
A New Algorithm for Generating Equilibria in Massive Zero-Sum Games

Martin Zinkevich Michael Bowling Neil Burch
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

Abstract

In normal scenarios, computer scientists often consider the
number of states in a game to capture the difficulty of learn-
ing an equilibrium. However, players do not see games in
the same light: most consider Go or Chess to be more com-
plex than Monopoly. In this paper, we discuss a new measure
of game complexity that links existing state-of-the-art algo-
rithms for computing approximate equilibria to a more hu-
man measure. In particular, we consider the range of skill
in a game, i.e.how many different skill levels exist. We then
modify existing techniques to design a new algorithm to com-
pute approximate equilibria whose performance can be cap-
tured by this new measure. We use it to develop the first near
Nash equilibrium for a four round abstraction of poker, and
show that it would have been able to win handily the bankroll
competition from last year’s AAAI poker competition.

Introduction

Which is considered by humans to be the more challenging
game: Go, Backgammon, Monopoly, or Poker? One might
argue that Go is the most complex due to the large number of
possible moves early in the game. Backgammon, although
having fewer moves, actually has more possible outcomes
on the first turn. Or one could argue that Monopoly is the
most complex since it has the largest state space (due to the
many possible levels of player wealth). Or maybe Poker’s
imperfect information outweighs other considerations.

All of these rationalizations actually have some merit.
World champion programs in Chess and Checkers leverage
the small number of possible moves under consideration
to search deep into the future (Samuel 1959; Hsu 2002).
Moreover, the (relatively) small number of game states in
Checkers is being leveraged in an effort to outright solve
the game, i.e., determine if the game is a win, loss, or draw
for the first player (Schaeffer et al. 2003). Meanwhile,
imperfect information games have been far less assailable
than those involving perfect information. This is mani-
fested in the computational needs for solving such games.
A perfect information game can be solved by iterating over
every state, thus requiring a linear amount of time. Im-
perfect information games, however, require solving a lin-
ear program (Romanovskii 1962; Koller & Megiddo 1992;

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Koller, Megiddo, & von Stengel 1994), which can require
time cubic in the number of states. In summary, although
the size of the state space, branching factor, and informa-
tion properties are suggestive of difficulty they alone do not
make a game challenging. However they are the sole factors
in how solution techniques scale with the problem.

In this paper we suggest a new measure called the range
of skill, which may more accurately capture the human per-
ception of game difficulty. Imagine forming a line of Go
players where the player at the head of the line can beat ev-
eryone else in the line at least 75% of the time. The second
player can beat everyone behind her at least 75% of the time,
and so on. Clearly, there is a limit to how long this line can
be. Monopoly would likely have a much shorter line. And
Tic-Tac-Toe’s line would be even shorter. The length of a
game’s line of players may be a suitable measure of its diffi-
culty. Arguments along these lines have been used to assert
that Go is a more complex game than Chess since its line
would be longer (Mérő & Mészáros 1990). Finding and lin-
ing up human players, however, is not exactly suitable for a
computational measure. A related measure is the length of a
similar line constructed using arbitrary strategies. We will
call this the range of skill.1

The range of skill measure is more than just an academic
exercise. After formalizing the measure, we then describe
an algorithm for computing an approximate Nash equilib-
rium that constructs a list of strategies strongly resembling
the lines above. We then exploit the range of skill concept to
bound the computational complexity of finding an approxi-
mate Nash equilibrium with this algorithm.

As a demonstration, we use this algorithm to develop
Smallbot2298, an approximate Nash equilibrium in an ab-
straction of limit Texas Hold’em, the poker variant used in
the AAAI Computer Poker Competition. The solution is
the first near-equilibrium solution to a complete four-round
abstraction of the game, which is currently intractable for
linear programming solvers. We also show its lack of ex-
ploitability against richer abstractions, suggesting that di-
minishing returns have been hit for the particular style of

1Arbitrary strategies do create some issues. Consider the game
where both players choose a number between 1 and n, and the
largest number wins. The range of skill of this game is linear in n,
and yet from a human perspective it remains an extremely simple
game.

788

abstraction. Finally, we play the strategy against the “bots”
from the 2006 AAAI Computer Poker Bankroll Competi-
tion, showing that it would have won the competition had it
been entered.

