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A New Algorithm for Linear and Nonlinear ARMA
Model Parameter Estimation Using Affine Geometry

Sheng Lu, Ki Hwan Ju, and Ki H. Chon*

Abstract—A linear and nonlinear autoregressive (AR) moving
average (MA) (ARMA) identification algorithm is developed for
modeling time series data. The new algorithm is based on the
concepts of affine geometry in which the salient feature of the
algorithm is to remove the linearly dependent ARMA vectors
from the pool of candidate ARMA vectors. For noiseless time
series data witha priori incorrect model-order selection, computer
simulations show that accurate linear and nonlinear ARMA model
parameters can be obtained with the new algorithm. Many algo-
rithms, including the fast orthogonal search (FOS) algorithm, are
not able to obtain correct parameter estimates in every case, even
with noiseless time series data, because their model-order search
criteria are suboptimal. For data contaminated with noise, com-
puter simulations show that the new algorithm performs better
than the FOS algorithm for MA processes, and similarly to the
FOS algorithm for ARMA processes. However, the computational
time to obtain the parameter estimates with the new algorithm
is faster than with FOS. Application of the new algorithm to
experimentally obtained renal blood flow and pressure data show
that the new algorithm is reliable in obtaining physiologically un-
derstandable transfer function relations between blood pressure
and flow signals.

Index Terms—Affine geometry, ARMA model, AR model, arte-
rial blood pressure, blood flow, MA model, model-order selection,
parameter estimation, renal autoregulation.

I. INTRODUCTION

I T IS a common practice in the biomedical field to fit
certain physiological systems with linear and nonlinear

autoregressive (AR) moving average (MA) (ARMA) models.
For example, Abdel-Maleket al. [1] studied differences in
parameters obtained by the ARMA model in a manual-tracking
experiment between patients with Parkinson’s disease and a
normal control group. The ARMA model’s popularity can
be attributed to the relative ease with which the dynamics of
physiological systems can be unveiled, using either transfer
function analysis or impulse response functions (IRF) de-
rived from an ARMA model. Of the formal order-estimation
methods, perhaps the most well known are the Akaike infor-
mation criterion (AIC) and the final prediction error (FPE),
both introduced by Akaike [2], and the minimum description
length (MDL) method of Rissanen [3]. The AIC and the FPE
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methods have been shown to be asymptotically equivalent to
the F-test by Soderstrom and Stoica, in a book [4] that reviews
several order-estimation methods. Accordingly, many novel
techniques have been developed to achieve even more accurate
ARMA model parameter estimates [5]–[10]. Korenberg has
developed a robust algorithm for difference equation modeling
based on a fast orthogonal search (FOS) method [5], [6]. The
FOS algorithm has been shown to be robust in most cases in
obtaining correct ARMA model parameters despite incorrect
model-order selection. It relies on the sequential search proce-
dure to extract only the significant ARMA model terms, and
discard the insignificant ones. We have recently developed
another approach to ARMA model parameter estimation based
on the group method of data handling (GMDH) [10]. The main
idea of the GMDH is to have the algorithm construct a model of
optimal complexity based only on the data; only the candidate
terms that best approximate the given data are retained. The
GMDH has been shown to be effective in obtaining accurate
ARMA model parameter estimates in cases with significant
noise contamination as well asa priori incorrect model-order
selection. In some cases, the GMDH has been shown to
provide better parameter estimates than either the FOS or the
least-squares under the circumstances outlined in the previous
sentence. However, there exists a scenario in which both the
FOS and the GMDH methods do not provide accurate ARMA
model parameter estimates under noiseless conditions witha
priori incorrect model-order selection. This is the case when
both methods are based on a suboptimal search criterion. An
optimal search criterion would search for the minimum error
across all possible subsets of ARMA model candidate functions
within the candidate function space.

