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Abstract Background: To effectively make use of deep learning technology automatic feature extraction ability,

and enhance the ability of depth learning method to learn and recognize features, this paper proposed a deep learn-

ing algorithm combining Deep Convolutional Neural Network (DCNN) trained with an improved cost function

and Support Vector Machine (SVM).

Methods: The class separation information, which explicitly facilitates intra-class compactness and inter-

class separability in the process of learning features, is added to an improved cost function as a regularization

term to enhance the feature extraction ability of DCNN. Then the improved DCNN is applied to learn the features

of SAR images. Finally, SVM is utilized to map the features into output labels.

Results: Experiments are performed on SAR image data in Moving and Stationary Target Acquisition and

Recognition (MSTAR) database. The experiment results prove the effectiveness of our method, achieving an

average accuracy of 99% on ten types of targets, some variants, and some articulated targets.

Conclusion: It proves that our method is effective and CNN enjoys a certain potential to be applied in SAR

image target recognition.

Keywords synthetic aperture radar (SAR) images · automatic target recognition (ATR) · deep convolutional

neural Network (DCNN) · support vector machine (SVM) · class separation information

1 Introduction

Synthetic Aperture Radar (SAR) possesses all-time and all-weather imaging capability even in harsh environ-

ments. As an important means of earth observation currently, it has been widely used in both military and civil

fields. Automatic Target Recognition technology of SAR images (SAR-ATR), which can effectively obtain the

target information and improve the ability of automatic information processing, has become one of the research

hotspots.

SAR-ATR systems generally consist of three stages: detection [1, 2], recognition, and classification. At

present, common methods of SAR-ATR include template matching [3], support vector machine (SVM)[4], Linear

interpolation [5] Principal Component Analysis [6, 7], multi-modal dictionary learning and sparse representation

combined [8, 9], etc. These methods have been successful in some way, but they rely heavily on experience of ex-

perts. The SAR image is vulnerable to various environmental factors, e.g., speckle noise and background clutter,

leading to difficulties in the feature extraction of interested targets. In addition, shift sensitivity and pose sensitiv-

ity also cause instability in SAR targeting. Therefore, these methods have a certain blindness and unpredictability

when applied to SAR images.

Recently, Deep Learning has been an increasingly hot topic in the field of pattern recognition, and experi-

mental achievements have been emerging. In 2006, Hinton et al. [10] proposed an unsupervised greedily method

based on Deep Belief Network (DBN), which trained deep networks layer by layer, solving the vanishing gra-

dient problem. It also made the number of neural networks in a deeper direction with the help of GPU. After
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that, many scholars proposed various deep learning models under different application backgrounds, such as the

Deep Restricted Boltzmann (DRB)[11], Deep Belief Network (DBN) [12, 13], Stacked Auto Encoders (SAE)

[14] and Deep Convolutional Neural Network (DCNN) [15]. Among them, some models based on DCNN have

made breakthroughs endlessly in both theory and practice of image target recognition. For example, the AlexNet

model, which won the championship in the contest of ImageNet ILSVRC in 2012, was recognized as the standard

model of DCNN. The top-5 error rate of the AlexNet model was only 16%, 10% lower than the last champion

algorithm. The Residual Neural Network [16] won the championship in the same contest in 2015 and obtained

only 3.75% error rate, which even outperformed human eyes. DCNN can not only automatically extract target

features without too much experience of experts, but also deal with the two-dimensional image data directly. It

means the features extracted by convolution kernel are irrelevant to the shift, scaling, and rotation of targets in

images [17, 18]. This characteristic of DCNN provide a new idea to solve shift sensitivity, and pose sensitivity

problems of SAR targets in automatic feature extraction.

