
Page:1 

A New Algorithm for Pyramidal Clipping of Line Segments in E3 
 

Vaclav Skala1, Duc Huy Bui  
Department of Informatics and Computer Science2 

University of West Bohemia 
Univerzitni 22, Box 314 

306 14 Plzen 
Czech Republic 

 
 {skala | bui} @kiv.zcu.cz  http://iason.zcu.cz/{~skala | ~bui}  

 

                                                 
1 Affiliated with the Multimedia Technology Research Centre, University of Bath, U.K. 
2 This work was supported by The Ministry of Education of the Czech Republic: project VS 97155 and project GA AV 
A2030801. 

Abstract 

A new algorithm for clipping a line segment 
against a pyramid in E3 is presented. This 
algorithm avoids computation of intersection 
points which are not end-points of the output 
line segment. It also allows solving all cases 
more effectively. The performance of this 
algorithm is shown to be consistently better 
than existing algorithms, including the 
Cohen-Sutherland, Liang-Barsky and 
Cyrus-Beck algorithms.  
 
Keywords: Line Clipping, Computer 
Graphics, Algorithm Complexity, Geometric 
Algorithms, Algorithm Complexity Analysis.  
 
1. Introduction 

Let us assume that two points A(xA, yA, zA) and 
B(xB, yB, zB) are given and we wish to 
compute the intersection of the line segment 
AB with the unitary clipping pyramid, defined 
as the set of all points (x, y, z) such that 
-z ≤ x ≤ z and –z ≤ y ≤ z (z ≥ 0). The 
intersection is either empty or a line segment 
whose end-points we must compute. 

 
Many algorithms for clipping a line or 

a line segment in E3 have been published, see 
standard textbooks (Cyrus and Beck 1978; 
Liang and Barsky 1983-1984; Foley, van 
Dam, Feiner and Hughes 1990; Skala 1996; 
Skala 1997)  for main references. For a long 
time the Cohen-Sutherland algorithm (CS) 
and its extensions to E3 (Foley, van Dam, 

Feiner and Hughes 1990) were the only line 
segment clipping algorithms found in most 
textbooks. Later, the Liang-Barsky (LB) and 
Cyrus-Beck (CB) algorithms were proposed 
and are based on the line parametric 
representation. 

Before describing the proposed 
algorithms for line segment clipping, it is 
necessary to unify some definitions.  
 
2. Definitions 

The planes x = -z, x = z, y = -z and y = z are 
called the right, left, bottom and top 
boundaries of the  unitary pyramid, 
respectively. We will say that: 
• a point or a line segment is visible, if it 

lies entirely inside the given pyramid, 
• a point or a line segment is invisible, if it 

lies entirely outside the given pyramid, 
• a line segment is partially visible, if it lies 

partly inside the given pyramid and partly 
outside.  

 
If a line segment is invisible, then no 

part of the line segment appears in the output, 
and the line segment is said to be rejected by 
the clipping algorithm.  

The boundaries of the pyramid divide 
the Cartesian positive half-space (z ≥ 0) into 9 
regions. Regions which are bounded by only 
two boundaries are called the corner regions 
and regions which are bounded by three 
boundaries are called the edge regions, see 
Figure 1.  
3. Proposed Pyramidal clipping algorithm 

Machine GRAPHICS & VISION, Poland Academy of Sciences, Vol. 9, No. 4, 2000, pp. 841-850, ISSN 1230-0535, 2000.



Page:2 

The proposed  Pyramidal clipping algorithm 
(PC) uses a similar approach as 
Nicholl-Lee-Nicholl algorithm (Nicholl, Lee 
and Nicholl 1987) that was derived for E2 
case only. Given a line segment AB, for 
simplicity we assume that both points A and B 
are in the positive half-space. The end-point A 
therefore can lie inside of the pyramid, in an 
edge region or in a corner region. For each of 
these cases, we can divide the positive 
half-space into certain number of sub-regions, 
see Figures 2-4. These sub-regions are 
bounded by the pyramid’s boundaries and 
planes determined by point A and one  edge of 
pyramid. These planes will be denoted ρ1, ρ2, 
ρ3, ρ4, clockwise from the top-left edge, see 
Figures 2-4. All other cases can be obtained 
from one of these cases in Figures 2-4 by 
rotating the scene around the z axis.  