We present a new algorithm for an optimal search criterion,
based on the principle of affine geometry, which enables ac-
curate parameter estimation despite incorrect model selection.
Affine geometry is a subset of Euclidean geometry. It mainly
deals with points, straight lines and incidence (when a point lies
on a line), therefore, affine geometry does not consider angles.
The FOS algorithm is based on Euclidean geometry because or-
thogonality of candidate vectors are involved. Unlike the FOS,
the proposed algorithm, based on the concepts of affine geom-
etry, utilizes nonorthogonal projection search criteria, and from
herein we will refer to the algorithm as the optimal parameter
search (OPS). To showcase the efficacy of the OPS, compar-
isons between the OPS and the FOS are made using various
linear and nonlinear ARMA model simulation examples. We
chose to compare the performance of the OPS to FOS since FOS
is one of the most accurate algorithms available, often superior
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Fig. 1. Orthogonal projection finds the closest point to P in the span of the
basis vectors.

to the most widely utilized least-squares algorithm with AIC as
the model-order search criteria.

II. M ETHODS

The key difference between the OPS and the FOS algorithms
is that, unlike the FOS, the OPS is based on a nonorthogonal
search for model candidate terms. One notable disadvantage
of FOS’s using an orthogonal search can be seen by the fol-
lowing simple example. A vector P is in the space constructed
by vectors X and Y as shown in Fig. 1. If the angle formed
by ZOP is smaller than angles YOP and XOP, then the vector
Z will be chosen even though the vector Z is not in the space
constructed by the vector X and Y. In other words, orthogonal
projection finds the closest point to P in the span of the basis
vectors, regardless of whether or not the vector belongs to the
constructed space. Note that this scenario will produce an erro-
neous parameter estimate with the FOS when an incorrect model
order is chosena priori. With the OPS, because it is based on a
nonorthogonal search, this type of scenario will not occur. Note
that if the base vectors are all perpendicular to each other, then
there is no difference between orthogonal and nonorthogonal
search methods.

The first step in the OPS algorithm is to select only the lin-
early independent vectors from the pool of candidate vectors.
To examine how linearly independent vectors are selected, con-
sider an ARMA process of the form

(1)

where and represent the maximum AR and MA model or-
ders, respectively. The term in (1) is considered a noise
source or prediction-error term. The parameters and
represent to-be-estimated coefficients of the AR and MA terms,
respectively. The candidate vectors are the following:

and . These candidate
vectors can be arranged as the matrix shown in (2) at the bottom
of the page, where is the total number of data points. For a
nonlinear ARMA model, the above matrix can be expanded to
include products between the input and output itself as well as
cross products between the input and output terms. The first step
toward achieving linear independence among candidate vectors
is to select as the first candidate vector. The next can-
didate vector , and the first candidate vector are
then used to determine linear independence [e.g., use
to fit using the least squares method and calculate the
error between and the estimated vector]. With a perfectly
clean signal, linear independence will always be obtained. In the
case of correlated noise contamination (error value will not be
zero), some preset threshold can be set so that if the error value
is smaller than the preset threshold, then the vector , for
example, can be selected as an independent candidate vector.
For the simulation examples to be considered in Section III, we
used a very small preset threshold value (e.g., threshold value

0.001) because it is often difficult to determinea priori what
that value should be to obtain correct results, especially with
experimental data. Once it has been determined that is a
linear independent candidate vector, the vectors and

are used to estimate the candidacy of the linear indepen-
dence of using the approach just outlined. This pro-
cedure is continued until all the linearly independent vectors
are selected to form a new candidate vector pool. Let

where is the number of selected lin-
early independent vectors.

With the new candidate pool of linearly independent vectors,
least-squares analysis is performed

(3)

where

(4)

In (4), is the coefficient estimate of the ARMA model. The
objective is to minimize the equation error, , in the least-
squares sense using the criterion function defined as follows:

(5)
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Fig. 2. Model-order determination via the projection distance of the candidate terms (noiseless case).

The criterion function in (5) is quadratic in , and can be min-
imized analytically with respect to , yielding the following
well-known equation:

(6)

With the obtained coefficients, calculate every , and re-
arrange the in descending order. Note that the overbar rep-
resents the time average. At this step of the algorithm we need to
choose the number of candidate vectors,, necessary for ob-
taining proper accuracy. The approach we have taken is to retain
only the that reduce the error value significantly. If we ob-
serve either negligible decrease or increase in the error value by
adding an additional , then those are dropped from the
model. Once only those that reduce the error value signif-
icantly (only those candidate terms whose projection distance
value is greatest) are obtained, the linear and nonlinear ARMA
model terms are estimated using the least-squares method. This
step is discussed further in Section III (see Figs. 2 and 3).