Foundations

We begin with some basic definitions in order to arrive at
a formalization of the range of skill measure. For any set
S, define Δ(S) to be the set of all distributions over S. In
general, a two player zero-sum game G can be represented
by a pair of strategy sets S1 and S2 and utility function u :
S1 × S2 → R, which we extend in the natural way by the
linearity of utilities to S1×Δ(S2), Δ(S1)×S2, and Δ(S1)×
Δ(S2). For every outcome (s1, s2) ∈ (S1 × S2), the utility
for the first player is u(s1, s2) and the utility for the second
player is −u(s1, s2). In addition, we say that the game is
symmetric if S1 = S2 and u(s1, s2) = −u(s2, s1).

Given a game G = (S1, S2, u), G′ = (S′
1, S

′
2, u

′) is a
restricted game if and only if S′

1 ⊆ S1, S′
2 ⊆ S2, and

s1 ∈ S′
1, s2 ∈ S′

2, u′(s1, s2) = u(s1, s2).
A Nash equilibrium is a pair of strategies,2 (σ1, σ2) ∈

Δ(S1) × Δ(S2) such that:

u(σ1, σ2) ≥ max
σ′
1∈Δ(S)

u(σ′
1, σ2) (1)

u(σ1, σ2) ≤ min
σ′
2∈Δ(S)

u(σ1, σ
′
2). (2)

In other words, neither player can increase their utility by
changing their strategy. For any other Nash equilibrium
(σ′

1, σ
′
2), u(σ′

1, σ
′
2) = u(σ1, σ2), and this is called the value

of the game v(G). This value can be thought of as the
amount of utility the first player should expect to get by
playing the game. Note that playing σ1 guarantees the first
player at least the value of the game (similarly playing σ2

guarantees player two at least -v(G)).
An ε-Nash equilibrium is a pair of strategies (σ1, σ2)

such that:

u(σ1, σ2) + ε ≥ max
σ′
1∈Δ(S)

u(σ′
1, σ2) (3)

u(σ1, σ2) − ε ≤ min
σ′
2∈Δ(S)

u(σ1, σ
′
2) (4)

An ε-Nash equilibrium also has the property that playing σ1

guarantees the first player a utility of v(G) − ε.
We can now state the definition of our proposed measure.

Definition 1 Given a zero-sum symmetric game G with util-
ity u, define a list of strategies σ1, . . . , σN to be an ε-ranked
list if for all i > j, u(σi, σj) > ε. The range of skill or
ROSε(G) is the length of the longest ε-ranked list.

The Algorithm

Range of skill gives a measure of game difficulty that de-
pends more on the game’s strategic choices than various de-
scriptors of its size. In this section we turn the measure’s in-
tuition into an algorithm. The resulting algorithm’s compu-
tational complexity also depends more on the game’s strate-
gic choices than more common bounds focused on its size.

2We will use s to denote pure strategies and σ to represent ran-
domized strategies.

Let the best-response oracle for the first player to be an
oracle that, given σ2, computes a strategy BR(σ2) ∈ S1

such that:

u(BR(σ2), σ2) = max
s′
1∈S

(s′1, σ2) (5)

The best-response oracle for the second player is defined
similarly. All of the algorithms in this section assume such
an oracle exists and can be computed efficiently.

Our algorithm builds on the ideas of McMahan and col-
leagues (McMahan, Gordon, & Blum 2003) and their Dou-
ble Oracle Algorithm. In particular, they maintain a set of
strategies for each player which they extend using a best re-
sponse oracle.

Algorithm 1: (Double Oracle Algorithm) (McMahan,
Gordon, & Blum 2003)

1. Initialize S′
1 ⊆ S1 and S′

2 ⊆ S2. These could be
arbitrary singletons.

2. Repeat until satisifed.
(a) Find a Nash equilibrium (σ1, σ2) in the restricted

game G = (S′
1, S

′
2, u).

(b) Compute BR(σ1) and add it to S′
2.

(c) Compute BR(σ2) and add it to S′
1.

3. Return (σ1, σ2).

The algorithm eventually converges, but may have to gen-
erate every strategy in the game. There is also a similarity
to earlier work on the Lemke-Howson algorithm (Lemke &
Howson 1964) and constraint generation (Gilmore & Go-
mory 1960; Dantzig & Wolfe 1960).