Nowadays, the DCNN-based SAR-ATR system is being gradually proposed. To auto-learn features of SAR

images rapidly, general methods start with the framework of AlexNet model. The promotion of training efficiency

and recognition accuracy are achieved by optimizing a certain model. For instance, Chen et al. [19] initialize the

hyper-parameters of DCNN with an unsupervised sparse auto encoder machine rather than the Back Propagation

algorithm used in AlexNet model. The unsupervised sparse auto-encoder machine possesses the auto-learning

capacity, which accelerates the feature learning of DCNN. The experiment of this method [19] on Moving and

Stationary Target Acquisition and Recognition (MSTAR) database obtains a target recognition accuracy of 90.1%

for 3 classes and 84.7% for 10 classes. Similarly, Li et al. [20] used the auto-encoder machine to initialize the

DCNN. The difference is that fully connected layers work as a final classifier in [20], which greatly reduces train-

ing time of DCNN on the premise of ensuring accuracy. Although the accuracy of two methods is not very high,

there is less dependence on experience of experts in the process of feature learning. Some scholars [21] apply

DCNN to automatic feature learning as well, whereas the final output layer becomes a SVM classifier rather than

a fully connected layer, constituting DCNN+SVM model. The model makes full use of the DCNNs superiorities

in auto-learning of various features and the strong generalization ability of SVM, avoiding weak representation

ability of SVM on high-dimensional samples [22] and poor stability of DCNN. With this framework, the classifi-

cation accuracy of the method reaches 98.6% [21]. Because of these advantages of DCNN+SVM, such methods

have been rapidly developed. On the basis of the work in [21], Wangner et al. [23] introduce Morphological

Component Analysis to preprocess SAR image. It rejects some abnormal testing samples so that the accuracy

reaches 99% and the recall comes up to 97.3%.

Furthermore, shift sensitivity or pose sensitivity of targets can be solved by Data Augmentation technic, which

adds speckle on training samples or extend training samples by shifting and rotating targets. For example, the SAR

targets are rotated in [21] to acquire augmented training samples. Ding et al. [24] extend the MSTAR training

samples by shifting, attitude synthesis, and adding speckles, achieving a higher accuracy on the standard DCNN

methods. Chen et al. [25] augments training samples by shifting, and obtained a 99% classification accuracy using

All-convolutional networks. A higher accuracy is acquired in [26] which extends classifier by displacement- and

rotation-insensitive, and it is robust to shift and rotation. Whats more, Data Augmentation technic can suppress

overfitting and advance recognition accuracy.

In summary, the SAR-ATR system based on DCNN has achieved varying degrees of success, but it is still in

its in-fancy. The research is generally conducted from the perspectives of the exostructure architecture of DCNN

or the Data Augmentation, yet little focus on the optimization of internal functions in DCNN. The CNN+SVM

model proposed in [21], for instance, uses the quadratic function as error cost function. Although the classification

accuracy is satisfactory, it would be time-consuming if the neurons make an obvious mistake during the training of

DCNN [18]. Compared with error cost function, the Cross-Entropy is applied as the loss function in [24, 25, 27],

while there is a lack of in-depth optimization. In order to improve the classification ability of CNN, we attempt to

add class separability information to cross-entropy cost function as a regularization term in DCNN+SVM model.

The remainder of this paper is organized as follows. Section II gives an introduction of the basic principle

of DCNN for a better understanding of our DCNN+SVM. Section III describes our DCNN+SVM in detail.

Experimental results on the MSTAR database are presented in Section IV. Section V concludes our work.

2 Deep Convolutional Neural Network

DCNN is a kind of multilayer neural network, composed mainly of the input layer, convolutional layer, pooling

layer and output layer. Among them, convolutional layer and pooling layer are hidden layers. In DCNN, the input

layer firstly receives pixel values from the original input image. Then, the convolution layer extracts features

from the image with convolution kernel. Afterward, the data needed to be processed is cut in the pooling layer

according to local correlation principle. Finally, the output layer maps the feature to the labels.
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The mapping in DCNN is a forward propagation process which describes the ”flow of information” through

the whole neural network from its input layer to its output layer, so the output of the upper layer is actually the

input of the current layer. To avoid the defects of linear model, neurons of each layer need to be added with

a nonlinear activation function in the forward process. Since the first layer only receives pixel values from the

image, there are no activation functions. The nonlinear activation functions are employed from the second layer

and the output of the lth layer can be expressed as:

zl =W l ∗ xl−1 +bl

al = σ(zl)

}

(1)

where l represents the lth layer, and ∗ means convolution operation. When l = 2, x2−1 = x1 is the image matrix

whose elements are pixel values, and when l > 2 , xl−1 is the feature map matrix extracted from the (l−2)th layer

i.e., xl−1 = al−1 = σ(zl−2). W l , bl , and zl are weight matrix , bias matrix, and weighted input of the lth layer,

respectively, and σ is nonlinear activation function. Supposing L is the output layer, aL will represent the final

actual output vector.