III. SIMULATION RESULTS

In this section we demonstrate the effectiveness of the de-
veloped algorithm for estimating parameters of linear and non-
linear MA and ARMA models. We compare the performance
of the OPS to that of the FOS method. For all simulation ex-
amples involving linear processes (AR and MA) to follow, we
have selected an incorrect model order of ten AR and ten MA
terms [ARMA (10,10)] for both the OPS and FOS. For nonlinear
models, ten AR, ten MA, and five second-order AR and MA as

well as five cross AR and MA [e.g., ] model
orders were chosen for both the OPS and FOS. The Achilles’
heel of ARMA models is to determinea priori accurate model
orders without knowing the true model order of the system.
The model order search for the FOS was obtained by using
the automatic model order search criteria as described in [5]
and [6]. Succinctly, the automatic model order search criteria
of the FOS retains only those candidate terms that reduce the
mean-square-error values by a significant amount in conjunc-
tion with a statistical 95% interval criterion. The FOS algo-
rithm has been shown to be accurate for various linear and non-
linear ARMA models [5], [6], [8], and often superior to the
least-squares approach with the AIC for the model order selec-
tion process.

A. MA Model With Additive Noise and Incorrect Model-Order
Selection

For the first simulation example, consider the following linear
MA model with Gaussian white noise (GWN) as the input, ,
so that the output, , contains 1000 data points

(7)

We have purposely selected an incorrect model order of
ARMA(10,10) for both methods despite the fact that the above
equation does not contain any AR model terms. To subject
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Fig. 3. Model-order determination via the projection distance of the candidate terms (SNR= 10 dB).

TABLE I
COMPARISON OF THEOPSAND FOS WITH ADDITIVE NOISE AND AN INCORRECTMODEL-ORDER SELECTION

the algorithms to a more daunting task, we have used additive
noise so that signal-to-noise ratios (SNRs) of 10 and 0 dB were
obtained for the above MA process. Comparison of the results
based on the two methods for the case of noiseless data with
an incorrect model order selection, and the cases with noise
added (10 and 0 dB) and an incorrect model order selection, are
shown in Table I. With a clean signal, the OPS obtained true
model terms and coefficients despite the exaggerated incorrect
model order selection. The model order-selection process for
the OPS is shown in Fig. 2. The ordinate value represents
the projection distance of the candidate terms. Note that the
projection distance value is zero after the term has
been determined. In addition, the projection distance value is

the greatest for the term and the lowest for
since they have the biggest and smallest coefficient values
among the model candidate terms. Thus, without any noise
contamination, due to removal of linearly dependent candidate
terms, the OPS is able to obtain the correct coefficient and
model candidate terms. The model-order search for the FOS
was estimated using the automatic model-order search criteria
as described above and in [5] and [6]. With this search, however,
the FOS completely missed two model terms: and

. Concomitantly, the FOS incorrectly picked up two
additional terms: and . With a clean signal,
the mean-square-errors (MSEs) are 0.0069 for the FOS and
0.00 for the OPS.
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When the signal was corrupted with 10-dB noise, the OPS
correctly identified only the true model terms but with a small
deviation of the coefficients from the true coefficients, as ex-
pected. The MSE is found to be quite small (9.21e–004). The
model order was determined with the aid of Fig. 3. Due to ad-
ditive noise, the terms and erroneously have
small projection distance values. In addition, the projection dis-
tance is quite negligible compared to the rest of the candidate
terms. Thus, only the first eight candidate terms were used to
estimate the candidate coefficients. The FOS fared poorly com-
pared to the OPS, as it incorrectly identified additional terms
that are not part of the true model. In addition, the identified
coefficients deviated from the true coefficients, resulting in a
slightly higher MSE (0.0060) value than for the OPS. With in-
creased noise level (SNR of 0 dB), as expected,the performance
of both FOS and OPS deteriorated further. Both methods missed
the term. It is interesting to note that in many simu-
lations, including the present example, the FOS appears to be
more robust with noise corrupted signals than with clean signals.
For example, the MSE value is slightly lower with 10-dB noise
(MSE 0.006) than with the clean signal (MSE 0.0069).
In addition, with noise added, the FOS obtained more correct
model terms than without noise added.

