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ABSTRACT

In the context of difference image analysis (DIA), we present a new method for determin-
ing the convolution kernel matching a pair of images of the same field. Unlike the standard
DIA technique which involves modelling the kernel as a linear combination of basis functions,
we consider the kernel as a discrete pixel array and solve forthe kernel pixel values directly
using linear least-squares. The removal of basis functionsfrom the kernel model is advanta-
geous for a number of compelling reasons. Firstly, it removes the need for the user to specify
such functions, which makes for a much simpler user application and avoids the risk of an in-
appropriate choice. Secondly, basis functions are constructed around the origin of the kernel
coordinate system, which requires that the two images are perfectly aligned for an optimal
result. The pixel kernel model is sufficiently flexible to correct for image misalignments, and
in the case of a simple translation between images, image resampling becomes unnecessary.
Our new algorithm can be extended to spatially varying kernels by solving for individual pixel
kernels in a grid of image sub-regions and interpolating thesolutions to obtain the kernel at
any one pixel.
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1 INTRODUCTION

Difference image analysis (DIA) has rapidly moved to the forefront
of modern techniques for making time-series photometric measure-
ments on digital images. The method attempts to match one image
to another by deriving a convolution kernel describing the changes
in the point spread function (PSF) between images. When applied
to a time-series of images using a high signal-to-noise reference
image, the differential photometry that can be performed onthe
difference images regularly provides superior accuracy tomore tra-
ditional profile-fitting photometry, achieving errors close to the the-
oretical Poisson limits. Moreover, DIA is the only reliableway to
analyse the most crowded stellar fields.

One will find DIA in use in many projects studying object vari-
ability. For example, microlensing searches (e.g. Bond et al. 2001;
Woźniak et al. 2001) have been revolutionised by the ability of DIA
to deal with exceptionally crowded fields, and surveys for transiting
planets (e.g. Bramich et al. 2005; Mochejska et al. 2005) looking
for small ∼1% photometric eclipses have benefited substantially
from the extra accuracy obtained with this method. Also, DIAis
not limited to stellar photometry as illustrated by the discovery of
light echoes from three ancient supernovae in the Large Magellanic
Cloud (Rest et al. 2005).

The first attempts at image subtraction are summarised in the
introduction of Alard & Lupton (1998) (from now on AL98) and
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are based on trying to determine the convolution kernel by taking
the ratio of the Fourier transforms of matching bright isolated stars
on each image (Tomaney & Crotts 1996). Development of DIA
reached an important landmark in AL98 with their algorithm to
determine the convolution kernel directly in image space (rather
than Fourier space) from all pixels in the images by decompos-
ing the kernel onto a set of basis functions. The algorithm isvery
successful and efficient, and with the extension to a space-varying
kernel solution described in Alard (2000) (from now on AL00),
the method has become the current standard in DIA. In fact, all
DIA packages use the associated software package ISIS2.21 (e.g.
Woźniak 2000; Gössl & Riffeser 2002), or are implementations of
the Alard algorithm (e.g. Bond et al. 2001). We refer to the method
described in AL98 and AL00 as the Alard algorithm.

In this letter we suggest a change to the main algorithm to de-
termine the convolution kernel that retains the linearity of the least-
squares problem and yet is simpler to implement, has fewer input
parameters and is in general more robust (Section 2). We compare
our algorithm directly to the Alard algorithm (Section 3), and sug-
gest more techniques that increase the quality of the subtracted im-
ages. We conclude in Section 4.

1 http://www2.iap.fr/users/alard/package.html

http://arXiv.org/abs/0802.1273v1
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2 A NEW APPROACH TO THE KERNEL SOLUTION

2.1 Motivation

Consider a pair of registered images of the same dimensions,one
being the reference image with pixelsRij , and the other the cur-
rent image to be analysed with pixelsIij , wherei andj are pixel
indices refering to the columni and rowj of the image. Ideally the
reference image will be the better seeing image of the two andhave
a very high signal-to-noise ratio. This can be achieved in practice
by stacking a set of best-seeing images.

As with the method of AL98, we use the model

Mij = [R ⊗ K]ij + Bij (1)

to represent the current imageIij , where we wish to find a suit-
able convolution kernelK and differential backgroundBij . For-
mulating this as a least-squares problem, we want to minimise the
chi-squared

χ2 =
X

i,j

„

Iij − Mij

σij

«2

(2)

where theσij represent the pixel uncertainties.
At this point in the Alard algorithm, the problem is converted

to standard linear least-squares by decomposing the kernelK onto
a set of gaussian basis functions, each multiplied by polynomials
of the kernel coordinatesu andv, and by assuming that the differ-
ential backgroundBij is represented by a polynomial function of
the image coordinatesx andy. Spatial variation of the convolution
kernel is modelled by further multiplying the kernel basis functions
by polynomials inx andy.