With the above definitions the 
algorithm can be described by the following 
basic steps: 
• characterize the location of point A among 

the 9 regions,  
• characterize the location of point B among 

the appropriate sub-regions, 
• compute the intersection points according 

to above characterization. 
 

The main advantage of this approach is 
that we can determine which pyramid 
boundaries are intersected and therefore avoid 
unnecessary computation of invalid 
intersection points.  

 

 
 

Figure 1: Subdivision of the positive 
haft-space into regions. 

 
 

 
 
 

Figure 2: Sub-regions for the case when point 
A lies inside the pyramid. 

 
 

 
 

Figure 3: Sub-regions for the case when point 
A is in left edge region. 

 

 
 

Figure 4: Sub-regions for the case when point 
A is in top-right corner region. 

 
The proposed PC algorithm will be 

explained in more detail by the top-down 
approach. At the beginning we must 
determine whether the end-point A of the 
given line segment is beyond the right 
boundary, beyond the left boundary or 

ρ1 

ρ4 

ρ2 

ρ3 

ρ4 
ρ2 

ρ1 

ρ3 

ρ3 

ρ2 ρ1 

ρ4 

Machine GRAPHICS & VISION, Poland Academy of Sciences, Vol. 9, No. 4, 2000, pp. 841-850, ISSN 1230-0535, 2000.



Page:3 

between those two boundaries. The main 
procedure, in Pascal-like code is: 
 
procedure Clip( xA, yA, zA, xB, yB, zB: real); 
begin   
   if xA <  -zA then  case_I 

{point A is beyond right boundary}  
   else if xA <= zA then case_II 

{point A is between 2 boundaries}  
           else   case_III 

{point A is beyond left boundary}  
end; 
 

We will use the EXIT command in the 
following parts of the algorithm to denote the 
end of the procedure and to avoid “else if” 
sequences unnecessary for the algorithm 
explanation.  
 
I. Point A is beyond the right boundary. 

If point B is also beyond the right boundary, it 
is not necessary to further characterize 
point A, because the line segment is invisible. 
Therefore, we must check whether point B is 
beyond the right boundary before proceeding 
on. After that, we must test whether point A 
lies either in the corner region or in the edge 
region. This section of algorithm can be 
implemented as follows: 
 
begin {case_I}  
   if xB <  -zB then  

EXIT; {Line segment is rejected} 
   if yA > zA then case_I_1 

{point A is in the top-right  
corner region} 

   else if yA >=  -zA then case_I_2 
 {point A is in the right edge 

region} 
           else case_I_3 

{point A is in the bottom-right 
corner region} 

end {case_I}; 
 
I.1. Point A is in the top-right corner region 
and point B is not beyond the right 
boundary. 

 
If point B is above the top boundary, the line 
segment is invisible and no further 
computation is needed. Therefore, we need to 

check this condition first, and then 
characterize point B so that we can 
distinguish between the case when point B is 
beyond the left boundary and the case when 
point B is inside of the pyramid or in the 
bottom edge region, see Figure 4. The 
following pseudo-code shows how it can be 
implemented: 
 
begin {case_I_1}  
   if yB >  zB then  

 EXIT; {Line segment is rejected} 
   if xB > zB then case_I_1_a 

{point B is in the left edge or in the 
bottom-left corner region}  

           else case_I_1_b 
  {point B is inside of the pyramid or 

in the bottom edge region} 
end {case_I_1}; 
 
I.1.a) Point A is in the top-right corner 
region and point B is in the left edge region 
or in the bottom-left corner region. 