B. Nonlinear MA Model With Separate Additive or Dynamic
Noise and Incorrect Model-Order Selection

The next simulation example consists of an arbitrarily chosen
nonlinear MA difference equation of the form

(8)

We consider two separate cases of noise corruption, in which
the output of (8) is contaminated by additive GWN of the form

(9)

and the other in which the output of (8) is disturbed by dynamic
noise, which causes (8) to take the form

(10)

Note that additive noise [see (9)] is statically added after the
clean output signal has been generated. For dynamic noise, the
GWN source, , is fed back to the output so that the current
and future output values are dependent on the past states of the
input and noise signals. Therefore, the outputs described by (9)
and (10) have different values. The SNR for additive noise was
obtained for two different levels, 10 and 0 dB. For the dynamic
noise, the SNR was 3.5 dB. A model order of ARMA (10,10)

and nonlinear ARMA (5,5) was incorrectly selected to deter-
mine the effectiveness of both approaches [the correct model is
MA (9) and nonlinear MA (3). With incorrect selection of linear
and nonlinear ARMA model orders, the number of parameters
to be determined are 21 linear ARMA terms, and 57 nonlinear
ARMA model terms, for a total of 78 terms to be searched. This
is a daunting task for any algorithms, as (8) contained only 11
model terms, but we are subjecting the FOS and OPS to a su-
perfluous model-order search concomitant with excessive noise
corruption in the data signal. The results of additive and dy-
namic noise for the OPS and FOS are shown in Table II. As in
the previous examples, with a clean signal, the OPS is again able
to obtain accurate parameter estimates associated with only the
true model terms. This result is impressive in itself, since we are
not aware of any other algorithm that is able consistently to pro-
vide accurate parameter estimates despite incorrect model-order
selection even in the case of a clean signal. The FOS, however, is
not able to obtain correct parameter estimates and has obtained
incorrect model terms [ , and ] and
missed some of the true model terms [ and

]. With additive noise, either SNR 10 or 0 dB, the
OPS is accurate in providing only the true model terms but the
FOS missed a model term [ , only for SNR 10 dB] and
it inaccurately introduced an additional term [ ]. More-
over, the estimated coefficients with the OPS are closer to the
true model coefficients than are those obtained with the FOS.
The MSE for the OPS are 0.0044 and 0.0442 for SNR10 and
0 dB, respectively. The MSE for the FOS are 0.035 and 0.1038
for SNR 10 and 0 dB, respectively. It is clear that despite sig-
nificant noise in the data, and grossly incorrect model-order se-
lection, both methods perform rather nicely. However, it is clear
that the OPS outperformed the FOS. The MSE values are ap-
proximately three- to ten fold less than those obtained via the
FOS.

With dynamic noise, the result is the same as with additive
noise; the OPS is more accurate than the FOS. The FOS is un-
able to identify the term , and incorrectly introduced
a term. The OPS, although the coefficients associated
with the true model coefficients deviate somewhat, is accurate
in only producing coefficients related to the true model terms.
The MSE also favors the OPS; the MSE values are 0.013 for the
OPS and 0.056 for the FOS.