The Back Propagation (BP) algorithm [28], which is a supervised learning method, is commonly used to

iteratively update parameters of W l and bl . It first applies the actual output and the targeted values to construct a

cost function, and then applies the Gradient Descent (GD) along the negative gradient direction of cost function

to adjust and parameters. The specific process is as follows:

Cost function selection. Normally the quadratic function is selected to be error cost function. However, it

would be time-consuming if the neurons make an obvious mistake during the training of DCNN [18]. Thus

we take Cross Entropy (E0
L) rather than quadratic function as error cost function. According to the forward

propagation algorithm (the equation (2)), the Cross Entropy can be inferred:

E0
L =

1

n

n

∑
i=1

N

∑
k=1

[tL
k lnaL

k +(1− tL
k ) ln(1−aL

k )] (2)

where n is the total number of training set, and N is the number of neurons in output layer, which means DCNN

is finally divided into N classes. tL
k is the targeted value corresponding to the kth neuron of output layer, and aL

k is

the actual output value of the kth neuron of output layer.

Calculation of error vectors.The error vector of each layer is defined and the error vector corresponding to

the kth neuron of output layer is expressed as:

δ L =
∂EL

0

∂ zl
(3)

In BP process, δ L can be used to reversely deduce δ L−1 . Similarly, suppose δ l and δ (l+1) are the error vectors

of the lth and (l +1)th layers respectively. Then according to (1), (3), and the Chain Rule, δ l is written as:

δ l =W l+1δ l+1 ⊙σ
′
(zl) (4)

where the symbolic ⊙ is Hadamard product (or Schur product) which denotes the elementwise product of the

two vectors.

Updates of weights.The gradients of W l and bl are
∂EL

0

∂W l and
∂EL

0

∂bl respectively. The symbolic ∂ (·) represents

partial derivative operation. The partial derivative of EL
0 to W l and bl can be calculated according to (1) and (3):

∂EL
0

∂W l =
∂EL

0

∂al ⊙
∂al

∂W l = δ l ⊙ xl−1

∂EL
0

∂bl =
∂EL

0

∂al ⊙
∂al

∂bl = δ l







(5)

The updated values of W l and bl are represented with ∆W l and ∆bl , and they are calculated by minimizing the

cost function respectively:

∆W l =−η
∂E l

0

∂W l

∆bl =−η
∂E l

0

∂bl







(6)

where η represents learning rate.
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3 Improvement of Deep Convolutional Neural Network

3.1 The introduction of class separability information

To enhance the class separability of the features extracted by DCNN model, the class separability information is

added to cross-entropy cost function as a regularization term to train DCNN. The class separability information

consists of intra-class compactness and inter-class separability, which are expressed as E1 and E2 respectively:

E1 =
1

2
∑‖yn

c −Mc‖
2
2 (7)

E2 =
1

2

B

∑
c
′

∥

∥Mc −M
c
′

∥

∥

2

2
(8)

where yn
c denotes the actual output value of the nth training sample which belongs to the nth class. Mc and M

c
′

are the output average values of the training samples in cth and (c
′
)th classes. B is the number of training samples

in (c
′
)th classes. E1 and E2 respectively denote the intra-class distance and the inter-class distance of the output

features. Shortening the intra-class distance and increasing the inter-class distance in every iteration are necessary

to enhance the separability of the output features. It is added in the cost function as a regularization term and the

modified cost function is as follows:

E = E0
L +αE1 −βE2 (9)

where α and β are both weight parameters.

The purpose of modifying the cost function is to adjust W l and bl to make the network develop in favor of

classification, and the error vector of modified cost function is essential.

