ratio.

III. PROPOSED ALGORITHM

J-bit encoding (JBE) works by manipulate bits of data to
reduce the size and optimize input for other algorithm. The
main idea of this algorithm is to split the input data into two
data where the first data will contain original nonzero byte and
the second data will contain bit value explaining position of
nonzero and zero bytes. Both data then can be compress
separately with other data compression algorithm to achieve
maximum compression ratio. Step-by-step of the compression
process can be describe as below:

1. Read input per byte, can be all types of file.

2. Determine read byte as nonzero or zero byte.

3. Write nonzero byte into data I and write bit ‘1’ into
temporary byte data, or only write bit ‘0’ into
temporary byte data for zero input byte.

4. Repeat step 1-3 until temporary byte data filled with 8
bits of data.

5. If temporary byte data filled with 8 bit then write the
byte value of temporary byte data into data II.

6. Clear temporary byte data.

7. Repeat step 1-6 until end of file is reach.

8. Write combined output data

a) Write original input length.

b) Write data I.

c) Write data II.

9. If followed by another compression algorithm, data I
and data II can be compress separately before
combined (optional).

Figure 1 shows visual step-by-step compression process for
J-bit encoding. Inserted original input length into the beginning
of the output will be used as information for data I and data II
size. As for step-by-step of the decompression process can be
describe below:

1. Read original input length.

2. If was compressed separately, decompress data I and
data II (optional).

3. Read data II per bit.

4. Determine whether read bit is '0' or '1'.

5. Write to output, if read bit is '1' then read and write
data I to output, if read bit is '0' then write zero byte to
output.

6. Repeat step 2-5 until original input length is reach.

Figure 1. J-bit Encoding process

IV. COMBINATION COMPARISON

Five combinations of data compression algorithm are used
to find out which combination with the best compression ratio.
The combinations are:

1. RLE+ARI.

2. BWT+MTF+ARI.

3. BWT+RLE+ARI.

4. RLE+BWT+MTF+RLE+ARI (as used in [3]).

5. RLE+BWT+MTF+JBE+ARI.

Those combinations are tested with 5 types of files. Each
type consists of 50 samples. Each sample has different size to
show real file system condition. All samples are uncompressed,
this include raw bitmap images and raw audio without lossy

65 01000001

0 00000000

65 01000001

0 00000000

0 00000000

0 00000000

65 01000001

65 01000001

66 01000010

1 00000001

0 00000000

1 00000001

0 00000000

0 00000000

0 00000000

163 10100011

Original

Data I

Data II

Temporary byte
data

8 bytes

4 bytes

1 byte

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.8, 2012

16 | P a g e

 www.ijacsa.thesai.org

compression. Average compression ratio for each type of file is
used. Samples for the experiment are show in table 1.

TABLE I. SAMPLES FOR COMBINATION INPUT

No Name Qty Type Spec.

1 Image 50 Bitmap Image Raw 8 bit

2 Image 50 Bitmap Image Raw 24 bit

3 Text 50 Text Document

4 Binary 50 Executable, library

5 Audio 50 Wave Audio Raw

V. RESULT

Figure 2 shows that 8-bit bitmap images are compressed
with good compression ratio by algorithms that combined with
J-bit encoding.

Figure 2. Ratio comparison for 8-bit bitmap image

Figure 3 shows that 24-bit bitmap images are compressed
with better compression ratio by algorithms that combined with
J-bit encoding. A 24 bit bitmap image has more complex data
than 8 bit since it is store more color. Lossy compression for
image would be more appropriate for 24 bit bitmap image to
achieve best compression ratio, even thought that will decrease
quality of the original image.

Figure 3. Ratio comparison for 24-bit bitmap image

Figure 4 shows that text files are compressed with better
compression ratio by algorithms that combined with J-bit
encoding.

Figure 4. Ratio comparison for text

Figure 5 show that binary files are compressed with better
compression ratio by algorithms that combined with J-bit
encoding.

0

25

50

75

100

Combination

33.32

71.77

30.69

22.75 22.56

Based on average ratio of 50 samples

RLE+ARI BWT+MTF++RLE BWT+RLE+ARI

RLE+BWT+MTF+RLE+ARI RLE+BWT+MTF+JBE+ARI

0

25

50

75

100

Combination

85.65 85.73

66.76

56.73 55.42

Based on average ratio of 50 samples

RLE+ARI BWT+MTF++RLE BWT+RLE+ARI

RLE+BWT+MTF+RLE+ARI RLE+BWT+MTF+JBE+ARI

0

25

50

75

100

Combination

65.19
66.87

44.8

34.08 33.58

Based on average ratio of 50 samples

RLE+ARI BWT+MTF++RLE BWT+RLE+ARI

RLE+BWT+MTF+RLE+ARI RLE+BWT+MTF+JBE+ARI

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 3, No.8, 2012

17 | P a g e

 www.ijacsa.thesai.org

Figure 5. Ratio comparison for binary

Figure 6 shows that wave audio files are compressed with
better compression ratio by algorithms that combined with J-bit
encoding.

Figure 6. Ratio comparison for wave

VI. CONCLUSION

This paper proposes and confirms a data compression
algorithm that can be used to optimize other algorithm. An
experiment by using 5 types of files with 50 different sizes for
each type was conducted, 5 combination algorithms has been
tested and compared. This algorithm gives better compression
ratio when inserted between move to front transform (MTF)
and arithmetic coding (ARI).

Because some files consist of hybrid contents (text, audio,
video, binary in one file just like document file), the ability to
recognize contents regardless the file type, split it then
compresses it separately with appropriate algorithm to the
contents is potential for further research in the future to achieve
better compression ratio.

REFERENCES

[1] Capo-chichi, E. P., Guyennet, H. and Friedt, J. K-RLE a New Data
Compression Algorithm for Wireless Sensor Network. In Proceedings of
the 2009 Third International Conference on Sensor Technologies and
Applications.

[2] Salomon, D. 2004. Data Compression the Complete References Third
Edition. Springer-Verlag New York, Inc.

[3] Nelson, M. 1996. Data compression with Burrows-Wheeler Transform.
Dr. Dobb's Journal.

[4] Campos, A. S. E. Run Length Encoding. Available:
http://www.arturocampos.com/ac_rle.html (last accessed July 2012).

[5] Campos, A. S. E. Move to Front. Available:
http://www.arturocampos.com/ac_mtf.html (last accessed July 2012).

[6] Campos, A. S. E. Basic arithmetic coding. Available:
http://www.arturocampos.com/ac_arithmetic.html (last accessed July

2012).

AUTHORS PROFILE

I Made Agus Dwi Suarjaya received his Bachelors
degree in Computer System and Information Science
in 2007 from Udayana University and Masters degree
in Information Technology in 2009 from Gadjah Mada
University. He served as a full-time lecturer at Faculty

of Engineering, Information Technology Department in Udayana University.
His research interest include software engineering, networking, security,
computing, artificial intelligent, operating system and multimedia.

0

25

50

75

100

Combination

63.86 63.36

48.45

40.99 40.71

Based on average ratio of 50 samples

RLE+ARI BWT+MTF++RLE BWT+RLE+ARI

RLE+BWT+MTF+RLE+ARI RLE+BWT+MTF+JBE+ARI

0

25

50

75

100

Combination

80.88

95.43

78.89 78.07 77.06

Based on average ratio of 50 samples

RLE+ARI BWT+MTF++RLE BWT+RLE+ARI

RLE+BWT+MTF+RLE+ARI RLE+BWT+MTF+JBE+ARI