At the highest level, our goal is to be more particular while
generating strategies. In particular we want to insure the se-
quence of strategies generated satisfy the conditions on the
range of skill, hence limiting the total number of strategies
required to be generated. The primary idea behind our re-
search is the concept of a generalized best response.

Definition 2 Given a game G = (S1, S2, u), a generalized
best response to a set of strategies S′

1 ⊆ S1 is a strategy
σ′

2 ∈ Δ(S2) such that (σ′
1, σ

′
2) is a Nash equilibrium in the

restricted game G = (S′
1, S2, u). Define σ′

1 to be one of the
safest S′

1 mixed strategies. If (σ′
1, σ

′
2) is instead part of an ε

Nash equilibrium, it is an ε generalized best response.

Notice that a generalized best response is actually an equi-
librium strategy of a restricted game. Therefore it can actu-
ally be a mixed strategy in more than just the trivial circum-
stances.

A generalized best response can be computed in two
ways. The first is by using a linear program, similar to
the techniques of Koller and Meggido (Koller & Megiddo
1992). However, a simpler technique is to use basically half
of the Double Oracle Algorithm.

789

Algorithm 2: (Generalized Best Response I)
1. Given S′

1 ⊆ S1, initialize S′
2 ∈ S2 arbitrarily.

2. Repeat until satisfied.
(a) Find a Nash equilibrium (σ1, σ2) to G =

(S′
1, S

′
2, u).

(b) Compute BR(σ1) and add it to S′
2.

3. Return σ2.

In the limit, the above algorithm computes a Nash equilib-
rium of the game (S′

1, S2, u). It also can be used to return
an ε-generalized best response of arbitrary precision ε.

We can now define our algorithm. For the sake of sim-
plicity, and to make our theoretical results simpler, we will
focus on defining it for symmetric games.

Algorithm 3: (Range-Of-Skill Algorithm)
1. Initialize Σ′ ⊆ Δ(S) as a singleton.
2. Repeat until satisfied.

(a) Find an ε′-generalized best response to Σ′, σ.
(b) Add σ to Σ′.

3. Return one of the safest mixed strategies Σ′ as an
ε-Nash equilibrium.

The range of skill algorithm builds a set of strategies based
on generalized best response, rather than best-response. As
such, the strategies themselves are equilibria for restricted
games of increasing size. The algorithm can be extended to
asymmetric games by maintaining different sets of strategies
for each player. Moreover, this algorithm can be applied to
an extensive-form game, or any game where a generalized
best response can be computed efficiently.

The double oracle algorithm could possibly generate ev-
ery strategy in the game, the range of skill algorithm is
bounded by our proposed measure of game difficulty.

Theorem 1 If ε′ = 0 (the generalized best responses are
exact) then the Range-Of-Skill Algorithm provides an ε-Nash
equilibrium in ROSε(G) iterations.

Proof: First, consider the range-of-skill algorithm when
ε = 0. Define σ1 to be the first strategy in Σ′

1, and σt to
be the strategy generated on the tth iteration of the range of
skill algorithm. Observe that, if T < T ′:

min
t<T

u(σT , σt) ≥ min
t<T

u(σT ′ , σt) (6)

≥ min
t<T ′

u(σT ′ , σt) (7)

If this were not the case, then σT would not be a gen-
eralized best response to {σ1, . . . , σT−1}. Define εT =
mint<T u(σT , σt). Since ε2 ≥ ε3 ≥ . . . εT , then
{σ1, . . . , σT } is an εT -ranked list. Thus, ROSε(G) provides
a bound on the number of iterations before the Range-Of-
Skill Algorithm provides an ε-Nash equilibrium.

We now look at the application of this new algorithm to
the game of poker.

Poker and Equilibria

Heads-Up Limit Texas Hold’em is a two-player variant of
poker, and the one used in the 2006 AAAI Computer Poker
Competition. Unlike in draw poker games, there is abso-
lutely no skill involved in getting a good hand: instead, the
player’s betting strategy entirely determines the quality of
their play, which is usually measured in small-bets per hand,
where a small-bet is the smallest denomination that can be
wagered (usually two chips).