If point B is above the plane ρ1, the line 
segment is rejected, see Figure 4. Therefore, 
we must check this condition first, and then 
distinguish the case when point B is in the left 
edge region and the case when point B is in 
the bottom-left corner region. In the case of 
the left edge region, one intersection point lies 
on the pyramid’s left boundary. The location 
of point B against the plane ρ2 will specify, 
that the second intersection point lies on the 
top or on the right boundary. By this way only 
the appropriate intersection point is 
computed. In the case of bottom-left corner 
region, the comparison of point B against the 
plane ρ3 is performed first to eliminate the 
case when the line segment is rejected. After 
that, we compare the position of point B 
against the plane ρ4 to determine location of 
the first intersection point (on the bottom or 
on the left boundary). At the end, a similar 
comparison with the plane ρ2 is performed to 
determine the second intersection point. 
An implementation can be as follows: 

Machine GRAPHICS & VISION, Poland Academy of Sciences, Vol. 9, No. 4, 2000, pp. 841-850, ISSN 1230-0535, 2000.



Page:4 

begin {case_I_1_a}  
   Δx := xB – xA;  Δy := yB – yA;  Δz := zB – zA; 
   if ((xA–zA)*(Δz-Δy) > (yA-zA)*(Δz-Δx))   

   then EXIT; {Line segment is rejected} 
   {first intersection point computation} 
   if yB > -zB then{B is in the left edge region} 

t1 := (xA–zA)/( Δz-Δx)  
   else   {B is in the bottom left corner region} 
      begin 
         if ((xA+zA)*(Δz+Δy) 
>(yA+zA)*(Δz+Δx)) 
            then EXIT;{Line segment is rejected} 

if ((zA-xA)*(Δy+Δz) > (zA+yA)*(Δz-Δx)) 
            then {intersection with left boundary} 

t1 := (xA–zA)/(Δz-Δx) 
         else{intersection with bottom boundary} 

t1 := -(yA+zA)/(Δz+Δy) 
      end; 
  {second intersection point computation} 
   if ((xA+zA)*(Δz-Δy) > (zA-yA)*(Δz+Δx)) 
      then       {intersection with top boundary} 

t2 := (yA–zA)/(Δz-Δy) 
   else         {intersection with right boundary}         

t2 := -(xA+zA)/(Δz+Δx)   
end {case_I_1_a}; 
 
I.1.b) Point A is in the top-right corner 
region and point B is inside of the pyramid 
or in the bottom edge region. 

In the case when point B is inside of the 
pyramid, the position of point B against the 
plane ρ2 specify whether the intersection 
point lies either on the top or on the right 
boundary. In the case when point B is in the 
bottom edge region, the comparison of point 
B against the plane ρ3 must be performed first 
to eliminate the situation when the line 
segment is rejected. If the line segment AB is 
not rejected by the clipping algorithm then 
one intersection point lies on the bottom 
boundary. The other intersection point lies on 
the top or on the right boundary according to 
the position of point B against the plane ρ2. 
This section can be implemented as follows: 
 
begin {case_I_1_b} 
   Δx := xB – xA;  Δy := yB – yA;  Δz := zB – zA; 
  {first intersection point computation} 
   if yB < -zB then   {B in bottom edge region} 
 

       
      begin    
         if  
((xA+zA)*(Δz+Δy)>(yA+zA)*(Δz+Δx)) 
            then EXIT;{Line segment is rejected} 

t1 := -(yA+zA)/(Δz+Δy) 
      end 
   else  { B is inside the pyramid } 
         t1 := 1; 
  {second intersection point computation} 
   if ((xA+zA)*(Δz-Δy) > (zA-yA)*(Δz+Δx)) 
      then {intersection with top boundary} 

t2 := (yA–zA)/(Δz-Δy) 
   else  {intersection with right boundary} 
         t2 := -(xA+zA)/(Δz+Δx) 
end {case_I_1_b}; 
 
I.2. Point A is in the right edge region and 
point B is not beyond the right boundary. 

