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1 INTRODUCTION

Difference image analysis (DIA) has rapidly moved to thefoont

of modern techniques for making time-series photometriasuee-
ments on digital images. The method attempts to match ongema
to another by deriving a convolution kernel describing tharges

in the point spread function (PSF) between images. Wheneappl
to a time-series of images using a high signal-to-noisereafe
image, the differential photometry that can be performedten
difference images regularly provides superior accuracydee tra-
ditional profile-fitting photometry, achieving errors cba® the the-
oretical Poisson limits. Moreover, DIA is the only reliablay to
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are based on trying to determine the convolution kernel kin¢ga
the ratio of the Fourier transforms of matching bright isetbstars

on each imagel (Tomaney & Crolts 1996). Development of DIA
reached an important landmark in AL98 with their algoritho t
determine the convolution kernel directly in image spaehgr
than Fourier space) from all pixels in the images by decompos
ing the kernel onto a set of basis functions. The algorithvery
successful and efficient, and with the extension to a spangng
kernel solution described in_Alard (2000) (from now on ALQO)
the method has become the current standard in DIA. In fakt, al
DIA packages use the associated software package IQI&ZQE
Wozniak 2000; Gossl & Riffeser 2002), or are implemeiatasi of

analyse the most crowded stellar fields. the Alard algorithm (e.q. Bond etlal. 2001). We refer to thehuod

One will find DIA in use in many projects studying object vari-
ability. For example, microlensing searches (e.g. Bond|&0D1;
Wozniak et al. 2001) have been revolutionised by the glwhDIA
to deal with exceptionally crowded fields, and surveys fansiting
planets (e.g. Bramich etlal. 2005; Mochejska et al. 2005kifmp
for small ~1% photometric eclipses have benefited substantially
from the extra accuracy obtained with this method. Also, G8A
not limited to stellar photometry as illustrated by the digery of
light echoes from three ancient supernovae in the Large Naue

Cloud (Rest et al. 2005).

described in AL98 and ALOO as the Alard algorithm.

In this letter we suggest a change to the main algorithm to de-
termine the convolution kernel that retains the linearftthe least-
squares problem and yet is simpler to implement, has fevgaitin
parameters and is in general more robust (Section 2). We @@mp
our algorithm directly to the Alard algorithm (Section 3hdasug-
gest more techniques that increase the quality of the stibtram-
ages. We conclude in Section 4.

The first attempts at image subtraction are summarised in the
introduction of_Alard & Luptonh [(1998) (from now on AL98) and
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2 A NEW APPROACH TO THE KERNEL SOLUTION
2.1 Motivation

Consider a pair of registered images of the same dimensiores,
being the reference image with pixels;, and the other the cur-
rent image to be analysed with pixels, wherei andj are pixel
indices refering to the columiand row; of the image. Ideally the
reference image will be the better seeing image of the twdand
a very high signal-to-noise ratio. This can be achieved aciice
by stacking a set of best-seeing images.
As with the method of AL98, we use the model

M;; = [R® K]i;j + Byj 1

to represent the current imadg;, where we wish to find a suit-
able convolution kerneK and differential background;;. For-
mulating this as a least-squares problem, we want to mirihis
chi-squared

2
=y (T @
ij Tig
where ther;; represent the pixel uncertainties.
At this point in the Alard algorithm, the problem is convette

to standard linear least-squares by decomposing the k&rmmgito
a set of gaussian basis functions, each multiplied by pohjals
of the kernel coordinates andv, and by assuming that the differ-
ential backgrounds;; is represented by a polynomial function of
the image coordinatesandy. Spatial variation of the convolution
kernel is modelled by further multiplying the kernel basiadtions
by polynomials inz andy.

