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1. Introduction and Description of the Method,

In this paper we present a new algorithm for the problem
of fitting a given set of tabular data points with a curve in
the nonlinear least squares sense, We give convergence theorems
for the method and report the results of computational inves-
tigations in which the algorithm was tested against currently
used minimization techniques.

Let (pi,yi) s L = 1,..4,M be given data, let x € EN N

and suppose we wish to fit a function of the form g(x3p) to

the data in such a way that
2 ¥ 2
¢(x) = |ls(x,p) - y|lj = 1zl(a(x:pt) -y

is a minimum; {.e, wve seek a point x. € 5“ vhich minimices
the scalar function ¢ , Now every such relative minimum will
be found among the zeros of ¢'(x) , the pradient of the ¢ .

If wve set
r(x) = g(xip) -y,

and



G(x)

o«

T
Je(x)P(x) ,

vhere J,(x) denotes the M x N Jacobian matrix of

P (!1.....fu)r » then our task 1s to find the zeros of

G(x) and hence of the gradient ¢°'(x) .

Let Hi(x) denote the Hessian matrix of f1 at x .

By direct calculation ve have that
" T
1) Jc(x) - kzl fk(x)Hk(x) + Jr(x) Jy(x) .

so that Newton's method applied to
(2) G(x) = 0

is given by
3 - T R (x) #3502 T3t 01" ex )
(3) xp4y " %y = (k-l K (%g By (%) p(xg) Ipx )] IR )Pz )

The latter formula requires (assuming continuous second partial
derivatives of ¢ ) the calculation of M - N ¢ (N + 1)/2

second partial derivatives per iterative step. The Gauss-Nevton
[12] and Levenberg-Marquardt [12] algorithms are two frequently

used attempts to circumvent this difficulty. The former simply
M

drops the term Z fk(x )Hk(x ) and the latter approximates
k=1 n n

it with a diagonal matrix unI + Both methods work well locally



vhen J|?(x)]| 1s very snmall at a zero of G , For example

in [3], we hsve shown that the Leventerg-Marquardt {teration
*
converges gquadratically to x , a zero of F ,.1if

- 0([|7(x“)l|) and Jr(x*) has full rank, Obviously the

Gauss-Nevton method behaves likewise. When the stationary
points have large residuals the Levenberg-Marquardt algorithm
can degenerate into an avkward descent metkod, for then the

Hk in (3) are no longer damped out,

In order to approximate the HP without requiring addi-

tional derivative or function evaluations,wve propose the fol-
loving algorithm,

slgoriths 1,1, Let x_ , J?(xn) and P(xn) be given along

with M matrices B Leeesl each of size N x N ,
l,n M, n

(Initially the B may be chosen to approximate the “1(‘0)

1,0
by, say, using first differences or the entries of Jr(xn) o)
Chtain

b T -1 T
(&) x g = x, - [ I fk(xn)nk. 4 Jpix ) Je(x )] Jpx)) F(x“)

k=1 e
- -1 T
= xa - An J’(Xn) ,(xn)
and compute JI‘“n#l) and P(un*‘) .

dov update¢ the B‘ by means of

3



-4 -

T T
(5) By a1 = By, ¥ [980x 000" = Ve (x)

-x )T

<xn+1 n

- B (x“+1-xn)1 T

i,n - 2
n+l xn“2
for each { = 1,,,.,M , Continue the process until termination
criteria are mat,

Remark 1,1, Vfi(x) is just the 41ith row of Jr(x) .
Remark 1,2, Equation (5) is the appropriate generalization
[6] of Broyden's "single-rank" approximation to Bi(xn) [4).

Remark 1,3, The algorithm requires no more function or deri-
vative evaluations than do the Gauss-Newton or Levenberg-
Marquardt algorithms; however, more storage space is needed,
The additional storage requirement is offset on the one hand
by superior local behavior (stability near a root) and on the

other hand by a gain in speed of convergence,



2., Convergence Results,

The purpose of this section {s to present theorems which

characterize the local convergence properties of the algorithnm,

The following lemma bounds the error in the Hessian appro-
xinations given by (5).
*
lemma 1, Let Q be an open convex neighborhood of x , and

let X > 0 be a constant and P be a Frechet differentiable

function mapping 0 4into z" such that for every x € Q ,

(L) Hapx™ = 3,000 < k=" - x| .

Let B bde a real N x N matrix and let x,x' € 2 , Define

B' by

N T
3 + [P(x') = P(x) = B(x' - x)] {x -x

(s'y 8 .
=" -x]]

Under these hypotheses

[13* = 35011 < 113 = 350011 + 2xcllx = =*1] + []x* = =*ID) .

I1f, in addition,

(12) Hagx) = 3,1 < &lIx - ¥l

then

[13* = 3511 £ 118 = 300l + 3 xllx = xl1 .
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Proof.,
’

. T
B' - 3p(x') = B - Jp(x) + [R(x') = P(x) = B(x' - x)] sz-:z%Ti
x'-x

+ JP(x) - JP(x')

. T
=3 - 3,00 4 [B(x') - B(x) = I (x)(xt - x)] 2R
Hxt-x|]
x'ox (x'-x)T
+ [3,(x) - 3] Lxl-x)(x'=x) Ip(x) - 3,(x")

[1x"-x]1?