C. The Effect of Incorrect Model-Order Selection and Additive
Noise on a ARMA Model

The next simulation example considers the following linear
ARMA model with GWN as the input, , so that the output,

, contains 1000 data points

(11)

The objective is, based on only the measured input signal,
, and the output signal, , to estimate the parameters of

the above equation as accurately as possible. Although the true
ARMA model order for the above process is three output lags
and three input lags, we purposely selected an incorrect model
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TABLE II
COMPARISON OF THEOPSAND FOS WITH ADDITIVE AND DYNAMIC NOISEWITH AN INCORRECTMODEL-ORDER SELECTION

TABLE III
COMPARISON OF THEOPSAND FOS WITH AN INCORRECTMODEL-ORDER SELECTION AND TWO DIFFERENT LEVELS OF NOISE

CONTAMINATION FOR AN ARMA M ODEL

order of ten output lags and ten
input lags for both methods.
The efficacy of the ARMA model relies on the algorithm’s
ability to find the true model order, despite an incorrecta priori
model-order selection. Comparison of the results based on the
two methods is shown in Table III. The OPS algorithm obtained
the correct model terms and coefficients but the FOS did not;
not only did the FOS miss three true model terms [ ,

and ], but the coefficients obtained for the true
model terms deviated from the exact coefficients of the model.
In addition, the FOS incorrectly provided three additional
model terms, and . The MSE of the
OPS and the FOS are 0.0 and 4.17e–005, respectively. This is
an example which indicates that the goodness of fit according

to the MSE value is not always a good measure, since the MSE
of 4.17e–005 obtained with the FOS is a very small error. Note
that for chaotic systems modeling, even small differences in the
obtained coefficients would result in an exponentially divergent
change in the output value. As detailed in Section I, the FOS,
because it relies on a suboptimal model-order search, is not
always able to obtain correct model terms and coefficients
when it is subjected to an incorrect model-order selection even
for a clean signal. This has been demonstrated in this and the
previous examples.

When (11) was corrupted by additive noise levels of 10 and
0 dB, the OPS and the FOS provided comparable results. The
simulations with additive noise were made further challenging
with ana priori incorrect selection of ten output and ten input
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TABLE IV
COMPARISON OF THEOPSAND FOS WITH AN INCORRECTMODEL-ORDER SELECTION AND TWO DIFFERENTLEVELS OFNOISE CONTAMINATION

FOR A NONLINEAR ARMA M ODEL

lags. The advantage of the OPS observed with only the incorrect
model-order selection (no noise added) disappeared with the in-
troduction of additive noise as evidenced by Table III. However,
in terms of MSE values, the OPS performed slightly better than
did the FOS. The MSE values for the OPS for 10 and 0 dB
were 0.08 and 0.74, respectively; for the FOS, the corresponding
values were 0.09 and 0.88, respectively.

D. Nonlinear ARMA (NARMA) Model With Incorrect
Model-Order Selection and Additive Noise

As an arbitrary example of a NARMA model, the following
1000 data point difference equation was generated

(12)

The input, terms, was generated using GWN. To com-
pletely test the features of the general NARMA model, (12) in-
cluded self-nonlinear input and output terms as well as the cross-
nonlinear term. The model order for the two methods compared
was selected to be AR 10, MA 10, quadratic MA 5,
quadratic AR 5 and cross nonlinear model order between
the input and output 5 (total number of parameters searched
was 78). Table IV shows the results of the estimated coeffi-
cients obtained by the two methods for clean data and with two
levels of additive noise. For the clean signal, as was the case
with the three previous simulation examples, the OPS provided
the correct terms and coefficients despite incorrect model-order
selection; the FOS, however, shows the ill-effects of incorrect
model-order selection as evidenced by all of the coefficients de-
viating from the true coefficients. When the output of (12) was
corrupted by either 10 or 0 dB, the FOS provided comparable
coefficient estimates to that of the OPS. However, in terms of
MSE, both methods provided similar error values of 0.4% for
10 dB and 2% for 0 dB.

E. Application of the OPS to Experimental Data

In this section, we demonstrate the use of the OPS in ana-
lyzing experimentally obtained renal blood pressure and flow
data. The aim is not to elucidate the physiological mechanisms
involved in renal autoregulatory processes, but to examine if
the OPS can provide similar impulse response functions (IRF)
to those published and if those IRF’s are at all physiologically
meaningful [11], [12].