This method has a major drawback in that it assumes that the

chosen kernel decomposition is sufficiently complex so asddel

in detail the convolution kernel. How do we know that we ar&kma
ing the correct choice of basis functions? Different sitwa may
require different combinations of basis functions of vagycom-
plexity. In fact, a feature of all current DIA packages (whiare
all based on the AL98 prescription for kernel basis funat)ois
the requirement that the user defines the number of gausass b
functions used, their associated sigma values and theefegf¢he
modifying polynomials. This sort of parameterisation cad ep
being confusing for the user, and require a large amount g rex
mentation to obtain the optimal result for a specific data set

2.2 Solving For A Spatially Invariant Kernel Solution

With this motivation, we have developed a new DIA algorithm i

which we make no assumptions about the functional form of the

basis functions representing the kernel. Considering tiadyan-
variant kernel, we represent the kernel as a pixel aftay with
Nx pixels wherel andm are pixel indices corresponding to the
column! and rowm of the kernel. We also define the differential
background as some unknown constBpt Hence we may rewrite
equation[(ll) as:

M;; = zKlmR(i+l)(j+m) + Bo (3)

lL,m

This equation had/x +1 unkowns for which we require a solution.

Note that the kernel may be of any shape that includes thé pixe
Koo, and so to preserve symmetry in all directions, we adopt a

circular kernel (instead of the standard square shape).

of x2 with respect to each of the parametéfs,, and B is equal to
zero. Performing théVx + 1 differentiations and rewriting the set
of linear equations in matrix form, we obtain the matrix eipra
Ua = b with:

> RlirnG+m) Bty (G+m?)
i =

> Rt G+m)
i.j

qu: R,; 012]
>, ) for1 <p< Ng andg = Ng + 1
, z
Klm for 1 S p S NK
A, =
P By forp=Ngk+1

D Lii Bt ) (4+m)
) o2,

bp = n;
2o

forl1 <p< Nk

forp= Nk +1
4

wherep andq are generalised indices for the vector of unknown
guantitiesa, with associated kernel indicés m) and (I, m’) re-
spectively. Finding the solutidfgor &,,, and By requires the con-
struction of the matrixU and vectomb, invertingU and calculating
a=U"1pb.

Every pixel on both the reference image and current image has
the potential to be included in the calculationldfandb. However,
we ignore bad/saturated pixels on both images, and alsoizels p
on the current image for which the calculation of the coroesp
ing model pixel value includes a bad/saturated pixel on #fiers
ence image. This implies that a single bad/saturated pixehe
reference image can discount a set of pixels equal to thekarea
on the current image. Hence bad/saturated pixels on theerefe
image should be kept to a minimum, and excessively largeskern
should be avoided.

The kernel sumP = Zl,m K., is a measure of the mean
scale factor between the reference image and the curregeiraad
consequently itincludes the effects of relative exposiune aind at-
mospheric extinction. We refer # as the photometric scale factor.
Although it is not essential, we suggest that a constantdrvacind
estimate is subtracted from the reference image beforéngolor
the kernel and differential background since this will misie any
correlation betweer® and By.

Finally, we mention that a difference imadg; is defined as
D;; = I;; — M;;. Assuming that most objects in the reference
image are constant sources, then a difference image wiisoof
random noise (mainly Poisson noise from photon countinggpi
where a source has varied in brightness or the backgrounerpat
has varied. Sources that are brighter or dimmer at the epidtie o
current image relative to the epoch of the reference imatishaw
up as positive or negative flux residuals, respectivelyhendiffer-
ence image. These areas may be measured to yield a diffdhexice
for each object of interest.

2 Iteration is required for a self-consistent solution f6y,,, and By since

In order to solve fors;,,, andB in the least-squares sense, we  the solution depends on the pixel varianeds which in turn depend on the

note that they? in equation[(R) is at a minimum when the gradient

image model values/;;. See Sectiof 213

forl1 <p < Nk andl < g < Ng

forp= Nk +1andl < ¢ < Ng



A New Algorithm For Difference Image Analysis

2.3 UncertaintiesArise From The Model, Not The Data

We take the following standard CCD noise model for the pizei-v
ances:

> _ o0 My

F2 ' GF;

0,5 = (5)
whereo? is the CCD readout noise (ADUJ7 is the CCD gain
(e”/ADU) and F;; is the master flat field image. Note that thg
depend on the image model;; and consequently, fitting/;; be-
comes an iterative process. Note also that we assume thaféne
ence imagdR;; and master flat field imagk;; are noiseless since
these are high S/N ratio images. Finally, if the current immags
registered with the reference image via a geometric tramsftion,
then the flat fieldF;; that is actually used in the noise model must
be the result of the same transformation applied to thermlgnas-
ter flat field.