The error vector of E1 in the output layer is:

δ1
L = ∂E1

∂ zL

= ∂
∂ zL

1
2
‖yn

c −Mc‖
2
2

= (1− 1
nc )σ

′
(zL)⊙ (yn

c −Mc)

(10)

where nc is the number of samples that belong to the class c .

The error vector of E2 in the output layer L is:

δ2
L = ∂E2

∂ zL

= ∂
∂ zL

1
2

∥

∥Mc −M
c
′

∥

∥

2

2

= 1
nc σ

′
(zL)⊙

B

∑
c
′
(Mc −M

c
′ )

(11)

According to (3), (9), (10), and (11), the new error vector of E in the output layer L is:

δ
′
= δ L +αδ1

L −βδ2
L

= σ
′
(zL)⊙ (yn − tn)+α(1− 1

nc )σ
′
(zL)⊙ (yc

n −Mc)

−β 1
nc σ

′
(zL)⊙

B

∑
c
′
(Mc −M

c
′ )

(12)

After getting the error vector in the output layer, we can calculate the error vector in each layer iteratively by

using (4). The updated parameters of W l and bl for each layer can be derived by (5) and (6) afterwards.

3.2 Application of Support Vector Machines (SVM)

In standard DCNN model, Softmax Regression model is usually applied as the classifier. It maps the extracted

features into the output classes by the fully connected mode. Such methods can be effectively combined with the

BP process, which facilitates the update of the parameters. However, the problem of nonlinear classification is

still left to be solved. SVM implicitly maps the nonlinear classification interface of the original feature space to

the higher dimensional feature space by kernel function to generate a linear classification interface. It works well

in solving nonlinear classification problems.
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3.3 Modified Model

A novel DCNN+SVM model of SAR image target recognition is proposed based on above analysis. Firstly,

DCNN is trained combining with the Softmax classifier, where the Cross-Entropy added with the class separabil-

ity information is used as the cost function. After training the DCNN, Softmax is removed and the top features

of DCNN is utilized to train SVM. Finally, the proposed framework DCNN+SVM is constructed, where DCNN

is used to extract sample features and SVM is used as the classifier, as is shown in Figure 1.

4 Experiment

4.1 Experiment data

In order to verify the validity of the proposed method, this paper uses the data from the MSTAR database, co-

funded by National Defense Research Planning Bureau (DARPA) and the U.S. Air Force Research Laboratory

(AFRL). As a benchmark data set, MSTAR is widely applied for development, test, and evaluation of advanced

ATR systems [29]. Therefore, adopting the MSTAR data is convenient for comparison with peer algorithms.

The MSTAR database includes different types of targets and their various serial numbers variant (vehicles

that are of the same class and version, but are different serial numbers), version variant (differences from the

manufacturer, target of same class but were built to different blueprint), articulation, aspect angles and depression

angles. Figure 2 shows detailed parameters of MSTAR database. The size of each target chip is 128 ∗ 128, and

the resolution is 0.3 m ∗ 0.3 m. The aspect angle covers from 0◦ to 360◦, and the interval is 1◦ to 5◦, which

means there is one SAR image for every 1◦ to 5◦ . This paper applies ten types of targets: 2S1, ZSU234, BMP2,

BRDM2, BTR60, BTR70, D7, ZIL131, T62, and T72. As for their high-level classifications, 2S1 and ZSU234 are

artillery; BMP2, BRDM2, BTR60, BTR70, D7, and ZIL131 are assigned to truck; T62 and T72 belong to tank.

Their SAR image samples and corresponding optical images are shown in Figure 3. The experiment is performed

on the above ten types of targets, some other variants, and some articulated targets.

In order to explain our method more clearly and evaluate the performance of our method in a comprehensive

way, the experiment is carried out under standard operating conditions (SOC) and extended operating conditions

(EOC). The SOC means that the testing conditions and the training conditions are very similar [29], for example,

10 types of targets under 17◦ depression are taken as the training samples while the ones under 15◦ depression are

used as testing samples. However, the EOC means that there are huge dissimilarities between the training set and

the testing set [29], such as the significantly different depression angles, different variants of the same target, etc.