This method has a major drawback in that it assumes that the
chosen kernel decomposition is sufficiently complex so as tomodel
in detail the convolution kernel. How do we know that we are mak-
ing the correct choice of basis functions? Different situations may
require different combinations of basis functions of varying com-
plexity. In fact, a feature of all current DIA packages (which are
all based on the AL98 prescription for kernel basis functions) is
the requirement that the user defines the number of gaussian basis
functions used, their associated sigma values and the degrees of the
modifying polynomials. This sort of parameterisation can end up
being confusing for the user, and require a large amount of experi-
mentation to obtain the optimal result for a specific data set.

2.2 Solving For A Spatially Invariant Kernel Solution

With this motivation, we have developed a new DIA algorithm in
which we make no assumptions about the functional form of the
basis functions representing the kernel. Considering a spatially in-
variant kernel, we represent the kernel as a pixel arrayKlm with
NK pixels wherel andm are pixel indices corresponding to the
column l and rowm of the kernel. We also define the differential
background as some unknown constantB0. Hence we may rewrite
equation (1) as:

Mij =
X

l,m

KlmR(i+l)(j+m) + B0 (3)

This equation hasNK +1 unkowns for which we require a solution.
Note that the kernel may be of any shape that includes the pixel
K00, and so to preserve symmetry in all directions, we adopt a
circular kernel (instead of the standard square shape).

In order to solve forKlm andB0 in the least-squares sense, we
note that theχ2 in equation (2) is at a minimum when the gradient

of χ2 with respect to each of the parametersKlm andB0 is equal to
zero. Performing theNK + 1 differentiations and rewriting the set
of linear equations in matrix form, we obtain the matrix equation
Ua = b with:

Upq =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

P

i,j

R(i+l)(j+m)R(i+l′)(j+m′)

σ2
ij

for 1 ≤ p ≤ NK and1 ≤ q ≤ NK

P

i,j

R(i+l′)(j+m′)

σ2
ij

for p = NK + 1 and1 ≤ q ≤ NK

P

i,j

R(i+l)(j+m)

σ2
ij

for 1 ≤ p ≤ NK andq = NK + 1
P

i,j
1

σ2
ij

for p = q = NK + 1

ap =

(

Klm for 1 ≤ p ≤ NK

B0 for p = NK + 1

bp =

8

<

:

P

i,j

IijR(i+l)(j+m)

σ2
ij

for 1 ≤ p ≤ NK

P

i,j

Iij

σ2
ij

for p = NK + 1

(4)

wherep andq are generalised indices for the vector of unknown
quantitiesa, with associated kernel indices(l, m) and(l′, m′) re-
spectively. Finding the solutions2 for Klm andB0 requires the con-
struction of the matrixU and vectorb, invertingU and calculating
a = U

−1
b.

Every pixel on both the reference image and current image has
the potential to be included in the calculation ofU andb. However,
we ignore bad/saturated pixels on both images, and also any pixels
on the current image for which the calculation of the correspond-
ing model pixel value includes a bad/saturated pixel on the refer-
ence image. This implies that a single bad/saturated pixel on the
reference image can discount a set of pixels equal to the kernel area
on the current image. Hence bad/saturated pixels on the reference
image should be kept to a minimum, and excessively large kernels
should be avoided.

The kernel sumP =
P

l,m
Klm is a measure of the mean

scale factor between the reference image and the current image, and
consequently it includes the effects of relative exposure time and at-
mospheric extinction. We refer toP as the photometric scale factor.
Although it is not essential, we suggest that a constant background
estimate is subtracted from the reference image before solving for
the kernel and differential background since this will minimse any
correlation betweenP andB0.

Finally, we mention that a difference imageDij is defined as
Dij = Iij − Mij . Assuming that most objects in the reference
image are constant sources, then a difference image will consist of
random noise (mainly Poisson noise from photon counting) except
where a source has varied in brightness or the background pattern
has varied. Sources that are brighter or dimmer at the epoch of the
current image relative to the epoch of the reference image will show
up as positive or negative flux residuals, respectively, on the differ-
ence image. These areas may be measured to yield a differenceflux
for each object of interest.