A match of Limit Hold’em consists of a number of hands,
in which private and public cards are dealt and the players
bet, i.e., put chips in the pot. The player who doesn’t fold
or, if no one folds, has the best hand wins the chips in the
pot. At the beginning of the hand, the players put blinds
into the pot: one player (the small blind) puts one chip in
the pot, and the other (the big blind) puts two chips into
the pot, while the small blind alternates every hand. Then,
they each receive two cards privately. A round of betting
occurs, where a bet or raise is always the small bet, in which
no more than three raises (a bet, a raise, and a re-raise) can
occur. The next round (the flop), three public cards are put
on the board. Then, another round of betting occurs, where
a bet or raise remains the small bet and no more than four
raises can occur, which remains the max for the remaining
rounds. The next round (the turn), one public card is placed
on the board. Then, another round of betting occurs, where
a bet or raise is twice the small bet (a big bet). In the final
round (the river), one last card is placed on the table, and
the final round of betting occurs, where a bet or raise is still
limited to the big bet.

If no one has folded, a showdown occurs. Each player
makes the best five card hand amongst his or her private
cards and the five public cards on the board. The player with
the best five card poker hand wins the pot; if the hands are
of equal value, a tie occurs, and the pot is split (each player
gets back his or her chips).

The number of states in this game is huge: there are over
1.3 × 1015 card sequences alone, not considering the bet-
ting. Therefore, traditionally the game is abstracted. There
are a number of common abstractions used to create a more
tractable restricted game.

1. Symmetries in the cards. Since a card’s exact suit holds no
special status, permutations of the four suits are all equiv-
alent games. Likewise, the order in which the private or
flop cards are dealt is also insignificant. These symme-
tries can be abstracted away.

2. Eliminate dominated strategies. For example, remove
fold strategies when no chips are required to call.

3. Force the players’ strategies to behave the same on two
different card sets. Due to the fact that there are seven
cards visible to a player during a game, some assumption
along this line must be done in order to fit the strategy into
memory. The set of card sets that are indistinguishable are
called buckets.

4. Treat situations with four bets in a round as though there
were only three, as there are few situations where such
betting is appropriate.

790

5. Fix the players’ betting strategy for a single round. This
causes a drastic reduction in the size of the game.

These restrictions must be selected with a great deal of care.
The more benign abstractions often do not offer a large
enough reduction in the size of the game. Many of the more
dramatic reductions are used at the cost of introducing seri-
ous flaws in the resulting equilibrium programs.

For example, the work of Billings’ and col-
leagues (Billings et al. 2003) forced the players’ betting
in the first round to follow a fixed strategy. This caused
significant weaknesses in the bot that have been exploited
significantly by both humans and other bots (Billings et al.
2004). Gilpin and Sandholm (Gilpin & Sandholm 2006)
solved the first two rounds of the game assuming that the
strategy would always call afterwards. Even though a
second equilibrium solution replaced these later rounds,
the disconnect in the equilibrium resulted in a significant
weakness (Zinkevich & Littman 2006).

These examples suggests it is important to solve for all
of the rounds simultaneously. However, even with other ag-
gressive forms of abstraction it is intractable to use the tech-
niques of Koller and Megiddo (Koller & Megiddo 1992) on
a full four-round game without fixing at least one round. The
reason is actually two-fold: the size of the four-round game
is difficult to fit into memory and there is numeric instability
when dealing with the products of four full rounds of prob-
abilities as is required by sequence form.

The range of skill algorithm presented in the previous
section, though, offers an alternative to the techniques of
Koller and Megiddo. Using the range of skill algorithm
we can solve a complete four-round abstraction of Limit
Texas Hold’em. In particular, we make two major abstrac-
tion choices. First, we bucket all card sequences down to
only 625 for each player. This bucketing is done by com-
pressing the player’s private cards and the board cards down
to a single number called hand strength, which measures the
probability of winning with the hand against a random hand.
Buckets are formed as the quintiles of this hand strength on
every round given the previous rounds’ buckets so that the
probability of transition to any bucket in the next round has
a nearly equal probability. This results in 54 = 625 buck-
ets. Second, we assume that only three bets are allowed per
round reducing the number of betting sequences by a fac-
tor of 5. Observe that storing a strategy for this restricted
game, the primary requirement of the range of skill algo-
rithm, requires 625 × 3425 floating point values or around
17MB. Contrast this with representing the whole game, the
primary requirement for the linear program, which requires
625 times more memory or almost 11GB.