We need to distinguish the cases, when 
point B is bellow the bottom boundary  
(point B is in bottom-left corner region or in 
the bottom edge region), or above the top 
boundary (point B is in top-left corner region 
or in the top edge region) or between top and 
bottom boundaries. An implementation can be 
as follows: 
 
begin {case_I_2}  
   if yB <  -zB then case_I_2_a 

{point B is in the bottom-left corner  
or in the bottom edge region}  

   else if yB <= zB then case_I_2_b 
{point B is in the left edge region or 

inside of the pyramid}  
          else case_I_2_c 

{point B is in the top-left corner  
or in the top edge region} 

end {case_I_2} 
 
I.2.a) Point A is in the right edge region and 
point B is in the bottom-left corner or in the 
bottom edge region. 

The location of point B against the plane ρ3 
helps us to eliminate the case when the line 
segment is rejected. If point B is in the bottom 
edge region then the intersection points are on 
the right and the bottom boundaries. If point B 
is in the bottom-left corner region then one 
intersection point lies on the right boundary 

Machine GRAPHICS & VISION, Poland Academy of Sciences, Vol. 9, No. 4, 2000, pp. 841-850, ISSN 1230-0535, 2000.



Page:5 

and the second intersection point’s location 
(either on the left or on the bottom boundary) 
is determined by the location of point B 
against the plane ρ4. 
 
begin {case_I_2_a}  
   if  ((xA+zA)*(Δz+Δy) > (yA+zA)*(Δz+Δx)) 
      then EXIT;{Line segment is rejected} 
  {first intersection point computation} 
   if xB > zB then {B in the bottom-left corner} 
         if ((zA-xA)*(Δz+Δy) > (zA+yA)*(Δz-Δx)) 
            then {intersection with left boundary}             

t1:=(xA–zA)/(Δz-Δx) 
         else{intersection with bottom boundary} 

t1:= -(yA+zA)/(Δz+Δy) 
   else {B in bottom edge region} 

      {intersection with bottom boundary} 
t1:= -(yA+zA)/(Δz+Δy); 

  {second intersection is on right boundary} 
   t2 := -(xA+zA)/(Δz+Δx)  
end {case_I_2_a}; 
 
I.2.b) Point A is in the right edge region and 
point B is inside of the pyramid or in the left 
edge region. 

In this case, one intersection point is on the 
right boundary and the second one (if point B 
is in the left edge region) is on the left 
boundary, see following pseudo-code:  
 
begin {case_I_2_b}  
  {first intersection is on right boundary } 
   t1 := -(xA+zA)/(Δz+Δx); 
  {second intersection point computation} 
   if xB > zB then {point B in left edge region} 

t2 := (xA–zA)/(Δz-Δx) 
   else   t2:= 1 
end {case_I_2_b}; 
 
I.2.c) Point A is in the right edge region and 
point B is in the top-left corner or in the top 
edge region: similar to case_I_2_a. 
 
I.3. Point A is in the bottom-right corner 
region and point B is not beyond the right 
boundary. 

The case is similar to case_I_1. 
 
II. Point A is between the left and the right 
boundaries. 

In this case, we need to characterize the 
location of point A to specify that, if point A 
lies inside of the pyramid or in an edge 
region. The following pseudo-code shows 
how it can be done: 
 
begin {case_II}  
   if yA > zA then case_II_1 

 {A is in the top edge region}  
   else if yA <  -zA then case_II_2 

 {A is in the bottom edge region}  
          else case_II_3{A is inside the pyramid} 
end {case_II}; 
 

We need to consider only the case when 
point A is inside the pyramid (case_II_3). The 
cases, when point A is in the top (case_II_1) 
or bottom edge region (case_II_2), are similar 
to the case when point A is in the right edge 
region (case_I_2).  

 
II.3. Point A is inside the pyramid. 