2 Iteration is required for a self-consistent solution forKlm andB0 since
the solution depends on the pixel variancesσ

2
ij which in turn depend on the

image model valuesMij . See Section 2.3
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2.3 Uncertainties Arise From The Model, Not The Data

We take the following standard CCD noise model for the pixel vari-
ances:

σ2
ij =

σ2
0

F 2
ij

+
Mij

GFij

(5)

whereσ2
0 is the CCD readout noise (ADU),G is the CCD gain

(e−/ADU) andFij is the master flat field image. Note that theσij

depend on the image modelMij and consequently, fittingMij be-
comes an iterative process. Note also that we assume that therefer-
ence imageRij and master flat field imageFij are noiseless since
these are high S/N ratio images. Finally, if the current image was
registered with the reference image via a geometric transformation,
then the flat fieldFij that is actually used in the noise model must
be the result of the same transformation applied to the original mas-
ter flat field.

In order to calculate an initial kernel and differential back-
ground solution, we set theMij to the image valuesIij . In subse-
quent iterations, we use the current image model to set theσij as
per equation 5. We also employ a 3σ clip algorithm during the it-
erative model fitting process in order to prevent outlier image pixel
values from entering the solution. After each iteration, wecalculate
the absolute normalised residualsrij = |Dij/σij | for all pixels.
Any pixels withrij ≥ 3 are ignored in subsequent iterations. The
iterations are stopped when no more image pixels are rejected and
at least two iterations have been performed.

2.4 Solving For A Spatially Variant Kernel Solution

In extending our new method to solving for a spatially variant ker-
nel solution, we preserve flexibility by splitting the imagearea into
anNx ≥ 1 by Ny ≥ 1 grid of sub-regions and solving for the ker-
nel and differential background in each sub-region. The coarse grid
of kernel and differential background solutions may be interpolated
to yield the solution corresponding to any given image pixel. In this
way we make no assumptions about how the kernel and differential
background vary across the image area. This is in contrast toAL00,
whose method employs an extension of the kernel basis functions
by further multiplication by polynomials inx andy, and therefore
requires two more input parameters from the user, namely thede-
grees of the polynomials describing the spatial variation of the ker-
nel and the differential background.

3 COMPARISONS WITH THE ALARD ALGORITHM

3.1 Initial Tests

To illustrate the potential advantages of our new kernel solution
method over that of AL98, we carry out a set of simple tests on a
1024×1024 pixel CCD image of the globular cluster NGC1904. In
each test we use the original image as the reference imageRij and a
transformed version of the original image as the current imageIij ,
where the transformations employed are simple, spatially invariant
and typical of astronomical imaging. We attempt to solve forthe
kernel using our new method, which is implemented in a software
package called DANDIA (Bramich in prep.), and we compare the
solution to that obtained using the ISIS2.2 software from AL00.
We use the ISIS2.2 default parameters specifying 3 gaussianbasis
functions ofσ = 0.7, 2.0, 4.0 pix with modifying polynomials of
degree 6, 4 and 3, respectively. For both software packages,we

choose to solve for a spatially invariant kernel of size 27×27 pixels,
and a constant differential background.

The better the match between the convolved reference im-
age and the current image, the smaller the value of the quantity
S2 =

P

i,j
D2

ij . We guage the relative quality of the kernel solu-
tions by calculating the noise ratioSISIS/SDANDIA whereSISIS
andSDANDIA are values ofS calculated for a small 80x80 pixel
sub-region using ISIS2.2 and DANDIA, respectively.

The results of the tests described below are shown in Figure 1:

(i) In test A, the current image has been created by shifting the
reference image by one pixel in each of the positivex andy spatial
directions, without resampling. The corresponding kernelshould be
the identity kernel (central pixel value of 1 and 0 elsewhere) shifted
by one pixel in each of the negativeu andv kernel coordinates.
DANDIA recovers this kernel to within numerical rounding errors
whereas ISIS2.2 recovers a peak pixel value of 0.995 with other
absolute pixel values of up to 0.004. Consequently the residuals in
the ISIS2.2 difference image are considerably worse than those for
DANDIA, and the noise ratio isSISIS/SDANDIA ≈ 26190.

(ii) In test B, the current image has been created by convolv-
ing the reference image with a gaussian of FWHM 4.0 pix. Both
DANDIA and ISIS2.2 recover the kernel successfully, but DAN-
DIA out-performs ISIS2.2 withSISIS/SDANDIA ≈ 1510.