In order to calculate an initial kernel and differential kac
ground solution, we set th&f;; to the image values$;;. In subse-
quent iterations, we use the current image model to setthas
per equatiof]5. We also employ a 8lip algorithm during the it-
erative model fitting process in order to prevent outliergmaixel
values from entering the solution. After each iteration catkeulate
the absolute normalised residualg = |D;;/o;;| for all pixels.
Any pixels withr;; > 3 are ignored in subsequent iterations. The
iterations are stopped when no more image pixels are réejecte
at least two iterations have been performed.

2.4 Solving For A Spatially Variant Kernel Solution

In extending our new method to solving for a spatially vatrieer-
nel solution, we preserve flexibility by splitting the imagea into
anN, > 1by N, > 1 grid of sub-regions and solving for the ker-
nel and differential background in each sub-region. Thesmgrid
of kernel and differential background solutions may berjmtéated
to yield the solution corresponding to any given image pikethis
way we make no assumptions about how the kernel and difiafent
background vary across the image area. This is in contr#dt@0,
whose method employs an extension of the kernel basis anscti
by further multiplication by polynomials im andy, and therefore
requires two more input parameters from the user, namelgéhe
grees of the polynomials describing the spatial variatiine ker-
nel and the differential background.

3 COMPARISONSWITH THE ALARD ALGORITHM

3.1 Initial Tests

To illustrate the potential advantages of our new kerneltsmi
method over that of AL98, we carry out a set of simple tests on a
1024x 1024 pixel CCD image of the globular cluster NGC1904. In
each test we use the original image as the reference iRggend a
transformed version of the original image as the currengidg;,
where the transformations employed are simple, spatiagriant
and typical of astronomical imaging. We attempt to solvetfar
kernel using our new method, which is implemented in a saftwa
package called DANDIA (Bramich in prep.), and we compare the
solution to that obtained using the 1S1S2.2 software from0AL
We use the 1SIS2.2 default parameters specifying 3 gaubsisis
functions ofe = 0.7, 2.0, 4.0 pix with modifying polynomials of
degree 6, 4 and 3, respectively. For both software packages,

3

choose to solve for a spatially invariant kernel of siz&27 pixels,
and a constant differential background.

The better the match between the convolved reference im-
age and the current image, the smaller the value of the dquanti
5% =37, ; D;. We guage the relative quality of the kernel solu-
tions by calculating the noise ratijgis/Spanpia WhereS|gg
and Spanpia are values of5' calculated for a small 80x80 pixel
sub-region using ISIS2.2 and DANDIA, respectively.

The results of the tests described below are shown in Higure 1

() Intest A, the current image has been created by shiftieg t
reference image by one pixel in each of the positivandy spatial
directions, without resampling. The corresponding kesheluld be
the identity kernel (central pixel value of 1 and 0 elsewhstefted
by one pixel in each of the negativeand v kernel coordinates.
DANDIA recovers this kernel to within numerical roundingans
whereas ISIS2.2 recovers a peak pixel value of 0.995 witkroth
absolute pixel values of up to 0.004. Consequently the uassdn
the ISIS2.2 difference image are considerably worse thasetfor
DANDIA, and the noise ratio i$|g;s/Spanpia =~ 26190.

(ii) In test B, the current image has been created by convolv-
ing the reference image with a gaussian of FWHM 4.0 pix. Both
DANDIA and ISIS2.2 recover the kernel successfully, but DAN
DIA out-performs 1SIS2.2 wittb|sis/SpANDIA 1510.

(iii) In test C, we shifted the reference image by half a pixel
each of the positive: andy spatial directions to create the current
image, an operation that required the resampling of theerte
image. We used the cubic O-MOMS resampling method (see Sec-
tion[3:2). 1S1S2.2 fails to reproduce the highly complichiernel
matching the two images, whereas DANDIA does a nearly perfec
job. The noise ratio i$|g|s/SpanDia =~ 18450.