Empirical Results

We used the range of skill algorithm to find an approximate
Nash equilibrium to the abstracted game described in the
previous section. This bot was called SmallBot2298 (sec-
ond generation bot after 298 iterations of the range of skill
algorithm). SmallBot2298’s abstraction assumed that there
are two raises after the blinds in the first round (when there
are normally three) and there are three raises in the last

three rounds (when there are four). If, while playing the
real game, one of these constraints was violated, it would
be due to a raise by the opponent. We created BigBot2298
that could play the full game: it calls any such raise, and
plays how SmallBot2298 would have if the raise had not
happened. We investigate the effectiveness of BigBot2298
both in terms of an analysis of its exploitability and its per-
formance against other near optimal strategies.

Due to the fact that a best response is much easier to com-
pute than a Nash equilibrium, we can actually compute the
suboptimality of SmallBot2298 in games with various lev-
els of abstraction. To begin with, SmallBot2298 is within
0.01 small bets per hand of optimal in the abstracted game
in which it plays3. Moreover, BigBot2298 is within 0.025
small bet per hand of optimal in the game where the betting
is not abstracted but the cards are. This was determined by
computing the best response to BigBot2298 in this game.
The low additional exploitability justifies the choice of this
abstraction. We also considered its exploitability versus a
bot with a much finer level of hand strength abstraction..
In particular, we considered a bot that used the same card
abstraction technique, but with ten buckets per round for a
total of 10,000 sequences instead of 625. The best-response
to SmallBot2298 in this game was 0.053 and 0.065 with and
without the betting abstraction, respectively. These results,
split by player, are summarized in Table 1.

Further, we ran BigBot2298 against the competitors from
the bankroll competition of the 2006 AAAI Poker Competi-
tion. BigBot2298 and each competitor played 40,000 hands.
In particular, we randomly generated the cards for 20,000
hands, and the hand was played twice with each bot in both
seats. The results are displayed in Table 2 (combined with
the results from the competition).

Observe that not only does BigBot2298 have a statisti-
cally significant positive expected winnings against all the
other bots, but its average win rate of 0.34 small bets per
hand is higher than Hyperborean’s 0.28 small bets per hand
win rate. Therefore, it would have won the competition.

Generalized Best Response: A Theoretical

Improvement

If the Range-Of-Skill Algorithm is implemented with Gen-
eralized Best Response I as a method of computing the gen-
eralized best response, in theory one could generate every
deterministic strategy in order to get this generalized best
response. Therefore, we discuss here another variant which
allows us to obtain runtime bounds based upon linear pro-
gramming runtime bounds.

In particular, one can utilize the techniques of (Koller &
Megiddo 1992). From the first player’s perspective, if the
second player is fixed, a game of poker is like a Markov
decision process. This Markov decision process has a set of
states S, some of which are terminal T ⊆ S and some of
which are non-terminal N = S\T . Given a state s ∈ N ,
there is a set of actions A(s) that can be used in that state.
There is also a set of initial states I ⊆ S. Given a state

3The closest bots in the 2006 AAAI Computer Poker Competi-
tion differed by approximately 0.05 small bets per hand.

791

5 Buckets, abstracted betting 5 Buckets, full betting 10 Buckets, abstracted betting 10 Buckets, full betting
Player 1 0.0936 0.1150 0.1377 0.1584
Player 2 -0.0725 -0.0620 -0.0322 -0.0204
Average 0.0106 0.0265 0.0528 0.0648

Table 1: The amount won (in small bets per hand) by a best response against the Player 1 and Player 2 strategies of Small-
Bot2298 in various abstractions of poker. These figures have been computed analytically.

BigBot2298 Hyperborean Bluffbot Monash-BPP Teddy Average
BigBot2298 0.061 ± 0.015 0.113 ± 0.011 0.695 ± 0.015 0.474 ± 0.023 0.336

Hyperborean −0.061 ± 0.015 0.051 ± 0.017 0.723 ± 0.016 0.407 ± 0.025 0.280
BluffBot −0.113 ± 0.011 −0.051 ± 0.017 0.527 ± 0.020 −0.190 ± 0.043 0.043

Monash-BPP −0.695 ± 0.015 −0.723 ± 0.016 −0.527 ± 0.020 1.168 ± 0.043 -0.015
Teddy −0.474 ± 0.023 −0.407 ± 0.025 0.190 ± 0.043 −1.168 ± 0.043 -0.465

Table 2: A cross table indicating the number of small bets per hand won by the row player from the column player in an
extended version of the Computer Poker Competition. The results with BigBot2298 were generated for this paper, with other
results taken from (Zinkevich & Littman 2006).

s ∈ S\I , there is a predecessor pair P (s) = (s′, a) such
that playing a in s′ can lead to s.