If point B lies in an edge region then the 
boundary, on which the intersection point lies, 
is determined, see the Figure 2, and the 
appropriate intersection point is computed. If 
point B lies in a corner region then 
a comparison of the location of point B with 
an appropriate plane ρi is necessary before the 
appropriate intersection point is computed. 
An implementation can be illustrated as 
follows: 
 
begin {case_II_3}  
   if xB <  -zB then  
      if yB > zB then case_II_3_a 

         {B is in the top-right corner region}  
      else if yB >=  -zB then case _II_3_b 

 {B is in the right edge region}  
             else case_II_3_c 

{B is in the bottom-right corner region}  
   else if xB > zB then  
      if yB > zB then case_II_3_d 

 {B is in the top-left corner region}  
      else if yB <  -zB then case_II_3_e 

{B is in the bottom-left corner region}  
             else case_II_3_f 

               {B is in the left edge  region}  
   else  
 
      if yB > zB then case_II_3_g 

Machine GRAPHICS & VISION, Poland Academy of Sciences, Vol. 9, No. 4, 2000, pp. 841-850, ISSN 1230-0535, 2000.



Page:6 

 {B is in the top edge region}  
      else if yB <  -zB then case_II_3_h 

 {B is in the bottom edge region}  
             else case II_3_i 

{B is inside pyramid, the whole line 
segment is visible}  

end {case_II_3}; 
 

II.3.a) Point A is inside of the pyramid and 
point B is in top-right corner region. 

The comparison of point B with the plane ρ2 
specifies which boundary (top or right) to be 
used to compute the intersection point. An 
implementation can be as follows: 
 

begin {case_II_3_a} 
   if ((xA+zA)*(Δz-Δy) > (zA-yA)*(Δz+Δx))  
   then {intersection with top boundary}  
          t1 := (yA–zA) / (Δz-Δy) 
   else {intersection with right boundary}  
         t1 := -(xA+zA)/( Δz+Δx);  
   t2 := 0; 
end {case_II_3_a};  

 
The cases case_II_3_c, case_II_3_d 

and case_II_3_e are similar to case_II_3_a. 
 

II.3.b) Point A is inside of the pyramid and 
point B is in right edge region. 

The appropriate intersection point (the 
intersection point on the right boundary) is 
calculated. The following pseudo-code shows 
how it can be implemented: 
 

begin {case_II_3_b}  
 t1 := -(xA+zA)/( Δz+Δx);  
 t2 := 0 

end {case_II_3_b}; 
 
 The cases case_II_3_f, case_II_3_g 
and case_II_3_h can be solved similarly. 
 
III. Point A is beyond the left boundary. 

This case can be solved similarly to the case 
when point A is beyond the right boundary 
(case_I). 
 
 Finally, we can easily compute the 
end-points of the output line segment from the 
parameter value t as follow:   

x := t*Δx + xA; 

y := t*Δy + yA; 
z := t*Δz + zA 

 
It can be seen that all possible cases 

were solved and the complete algorithm can 
be got by substitution all procedures by 
appropriate codes. 

 
4. Experimental results 

To be able to compare the CS, LB and CB 
algorithms with the proposed PC algorithm 
and evaluate the efficiency of the PC 
algorithm, we introduce three coefficients of 
efficiency as:  

PC

CS

T
T

=1ν ,
PC

LB

T
T

=2ν ,
PC

CB

T
T

=3ν  

where: TCS, TLB , TCB and TPC denote the time 
consumed by the CS algorithm, LB algorithm, 
CB algorithm and the proposed PC algorithm, 
respectively. 
 

For experimental verification, 80.106 
different line segments were randomly 
generated for each of the 21 cases shown in 
Figures 5 and 6. The tests were performed on 
the PC Intergraph Pentium-II, 400MHz, 
512MB RAM, 256 KB CACHE. The obtained 
results are presented in Table 1, which shows 
that the proposed algorithm is just as fast as 
the CS algorithm when the line segment lies 
inside the pyramid, and is significantly faster 
in all other cases. It can be seen that the 
speed-up varies from 1.17 to 2.08 
approximately for these cases. Table 1 also 
shows that the PC algorithm is significantly 
faster than LB and CB algorithm for the most 
cases. 

 
y

x

z
S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

 
 

Figure 5: Generated line segments. 