(iv) In test D, we simulate a telescope jump by setting
Lij = (0.6 x Ri;) + (0.4 x Rj;) whereR}; is a resam-
pled version of the reference image shifted by 3.5 pixelsaiche
of the positiver andy spatial directions. The corresponding kernel
is a combination of the identity kernel and a shifted vergibthe
kernel from test C. DANDIA accurately reproduces this kéwieh
a central pixel value of 0.60015 whereas ISIS2.2 producesoa p
approximation of the kernel with a central pixel value ofZ16The
noise ratio isS|g;s/Spanpia =~ 31000.

~
~

It is evident that the gaussian basis functions used in I2I1S2
limit the flexibility of the kernel solution to modelling keels that
are centred near the kernel centre and that have scale Bizts s
to the sigmas of the gaussians employed. It is only in testaB th
ISIS2.2 can closely model the kernel, simply because theckér
self is a gaussian. Tests A, C & D show how ISIS2.2 is unable to
model sharp, complicated and off-centred kernels. DANDb& s
not suffer from any of these limitations since it makes naiags
tion about the kernel shape, and hence it performs supantay i
of the above tests.

3.2 Image Resampling

In Section 2, we make the assumption that the reference iaradje
current image are registered, which implies that one ofiegies
has been transformed to the pixel coordinate system of ther ot
image, usually via image resampling. Ideally one shouldstfiarm
the reference image to the current image since the refeliemce
age forms part of the model. In this way, the pixel variancethe
current image are left uncorrelated from pixel to pixel. Hwoer,
most implementations of DIA transform the current imageht® t
coordinate system of the reference image using image rdsmmp



4  D.M. Bramich

Test A:
Noise Ratio = 26193
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Figure 1. Shown are four difference imaging tests A-D. In each paneksponding to a test, there are three pairs of images, vetaete pair is shown using

the same intensity scale indicated by the graduated cokuirbthe left most

pair, the reference image and currengérsab-regions are shown on the left

and right, respectively. In the middle pair, the DANDIA ar&l$2.2 difference images are shown at the top and bottorasectipely. In the right most pair,
the corresponding DANDIA and IS1S2.2 kernel solutions dreven at the top and bottom, respectively.

We suggest two improvements to this methodology. Firstly, i

modified version of equatidd 5 to account for the noise cbatidn

resampling is to be employed, one should use an optimal resam from the single-exposure reference image:

pling method. We employ the cubic O-MOMS (Optimal Maximal-
Order-Minimal-Support) basis function for resampling,igthis
constructed from a linear combination of the cubic B-spfinec-
tion and its derivatives. The O-MOMS class of functions hthe
highest approximation order and smallest approximatioor eon-
stant for a given suppott (Blu etlal. 2001).

Secondly, our kernel model does not use basis functions
are functions of the kernel pixel coordinates. Consequgiatl two
images that require only a translation to be registerednthge re-
sampling is incorporated in the kernel solution, avoiding prob-
lem of correlated pixel noise. DIA is used extensively fotragt-
ing lightcurves of objects in time-series images, whichaligwonly
have a small pixel shift between images. By translating tireenit
image to the reference image by an integer pixel shift, angign-
age resampling, the kernel solution process can do the félsé o
job of matching the reference image to the current image.

3.3 Final Tests

We now test our new algorithm on a pair of 1024024 pixel im-
ages of NGC1904 from the same camera with FWHMs 8f2 pix
and~4.9 pix. Using matching star pairs, we derive a linear transf
mation between the images that consists of a translatidmveig-
ligible rotation, shear and scaling. From the calibratimages, we
measure a gain of 1.48 éADU and a readout noise of 4.64 ADU,
and we construct a master flat field for use in the noise model. O
the left of Figuré 2, we present 18000 pixel cutouts of the refer-
ence image (the better seeing image) and the current image.
When calculating the? of the difference images, we use a

M—L‘j
GFij

Rij
GFij

2 _
Uij_

Ug 2 K2 08 6
ﬁzj-i- +f ZZ; Imij fzj-i- (6)

where Ki,,;; is the space variant kernel arfdis a factor correct-
ing for the noise distortion from resampling the referencagde.

that The value of f depends on the resampling method used and the

coordinate transformation applied. We calculdtdy generating

a 10241024 pixel image of values drawn from a normal distri-
bution with zero mean and unit sigma, resampling the imaggus
the same method and transformation as that applied to theerefe
image, and then fitting a gaussian to the histogram of tramsfd
pixel values, the sigma of which indicates the valug ofFor cubic
O-MOMS resampling and the transformation between our twb te
images, we obtairf = 0.884.