The states of this Markov decision process are betting se-
quences and card (or bucket) sequences. Observe that in this
Markov decision process, there is exactly one path to each
state.

For any state s ∈ S, define pσ1
s to be the probability that

the first player using strategy σ1 will select all of the actions
required to reach state s, given that all of the actions by the
other player (and actions of nature) required also occur. De-
fine pσ1

s,a to be the probability of the first player selecting all
of the actions required to reach state s and then action a,
given that all of the actions by the other player (and actions
of nature) required also occur. For all s ∈ N :

pσ1
s =

∑

a∈A(s)

pσ1
s,a. (8)

If playing action a in state s can immediately lead to s′ (i.e.,
P (s, a) = s′), then:

pσ1
s,a = pσ1

s′ . (9)
For any fixed strategy σ2 of the second player, each terminal
state has a probability of occurring (given the actions of the
first player would lead to it) and an expected utility for the
first player (fixed if it is a fold; dependent upon the posterior
distribution over the opponent’s hand if it is a showdown).
Therefore, we can define the utility vector representation,
a function uσ2 : T → R such that:

u(σ1, σ2) =
∑

s∈T

pσ1
s uσ2

s . (10)

Thus, given a set of strategies S′ ⊆ Δ(S2) for the second
player, one can define the worst case performance of the first
player as:

min
σ2∈S′

u(σ1, σ2) = min
σ2∈S′

∑

s∈T

pσ1
s uσ2

s . (11)

A generalized best response is:

max
σ1

min
σ2∈S′

u(σ1, σ2) = min
σ2∈S′

∑

s∈T

pσ1
s uσ2

s . (12)

We can discover p∗s and p∗s,a conforming to a generalized
best response to S′ by maximizing v subject to:

ps =
∑

a∈A(s)

ps,a ∀s ∈ N, (13)

ps,a = ps′ ∀s, s′ ∈ S, a ∈ A(s) where P (s′) = (s, a),
(14)

ps ≥ 0 ∀s ∈ T, (15)
ps,a ≥ 0 ∀s ∈ N, a ∈ A(s), (16)

ps = 1 ∀s ∈ I, (17)

v ≤
∑

s∈T

psu
σ2
s ∀σ2 ∈ S′. (18)

We call this algorithm Generalized Best Response II.
The above can also be done from the second player’s per-

spective.
Observe that the number of equations and variables is

roughly proportional to the number of states |S| plus |S′|.
Moreover, for a particular σ2 ∈ Δ(S2), the function uσ2

s can
be computed from pσ2

s with a single traversal of the states of
the full game. This can be done as soon as it is generated
(instead of for each generated best response).

If we define g to be the number of game states (nodes in
the extensive form game), v to be the number of states in the
MDP (the view), then:

Theorem 2 The Range of Skill Algorithm which uses Gen-
eralized Best Response II, given a symmetric game G, can
compute an ε-Nash equilibrium by solving ROSε(G) linear
programs of size less than ROSε(G)+v each, and iterating
over all g states ROSε(G) times.

The following can be derived from (Grotschel, Lovasz, &
Schrijver 1988, pages 69–70,75):

Theorem 3 Given C ∈ {−N . . . N}n×n, d ∈
{−N . . . N}n with m nonzero entries, assuming
{x : Cx ≤ d} is full-dimensional (i.e., has strictly

792

positive volume), one can find x ∈ Rn such that Cx ≤ d
using the ellipsoid method in O(n4m log N) time.4

O(m log N) is the number of bits required to represent C
and d. To grasp this result, note that the ellipsoid method re-
peatedly reduces the volume under consideration. Secondly,
the bounds on the number of nonzero elements in C and the
size of the integers in C affects the minimum nonzero vol-
ume that {x : Cx ≤ d} could have.