(iii) In test C, we shifted the reference image by half a pixelin
each of the positivex andy spatial directions to create the current
image, an operation that required the resampling of the reference
image. We used the cubic O-MOMS resampling method (see Sec-
tion 3.2). ISIS2.2 fails to reproduce the highly complicated kernel
matching the two images, whereas DANDIA does a nearly perfect
job. The noise ratio isSISIS/SDANDIA ≈ 18450.

(iv) In test D, we simulate a telescope jump by setting
Iij = (0.6 × Rij) +

`

0.4 × R′

ij

´

whereR′

ij is a resam-
pled version of the reference image shifted by 3.5 pixels in each
of the positivex andy spatial directions. The corresponding kernel
is a combination of the identity kernel and a shifted versionof the
kernel from test C. DANDIA accurately reproduces this kernel with
a central pixel value of 0.60015 whereas ISIS2.2 produces a poor
approximation of the kernel with a central pixel value of 0.631. The
noise ratio isSISIS/SDANDIA ≈ 31000.

It is evident that the gaussian basis functions used in ISIS2.2
limit the flexibility of the kernel solution to modelling kernels that
are centred near the kernel centre and that have scale sizes similar
to the sigmas of the gaussians employed. It is only in test B that
ISIS2.2 can closely model the kernel, simply because the kernel it-
self is a gaussian. Tests A, C & D show how ISIS2.2 is unable to
model sharp, complicated and off-centred kernels. DANDIA does
not suffer from any of these limitations since it makes no assump-
tion about the kernel shape, and hence it performs superbly in all
of the above tests.

3.2 Image Resampling

In Section 2, we make the assumption that the reference imageand
current image are registered, which implies that one of the images
has been transformed to the pixel coordinate system of the other
image, usually via image resampling. Ideally one should transform
the reference image to the current image since the referenceim-
age forms part of the model. In this way, the pixel variances in the
current image are left uncorrelated from pixel to pixel. However,
most implementations of DIA transform the current image to the
coordinate system of the reference image using image resampling.



4 D.M. Bramich

Figure 1. Shown are four difference imaging tests A-D. In each panel corresponding to a test, there are three pairs of images, whereeach pair is shown using
the same intensity scale indicated by the graduated colour bar. In the left most pair, the reference image and current image sub-regions are shown on the left
and right, respectively. In the middle pair, the DANDIA and ISIS2.2 difference images are shown at the top and bottom, repsectively. In the right most pair,
the corresponding DANDIA and ISIS2.2 kernel solutions are shown at the top and bottom, respectively.

We suggest two improvements to this methodology. Firstly, if
resampling is to be employed, one should use an optimal resam-
pling method. We employ the cubic O-MOMS (Optimal Maximal-
Order-Minimal-Support) basis function for resampling, which is
constructed from a linear combination of the cubic B-splinefunc-
tion and its derivatives. The O-MOMS class of functions havethe
highest approximation order and smallest approximation error con-
stant for a given support (Blu et al. 2001).

Secondly, our kernel model does not use basis functions that
are functions of the kernel pixel coordinates. Consequently, for two
images that require only a translation to be registered, theimage re-
sampling is incorporated in the kernel solution, avoiding the prob-
lem of correlated pixel noise. DIA is used extensively for extract-
ing lightcurves of objects in time-series images, which usually only
have a small pixel shift between images. By translating the current
image to the reference image by an integer pixel shift, avoiding im-
age resampling, the kernel solution process can do the rest of the
job of matching the reference image to the current image.

3.3 Final Tests

We now test our new algorithm on a pair of 1024×1024 pixel im-
ages of NGC1904 from the same camera with FWHMs of∼3.2 pix
and∼4.9 pix. Using matching star pairs, we derive a linear transfor-
mation between the images that consists of a translation with neg-
ligible rotation, shear and scaling. From the calibration images, we
measure a gain of 1.48 e−/ADU and a readout noise of 4.64 ADU,
and we construct a master flat field for use in the noise model. On
the left of Figure 2, we present 100×100 pixel cutouts of the refer-
ence image (the better seeing image) and the current image.