The Correct Class Probability (Pcc ) is applied as the evaluation index of these experiments, and its expression is

as follows [30]:

Pcc =
ncc

ntt

(13)

Where ncc is the number of targets classified correctly, ntt is the total number of tested targets. In general, Pcc is

often presented combining with the confusion matrix.

4.2 Experiments under SOC

A This experiment aims to classify ten types of targets under SOC. The ten types of vehicle target chips at 17◦

and 15◦ depression angles mentioned in Section 4.1 are used as a training set and testing set respectively. The

detailed information of type, size, and amount is shown in Table 1. In order to reduce the input dimension, 64 ∗ 64

pixels in the central part of the chip is intercepted as the input sample under the premise that the complete target

still locates at the central position. With above data, this experiment is divided into two groups. One only uses

the original data as train dataset, while another extends train dataset by Data Augmentation. The DCNN+SVM

model in [19] and the DCNN+Softmax model in [27] are used as the contrast method.

The parameters of our model in this paper are set as follows. This model includes the input layer, the output

layer, 4 convolutional layers and 2 pooling layers. Generally, a convolutional layer and a pooling layer are together

regarded as a convolutional layer, so there are 6 layers in total. The first convolutional layer Conv (other layers

follow the labeling rule) contains 18 neurons, and the size of convolution kernel and pool are set to 9 ∗ 9 and 7 ∗
7 respectively. After processing by convolutional kernel and pool, the 8 ∗ 8 feature map is output. For 2nd Conv,

the size of its convolution kernel is 5 ∗ 5 and the number of neurons is 120, and a 2 ∗ 2 feature map is outputted

after processing by the 5 ∗ 5 convolutional layer. Therefore, the size of the final feature map is 1 ∗ 1. Besides,
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ReLu is used as the activation function, and the initial bias and the learning rate are set to 0 and 1 respectively.

The initial weight value of each layer is generated randomly in following interval:

[

−4

√

6

f anin + f anout

,4

√

6

f anin + f anout

]

(14)

where f anin is the number of input feature map of each layer. f anout is the number of output feature map of each

layer. Other parameters, α and β in (9), are set to α = 0.03 and β = 2.

4.2.1 SOC 1:The data in Table 1 is used, where there is no extended data.

The experimental results of the proposed method are shown in Table 2. Table 3 gives the results of contrast

method, which applies the standardized quadratic cost function in the training process combining with Softmax

and uses Softmax as a final classifier [19] (here only recapitulating its sequence). The average accuracy of our

method is 97.84%, 13.14% higher than that of DCNN+Softamx. As for inter-class error, we find from Table 2 that

only one truck is wrongly classified into tanks. The intra-class confusion in Table 2 is overall satisfactory, with no

confusions in tanks, only one in artilleries, and slightly more in trucks. The confusions of BTR70 and BTR60 are

relatively more, which may be caused because BTR70 is an upgraded version of BTR60. For DCNN+Softmax

model, however, there are serious confusions in both inter and intra classifications. It proves that adding the

class separability information to Cross Entropy error cost function is conducive for distinguishing the high-level

classes.

4.2.2 SOC 2:The data in this experiment is augmented by rotating and randomly shifting.

Shifting:The number of extended samples of each chip can be increased up to (128−64+1)∗ (128−64+1) =
4225 by shifting in case that every sample contains a complete target. An operation sample is shown in Figure 4.

Rotating:We apply the method in [26] to extend training samples, which rotates each chip every 24 degrees.

Thus 15 extended chips are generated for each chip.

Combining the rotation and the random shift operation, each chip can be expanded to 4225 ∗ 15 chips at

most. We select 3000 chips for each type of vehicle targets from the extended dataset. Then the same operation

as experiment SOC 1 is carried out on the extended data. Table 4 shows the experimental results of the proposed

method. The average accuracy in Table 4 reaches 99.15%, better than that in Table 2. There is no error in high-

level classification, and confusion only appears in trucks for intra-class classification. Compared with the results

of experiment SOC 1, the intra-class confusion in trucks reduces a lot in this experiment, and the accuracy is

further enhanced as well.