Determining a Nash equilibrium with one linear program
would require a linear program with Ω(v) variables and
Ω(v) constraints, and Ω(g) nonzero elements5 in the coef-
ficient matrix, resulting in a bound of Ω(v4g). On the other
hand, computing one generalized best response requires no
more than O(v4(vROSε(G))) time, and since there are
ROSε(G) iterations, this is O(v5(ROSε(G))2) time (the it-
eration over all the game states is dwarfed by this amount).
Therefore, if O(ROSε(G)2) < O(g/v), the range of skill
algorithm could be faster than the traditional algorithm.

Conclusion

In this paper, we demonstrated how an iterated technique for
computing a Nash equilibrium could be efficient with mem-
ory usage and solve abstractions of Texas Hold’em larger
than those solved to date. In particular, the main benefit was
that all of the betting rounds were solved together, make a
strategy that was a cohesive hole. Strikingly, it was found
that the strategy was not only an approximate Nash equilib-
rium in the game in which it was computed, but had very
few weaknesses in a larger game which was much closer to
Texas Hold’em. Moreover, it outshone any of the bots in the
Bankroll Competition.

However, there are also some striking points about the
empirical results which show where improvement could be
made in the future. For instance, while the strategy which
always raises is at the beginning of the search for a Nash
equilibrium, even though Teddy actually does almost always
raise, still SmallBot2298 did not do as well as Monash-BPP
against Teddy. This is a reminder that, even though an equi-
librium is a very safe strategy, an approximate Nash equilib-
rium is not always the most exploitive strategy of a weaker
bot, and suggests that in the future development, exploita-
tion and safety should be balanced.

References

Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer,
J.; Schauenberg, T.; and Szafron, D. 2003. Approximat-
ing game-theoretic optimal strategies for full-scale poker.
In International Joint Conference on Artificial Intelligence,
661–668.
Billings, D.; Davidson, A.; Schauenberg, T.; Burch, N.;
Bowling, M.; Holte, R.; and Schaeffer, J. 2004. Game tree

4There will be O(n2m log N) iterations (Grotschel, Lovasz,
& Schrijver 1988, page 75) where each iteration in the ellip-
soid method takes O(n2) time to compute a Löwner-John ellip-
soid (Grotschel, Lovasz, & Schrijver 1988, pages 69–70).

5This assumes that a significant fraction of the states in the over-
all game tree are terminal, which is the case if every node has at
least two children.

search with adaptation in stochastic imperfect information
games. In Computer and Games.
Dantzig, G., and Wolfe, P. 1960. Decomposition principle
for linear programs. Operations Research 8:101–111.
Gilmore, P., and Gomory, R. 1960. A linear program-
ming approach to the cutting stock problem. Operations
Research 849–859.
Gilpin, A., and Sandholm, T. 2006. A competitive texas
hold’em poker player via automated abstraction and real-
time equilibrium computation. In National Conference on
Artificial Intelligence.
Grotschel, M.; Lovasz, L.; and Schrijver, A. 1988. Geomet-
ric Algorithms and Combinatorial Optimization. Springer-
Verlag.
Hsu, F. H. 2002. Behind Deep Blue: Building the Com-
puter that Defeated the World Chess Champion. Princeton
University Press.
Koller, D., and Megiddo, N. 1992. The complexity of
two-person zero-sum games in extensive form. Games and
Economic Behavior 528–552.
Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.
750–759.
Lemke, C., and Howson, J. 1964. Equilibrium points of
bimatrix games. Journal of the Society of Industrial and
Applied Mathematics 413–423.
McMahan, H.; Gordon, G.; and Blum, A. 2003. Planning
in the presence of cost functions controlled by an adversary.
In International Conference on Machine Learning.
Mérő, L., and Mészáros, V. 1990. Ways of Thinking:
The Limits of Rational Thought and Artificial Intelligence.
World Scientific.
Romanovskii, I. V. 1962. Reduction of a game with
complete memory to a matrix game. Soviet Mathematics
678–681. (English translation of Doklady Akademii Nauk
SSSR 1444,62–64.).
Samuel, A. L. 1959. Some studies in machine learning
using the game of checkers. IBM Journal on Research and
Development 210–229.
Schaeffer, J.; Björnsson, Y.; Burch, N.; Lake, R.; Lu, P.;
and Sutphen, S. 2003. Building the checkers 10-piece
endgame databases. Advances in Computer Games 10
193–210.
Zinkevich, M., and Littman, M. 2006. The aaai computer
poker competition. Journal of the International Computer
Games Association 29. News item.

793