Machine GRAPHICS & VISION, Poland Academy of Sciences, Vol. 9, No. 4, 2000, pp. 841-850, ISSN 1230-0535, 2000.



Page:7 

y

x

z

S18

S13

S14

S15

S16

S17

S19

S20

S21

 
 

Figure 6: Generated line segments. 
 
 

case ν1 ν2 ν3 
s1 1.01 2.54 2.40
s2 1.29 2.83 2.69
s3 1.51 1.85 1.75
s4 1.52 1.84 1.75
s5 1.25 1.74 1.63
s6 1.31 1.35 1.25
s7 1.57 1.26 1.17
s8 1.18 1.78 1.63
s9 1.55 1.64 1.51
s10 1.53 1.56 1.46
s11 1.54 1.22 1.14
s12 1.17 1.68 1.58
s13 1.25 1.28 1.19
s14 1.18 1.69 1.57
s15 2.08 1.53 1.74
s16 1.38 1.44 1.62
s17 1.50 1.23 1.13
s18 1.63 1.09 1.00
s19 1.18 1.25 1.15
s20 1.49 1.23 1.12
s21 1.32 1.30 1.22

 
Table 1: Experimental results. 

 
6. Conclusion 

The new line segment clipping algorithm 
against a given pyramid in E3  was developed, 
verified and tested. This algorithm is 
convenient for all applications if the line 
segment clipping in E3 is to be used. 
Experiments have shown that the new 
algorithm is never slower than the CS, LB and 
CB algorithm, and is generally faster, up to 
twice as much in some cases. 

Acknowledgments 

The authors would like to express their thanks 
to all who contributed to this work, especially 
to colleagues, recent MSc. and Ph.D. students 
of Computer Graphics at the University of 
West Bohemia in Pilsen, who stimulated this 
work. The special thanks belong to 
anonymous reviewers for very useful 
comments and recommendations. 
 

References 

Bui, D.H., Skala,V. (1998) Fast Algorithms 
for Clipping Lines and Line 
Segments in E2. The Visual 
Computer, Vol.14, No.1, pp.31-37. 

Cyrus, M., Beck, J. (1978) Generalized Two- 
and Three-Dimensional Clipping. 
Computers & Graphics, Vol.3, No.1, 
pp.23-28. 

Foley,D.J., van Dam,A., Feiner,S.K., 
Hughes,J,F. (1990) Computer 
Graphics - Principles and Practice. 
Addison Wesley, 2nd ed. 

Liang, Y.D., Barsky, B.A. (1983) An 
Analysis and Algorithm for Polygon 
Clipping. CACM, Vol.26, No.11, 
pp.868-877. 

Liang, Y.D., Barsky, B.A. (1984) A New 
Concept and Method for line 
Clipping. ACM TOG, Vol.3, No.1, 
pp.1-22. 

Nicholl,T.M., Lee,D.T., Nicholl,R.A. (1987): 
An Efficient New Algorithm for 2D 
Line Clipping: Its Development and 
Analysis, ACM Computer Graphics, 
Vol.21, No.4, pp.253-262. 

Skala,V. (1996) An Efficient Algorithm for 
Line Clipping by Convex and 
Non-Convex Polyhedra in E3. 
Computer Graphics Forum, Vol.15, 
No.1, pp.61-68.  

Skala,V. (1997) A Fast Algorithm for Line 
Clipping by Convex Polyhedron in 
E3. Computers & Graphics, Vol.21, 
No.2, pp.209-214. 

 

 

Machine GRAPHICS & VISION, Poland Academy of Sciences, Vol. 9, No. 4, 2000, pp. 841-850, ISSN 1230-0535, 2000.