1) Data Acquisition and Experimental Procedure:The data
analyzed in this investigation were obtained from a previously
published study [11]. Experimental methods are described in
detail in [11] and will be briefly summarized. The experimental
data were collected from normotensive Sprague–Dawley rats
using broadband perturbations of the arterial pressure (input)
and measuring the resulting renal blood flow (output). Briefly,
operating under halothane anesthesia, the aorta inferior to the
renal arteries was cannulated with blood-filled tubing connected
to a bellows pump which in turn was driven by a computer-
controlled motor. Blood pressure was measured in the superior
mesenteric artery with a standard pressure amplifier, and renal
blood flow was measured in the left renal artery with an electro-
magnetic flow probe. The input signal was chosen to be a con-
stant-switching-pace symmetric random signal (CSRS) that ex-
hibited the spectral properties of bandlimited white noise [12].
A unique seed was used for the random number generator in
each experiment.

Each of the experimental data records used for analysis was
256 s long, with a sampling rate of two samples per second
(Nyquist frequency of 1 Hz), after digital low-pass filtering to
avoid aliasing. Each data record, containing 512 data points, was
subjected to second-degree polynomial trend removal (which
included demeaning) and was normalized to unit variance.

Fig. 4 shows averaged impulse response functions (based on
four recordings) computed from the ARMA coefficients ob-
tained from analysis of the OPS [Fig. 4(a)] and from the FOS
method [Fig. 4(b)]. For both the OPS and FOS, the model order
of ARMA (10,10) was used, which was selected based on our
previous work [13]. The dotted lines in the figure represent the
standard deviation bounds of the sample mean. We observe that
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(a)

(b)

Fig. 4. Averaged impulse response functions of renal blood flow and pressure data obtained via ARMA model for (a) the OPS and (b) the FOS.

the estimated impulse response wave forms are rather consis-
tent for both methods and are similar to those published [11],
[13]. However, the impulse response function obtained via the
OPS exhibits smoother waveforms and smaller standard devi-
ation bounds than does its counterpart obtained from the FOS.
To compare the performance of the two methods quantitatively,
model predictions based on the linear ARMA model were com-
puted for both methods. The average MSE obtained for the four
datasets for the OPS and the FOS are 3.8% and 4.7%, respec-
tively. As in the simulation examples presented in this paper,
better model prediction is obtained with the OPS than with the
FOS method.

It should be pointed out that the computational time for both
methods is quite fast. The FOS uses a modified Cholesky de-
composition to achieve orthogonality rather than inverting the
matrix to solve for the least-squares estimation, consequently,
the computational speed is enhanced. However, the computa-
tional time is faster with the OPS than with the FOS since the
orthogonal procedure is not utilized with the OPS. For all of the
simulations considered in this paper, the OPS was faster than
the FOS, based on code using Matlab software for both methods.
All of the simulation examples shown took1 min each to com-
pute on an Intel Pentium 500-MHz processor.

IV. CONCLUSION

In this paper we introduced a new algorithm, named the OPS.
Simulation examples have shown the efficacy of the method and
have shown that for clean signals, the OPS is able to extract
only the correct parameters despite overdetermined incorrect

model-order selection. The FOS, one of the most accurate algo-
rithms available, is also able to extract correct parameters under
similar circumstances but its ability to obtain correct parameters
for all noiseless data is not complete. Well-known model-order
search criteria such as AIC and MDL also do not always provide
accurate parameter estimates for noiseless signals. The OPS, un-
like the FOS, does not orthogonalize model terms, resulting in
faster computational time. Due to the fact that the OPS achieves
linear independence among candidate vectors, it is able to ob-
tain correct parameters despitea priori incorrect model-order
selection for noiseless signals. In other words, the OPS is an op-
timal search method, thus, it is able to obtain correct model pa-
rameters for noiseless signals. To date, we are not aware of any
other algorithm that is able to achieve this kind of remarkable
result. For the case of noise contaminated linear and nonlinear
MA models, the OPS provides performance superior to that of
the FOS, as evidenced by the simulation examples considered in
this paper. For noise-contaminated linear and nonlinear ARMA
models, both the OPS and FOS provide similar excellent results.
In addition, application of the OPS to experimental data indi-
cates the feasibility of the method in obtaining physiologically
meaningful transfer function relationships between renal pres-
sure and flow data.
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