T
L. LI
13 = 3y ]] « [|1 - ==xliz=m) g
LIxt-xl|

A

Il’. - Jr(x"ll s
+ ||p(x*) -~ P(x) - Jp(x)(x' - x)|1!

R I P S R T EM R ML T I

Now from [41, llx--‘-i-'—'—"—u’i-'z-’:ll-x. £ g
xt-x|1?

Lipschitz (L2 holds), the corresponding result s clear, If

P is

wve only assume the one sided Lipschitz condition L1, then

the above reduces to

' = 3,¢x) ] < |13 - 300101 + cetl .x)”.!?(x) - 31|
+ ||JP(x) - J?(x')l|
<13 - 3000l + xdlx - =1L+ 1l - 271D

*
by adding and subtracting J?(x ) twice,
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Lem=a 2, 1f, for each 4 = 1,,,..,,4 , H‘ satisfies Ll with

constants Ki on & compact convex subset C of  then

therz is a constant Y, such that J satisfies L, with

G 1

K= Yl on C ,

Proof. let K = mox K, and seloct B > Ilui(x)ll .

B> (13,000 = 113,00TI] (see (181, 8" > [|P(x)|]; tor

every x € C, 4 =1,,,.,4 , These constants can be choeen

tacause of the continuity of every }!1 and tha compactness of

C , Notice that HHB » B' serve as Lipschitz constants for

J and F on C ,

4

Assume that every H1 satisfies L1l , then

H3gtx)

:c(x’)ll « 1] s v (x) + J;(x)JF(x)

- e, M 6N - RGN

< Hztg () - ti(x.)lﬂi(x)|l + |l£f1(x')(ui(x) - x1<x')lll
+ 130T 13,00-3, M [+ 1130 -3, Tra, (]
v ., .
< e - rex™)) o« Illlsi<x)llz>
iw=

+ ||r (x‘)”1 n:xlIH‘(x) - Hi(x‘)ll

+ 130Tl o 13600 = 3]
&
s 3™ e 113,007 - 3,6HT]



Ia

(M¥BB' + B + 28") | |x - x*]]

®
vyllx =<'l

Remark 2,1. The theorem and proof are exactly the same 1if we

replace L1 by L2 .

"
Theorem 1, Let x be a zero of J;(O)?(-) and let xx >0,
be coostants such that for every x € @

IIH‘(x) - Hi(x*)ll < Kiilx - x*[l for each {1 = 1,.,.,M ,
Whenever Jc(x.) is non-singular, there exist constants
6>0, >0 such that 1f [[|x -~ x‘ll < ¢ and

llsi.o - Hi(xo)ll €6, 14 = 1,,,,,M, then algorithm 1,1 coun-
verges to x. from Xy o

Proof. Choose C to be closure of a conditionally compact

[
convex neighborhood of x , Furthermore, choose C sufficientl
small so that J. is invertible om C and IIJG(X)-I‘I is

uniformly bounded by some constant B , Select a constant 3B'

such that I]I'(x)l]1 is uniformly bounded on C by B' .
-1 B'S§
Let K = max K, and pick & < (6BB') and € < max (_;;'Ei’

*
such that N(x ,e) € C , Now select ‘o"l.o""'xu,o as

M
above, Set A_ = ] £,(x,)8,

T
+ Jplx ) 3 (x_) o
o 1=1 7o F'o



M
HAy, = 35(x )] = ]1izlgi(x°)(si.° - B (x ][]

¥

< 1§i[£1(x°)| . ||zsi._o - “1(*0"'
< e, 8
' <B'S .

Bence |!1 - Jc(xo)-lell < B3'8 <1 and so A;l exists and

)

1s bounded in norm by B(l - BB'$)"Y ., Thus
x = x - A;lc(xo) exists,

Set e - Hx1 - x.ll o llow

ey < 1IAZHT « tlletx™ = 6tx) = A (x* = x| 1]

Ia

NagHT - tleex® = 6tx) = 3otx ) =" = x)]]

+ [3gtx) - Atx )] le,)

<3 - 338 Mye, 4+ ||F(x)]],8] e
170 ) 1 (]
By,e +33'$ '
1% 28B'S 2,6 1
STITEET8 %0 S 1-B5'0 % 6 "5 %% €2 % ¢

Hence Jc(xl) and A1 exist and as before:

IIAI = 3. (x ]

A

"’(xl)l'l n:xl|34‘l - ni(xl)'l

Ia

3'[ 6+ 2K(e° + el)}

Ia
njw

B'(8 + 3Ke ) < B'S +
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by Lemma 1, Thus, ||I - Jc(xl)-lAI" < B3'8 . 3/2 < 233'8 <1,
» .
This means AI’ exists and is bounded in norm dy B(1l - 2BB°S) ,

80 xz exists,

Assume by way of inductfon that X;,.ceuX_ Azl.....A;fl

all exist and £ 2

8p =7 Ox-1
max| |3 - x|l € 2 - (s k<n Then
i 1,k il 2 3 , <a.