When calculating theχ2 of the difference images, we use a

modified version of equation 5 to account for the noise contribution
from the single-exposure reference image:

σ2
ij =

σ2
0

F 2
ij

+
Mij

GFij

+ f2

0

@

X

l,m

K2
lmij

„

σ2
0

F 2
ij

+
Rij

GFij

«

1

A (6)

whereKlmij is the space variant kernel andf is a factor correct-
ing for the noise distortion from resampling the reference image.
The value off depends on the resampling method used and the
coordinate transformation applied. We calculatef by generating
a 1024×1024 pixel image of values drawn from a normal distri-
bution with zero mean and unit sigma, resampling the image using
the same method and transformation as that applied to the reference
image, and then fitting a gaussian to the histogram of transformed
pixel values, the sigma of which indicates the value off . For cubic
O-MOMS resampling and the transformation between our two test
images, we obtainf = 0.884.

Our first pair of tests involves registering the images by re-
sampling the reference image via cubic O-MOMS and then using
DANDIA (test E) and ISIS2.2 (test F) to generate difference im-
ages. For DANDIA, we solve for an array of circular kernels corre-
sponding to a 10×10 grid of image sub-regions, where each kernel
contains 317 pixels. The kernel used to convolve each pixel on the
reference image is calculated via bilinear interpolation of the array
of kernels. The results of test E are displayed in the upper middle
panel of Figure 2 where we show the difference image normalised
by the pixel noise from equation 6 with a linear scale from -2 to 2.
Two variable stars are visible (RR Lyraes) and the cosmic rayfrom
the reference image has created a negative flux on the difference
image. In the same panel we plot the histogram of normalised pixel
values overlaid with a gaussian fit, and calculate aχ2 ≈ 9439,
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Figure 2. Shown are four more difference imaging tests E-F. On the leftwe show 100×100 pixel cutouts from the reference image and current image. The
remaining panels show corresponding difference images normalised by the pixel noise model (equation 6) with a linear scale from -2 to 2, and histograms of
the normalised pixel values overlaid with a gaussian fit.

ignoring the small pixel areas including the variable starsand the
cosmic ray (250 pix). The 100×100 pixel cutout corresponds to one
image sub-region used to determine a kernel solution and hence we
may calculate a reduced chi-squaredχ2/NDOF = 1.00 by assum-
ing NDOF = 9750 − 318.

For ISIS2.2 we solve for a spatially variant kernel of degree2
with a spatially variant differential background of degree3 in addi-
tion to the other default kernel basis functions (see Section 3.1; 328
free parameters). The results of test F are shown in the upperright
panel of Figure 2. We obtainχ2 ≈ 9838, and assuming∼3 free
parameters per image sub-region, we obtainχ2/NDOF = 1.01.

Tests G & H involve registering the images to within 1 pixel
by translating the reference image via an integer pixel shift. Then
we apply DANDIA (test G) and ISIS2.2 (test H) to obtain kernel
solutions, avoiding the use of resampling. For DANDIA we obtain
χ2 ≈ 9373, and for ISIS2.2 we obtainχ2 ≈ 9739, with corre-
spondingχ2/NDOF of 0.99 and 1.00, respectively (see Figure 2).

Visually, the normalised difference image cutouts in Figure 2
are very similar, and differences are only noticeable afterdetailed
scrutiny. However, theχ2 analysis reveals that our algorithm per-
forms considerably better than the Alard algorithm (test E performs
0.60σ better than test F, and test G performs 0.38σ better than test
H), and that image resampling degrades the difference images (test
G performs 0.48σ better than test E, and test H performs 0.70σ bet-
ter than test F). The highest quality difference image was produced
by using DANDIA on the two images aligned to within 1 pixel but
without resampling (test G, which performs 1.08σ better than test
F).

4 CONCLUSIONS

We have presented a new method for determining the convolution
kernel matching a best-seeing reference image to another image of
the same field. The method involves modelling the kernel as a pixel
array, avoiding the use of possibly inappropriate basis functions,
and eliminating the need for the user to specify which basis func-
tions to use via numerous parameters. For images that require a

translation to be registered, the kernel pixel array incorporates the
resampling process in the kernel solution, avoiding the need to re-
sample images, which degrades their quality and creates correlated
pixel noise. Kernels modelled by basis functions may only partly
compensate for sub-pixel translations since the basis functions are
centred at the origin of the kernel coordinates.

We have shown that our new method can produce higher qual-
ity difference images than ISIS2.2. Ideally the reference image
should be aligned with the current image, preferably without re-
sampling, but using O-MOMS resampling when necessary. The
flexibility of our kernel model allows the construction of differ-
ence images for telescope jumps, or trailed images, which iswhere
ISIS2.2 fails. These improvements have important implications for
time-series photometric surveys. Better quality difference images
implies more accurate lightcurves, and the increased kernel flex-
ibility will lead to less data loss due to telescope trackingand/or
focus errors.
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