Our first pair of tests involves registering the images by re-
sampling the reference image via cubic O-MOMS and then using
DANDIA (test E) and 1SIS2.2 (test F) to generate difference i
ages. For DANDIA, we solve for an array of circular kernelsree
sponding to a 1810 grid of image sub-regions, where each kernel
contains 317 pixels. The kernel used to convolve each pix¢he
reference image is calculated via bilinear interpolatibthe array
of kernels. The results of test E are displayed in the uppddimi
panel of FiguréR where we show the difference image noreuhlis
by the pixel noise from equatidi 6 with a linear scale fromo-2t
Two variable stars are visible (RR Lyraes) and the cosmidray
the reference image has created a negative flux on the differe
image. In the same panel we plot the histogram of normalised p
values overlaid with a gaussian fit, and calculatg?a ~ 9439,
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Figure 2. Shown are four more difference imaging tests E-F. On theaefshow 106100 pixel cutouts from the reference image and current image
remaining panels show corresponding difference imagemaliged by the pixel noise model (equatidn 6) with a linealesfrom -2 to 2, and histograms of

the normalised pixel values overlaid with a gaussian fit.

ignoring the small pixel areas including the variable stard the
cosmic ray (250 pix). The 100100 pixel cutout corresponds to one
image sub-region used to determine a kernel solution ancehea
may calculate a reduced chi-squarg/ Noor = 1.00 by assum-
ing Npor = 9750 — 318.

For 1S1S2.2 we solve for a spatially variant kernel of deczee
with a spatially variant differential background of degBei@ addi-
tion to the other default kernel basis functions (see Seldii; 328
free parameters). The results of test F are shown in the ujgber
panel of FiguréR. We obtaig? ~ 9838, and assuming-3 free
parameters per image sub-region, we obgifiNpor = 1.01.

Tests G & H involve registering the images to within 1 pixel
by translating the reference image via an integer pixet.shiten
we apply DANDIA (test G) and ISIS2.2 (test H) to obtain kernel
solutions, avoiding the use of resampling. For DANDIA weaibt
x? ~ 9373, and for I1SIS2.2 we obtaig® ~ 9739, with corre-
spondingy?/Npor of 0.99 and 1.00, respectively (see Figlre 2).

Visually, the normalised difference image cutouts in Fejr
are very similar, and differences are only noticeable aftdailed
scrutiny. However, the? analysis reveals that our algorithm per-
forms considerably better than the Alard algorithm (teseEgrms
0.6Qr better than test F, and test G performs ©.&@tter than test
H), and that image resampling degrades the difference isagst
G performs 0.48 better than test E, and test H performs @ b@t-
ter than test F). The highest quality difference image wadyced
by using DANDIA on the two images aligned to within 1 pixel but
without resampling (test G, which performs 1c0Better than test
F).

4 CONCLUSIONS

We have presented a new method for determining the conealuti
kernel matching a best-seeing reference image to anotlaeyeiof
the same field. The method involves modelling the kernel aseh p
array, avoiding the use of possibly inappropriate basistfans,
and eliminating the need for the user to specify which basisf
tions to use via numerous parameters. For images that esquir

translation to be registered, the kernel pixel array inocafes the
resampling process in the kernel solution, avoiding thelreee-

sample images, which degrades their quality and createslatad

pixel noise. Kernels modelled by basis functions may onlglpa
compensate for sub-pixel translations since the basigibmscare
centred at the origin of the kernel coordinates.

We have shown that our new method can produce higher qual-
ity difference images than ISIS2.2. Ideally the referentage
should be aligned with the current image, preferably witheu
sampling, but using O-MOMS resampling when necessary. The
flexibility of our kernel model allows the construction offfer-
ence images for telescope jumps, or trailed images, whicihée
ISIS2.2 fails. These improvements have important implecet for
time-series photometric surveys. Better quality diffeeimages
implies more accurate lightcurves, and the increased kfime
ibility will lead to less data loss due to telescope trackamgl/or
focus errors.
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