Ia, - Jc(xn)|[ < ey “i*"’x.n - Hi('n)!l < (- (%)ﬂ)ncé
and so ||1 - Jc(x")-lAull < 2B3'S$ < % . ELence A;l exists

and is bounded in norm by B(l - 23!’6).1 , 80 Xx exigts.

n+l

ogey < HAZHT « tlee™ = 6txy) = 3(x ) xy = x|
+ [13gtx)) = A J]e]]
<AL - type, + (2 - (PTvele,

ia

rR(L - zns'6>'l((§)°n's + (2 - (%)")s'alea

2BB'6(1 - 233'6)"1ea

Ia

ia
Nl

e“.

Now from Leuma 1,

Ia

|8 - Hi(xﬁ)'! + 2K(e, +oe 1)

"31.n+1 - Hl(xn+1)|' “4,n

A

(2 - 36 + 3xe,

(2 - "+ 3ch™s

Ia

(2 - (H™*ye



- 11 -

and the induction is complcete, This {mplies that the sequence

l.n
exists 3nd e, < (i) “o ; 0.

+

Theorem 2, If the hypotheses of Theorem 1 hold and
Ill(x*)ll = 0 , then the iteration defined by algorithm 1,1

converges at least quadratic=ally.

Proof. e, < 3(1 - 288°8) M(yel 4 [lr(x 1102 - PMoa) .

Now |l!(xn)||1 - IlP(xn) - Y(x')lll < :géllJ’(x)llen z B%e .

Hence, e < B(1 - 253'6)-117 + 25"6]0: .

a+l 1

Remark 2.1. If we assume the stronger continuity condition 12

for the Bt , nanely

e - Bl <y llx =yl 4= 1,

then it is not reccssary to assume the cxistence of a zero,

*
x , of G : that is, by making nssumptions about the behavior
of the function and its derivatives in an open convex subset

of !N we are able to prove a ‘Kantorovich Theorem"” [9]) for

the iteration defined by algorithm 1,1 in which the existence

.
of x is leduced 13 3 part of the proof,
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3. Numerical Results.

Example 3.1, In order to test the method against a variety
of algorithms in current use, we referred to the very fine
survey paper by Box [2]. The test function usecd wvas

~%X,P -X,p - -
0("1"‘2"‘3) - E[e 1" e 2 ) - "3(‘ P o e 10p)]2

vhere the summation is over the values p = 0,1(0.1)1.,0 . This
problem has a zero residual at (1,10,1) and whenever Xy = x,
with Xq = 0 ., We used those starting points for which
¢(x°) was large:
I. x; = 0, x, =10, xy = 20 ¢ = 1031,154
II, x; =0, x, = 20 , xq = 20 ¢ = 1021,655
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TABLE 1.

Nuaber of Function Evaluations Required to Reduce
¢ to Less Than 10°° (Example 3.1)

Method Starting Point I Starting Point II
Sweann [17]) Failed Pailed
Rosenbrock [15] 350 246

Nelder and Mead [10)
Spendley, Hext and 307 315
Hinswozth [16]

Powell (1964) ([13] Failed Failed

Fletcher and Reeves 92 188
[8)

Davidon [5])

Fletcher and Powell 140 140
[7]

Powell (1965) [14] 28 33

Barnes [1]) 37 59

Algoritkm 1,1
including evalua-
tions done to ° 37 33
approxim:te H (x)

Algorithm 1,1
when Hi(xO) was 24 20

given approximately

Remark 3.1, Many of the methods above behave linearly and

could not be expected to rapidly reduce ¢ from 1073 ¢o

10’10 ;s however, Algorithm 1.1 showed quadratic convergence in

this range.
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Example 3.2, This example is giver by lNielsen [11] and is en
11lustration of how quadrature weights and nodes miy de cal-

*
culated by nonlinear least squares techniques,

Data Vectors: P Y
0.0 2,0
1,0 ¢.0
2,0 2/3
3,0 0,0
4,0 2/5
5.0 0,90
6.C 2/7
7.0 n,o
8.0 2/9
9.0 0,0

Punctional Relationship: g(x:p) = ’1'§ + xzxz .

Initial Approximation: Xy = 1,0 , X, = 1,0, x4 a7 X, * «73

TABLE 2,
Gauss=-lewton o ny AL tehm 1.1 8 (=
(11, p. 41] x goriths 1, x
909 .96301
! ~.68949 8.93674(-02) -E9911 19,117(-02)
68949 .69947
.97719 .97596
97719 ‘27183
y -,65194 7.46872(-02) .l65219 .74687(-02
165194 .65047
.97754
‘ 27754
6 not reported -165140 2746847 (-C
«65140
37754
97754 -f ten significant digits
’ -.651640 7.46847(~02) of accuracy
65140

Remark 3,2, The above example contrasts the slower convergence
rate of the Gauss-'lewton method with that of Algorithm 1,1, even

in the presence of a small residual at the root,
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