As is introduced in the introduction section, the classification model in [21] is very similar with ours. The

distinction lies in that we adopt the Cross-Entropy added with class separability information as the cost function

rather than quadratic function. Since the experimental results in [21] do not include detailed information of ten

types of targets, we only care about the average accuracy. Their average accuracy is 98.6%, 0.55% lower than

ours. The DCNN+Softmax model in [27] employs Cross Entropy as cost function, and its experimental results

are given in Table 5. Compared with Table 4, we find that there are more errors between high-level classes and

more confusions between intra classes in Table 5. It proves that our cost function increases the class separability

to some extent, especially for high-level classes.

4.3 Experiments under EOC

In this section, the experiment is performed under Extended Operating Condition (EOC), which is crucial to

determine whether the ATR algorithm can be applied on the battlefield. To verify the reliability, stability, and the

generalization ability of our method, we divide the experiment into 4 groups according to various experimental

data in Figure 2. It is noted that each training samples of EOC series experiment is expanded to 3000 by the

method described in section 4.2.2.

4.3.1 EOC 1: The depression angles of the training set and the testing set are significantly different.

We select 2S1 (B 01), BRDM2 (E 71), T72 (#A64), and ZSU234 (D 08) four types of vehicle targets in this

experiment, where the depression angles for the training set and testing set are 17◦ and 30◦ respectively. Table 6

shows the detailed data and Table 7 gives the experimental results of our method. It can be found from Table 7 that
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an accuracy of 99.57% is achieved, whats more, no error appears in high-level classes and only 5 confusions exist

in the intra-class of artilleries. Thus we can conclude that our method works stably though the gaps of depression

angles between the training set and testing set are large.

4.3.2 EOC 2: Some articulated targets are contained in the testing set.

Articulation means some parts of a vehicle change from one state to another, such as a newly added fuel tank or a

barrel in different direction [31]. An articulated sample of ZSU234 is shown in Figure 5. It is essential to perform

this experiment for articulated targets commonly appear in battlefield. To better simulate the practical conditions,

we add some articulated targets into the training set and testing set, meanwhile, we keep 17◦ and 30◦ for the

training set and testing set. For each high-level class, we select only one type of target in this experiment, and

the detailed experimental data is given in Table 8. Table 9 shows the experiment results, and we find the accuracy

of each class reaches 100%. Therefore, our method behaves well when articulated targets are included in testing

samples.

4.3.3 EOC 3: The testing set contains one type of vehicle and its version variants, and the depression angle is

not single.

BMP2, BRDM2, one type of version variants of T72 (#64), and ZSU234 consist of a training set, while the testing

set only contains T72 and its version variants ( #A04, #A05, #A07, #A10, #A32). The version variants belong

to the same class, but the manufacturers are different, and the blue prints of manufacturing are different as well

[30]. The variants mentioned above are shown in Figure 6. The depression angle of the training set is 17◦, while

the testing set has a 15◦ depression angle apart from 17◦. Table 10 shows the detailed data information. From

Table 11, we find that testing accuracy is up to 100%, so the version variants of T72 cannot impact high-level

classification.

4.3.4 EOC 4: The testing set contains multi types of vehicles and their variants, and the depression angle is not

single.

The training set is the same as (4.3.3) under EOC 3, while the testing set contains two types of version variants

of T72 (#A62, #A63) and two types of serial number variants of BMP2 (SN 9566, C 21). The detailed data is

shown in Table 12, and the experimental results are given in Table 12. The accuracy reaches 99.82%, and there

is a small number of confusions only in the trucks. Hence the version variants of T72 will not impact high-level

classification, and the impact of serial number variants is also very little.

4.4 Comparison with other algorithms

In order to compare with the performance of other algorithms, this paper conducts the comparison from two

aspects. One is the comparison with the algorithms in recent published papers, the other is the comparison with

some ”CNN+ Classifier” models.

Table 14 shows the comparison sheet of classification accuracy of recent published papers. The involved

algorithms include Extend Maximum Average Correlation Height (EMACH) [32], Iterative Graph Thickening

(IGT) [33], Sparse Representation of Monogenic Signal(MSRC) [34], Monogenic, Scale Space (MSS) [35] and

Modified Polar Mapping Classifier (M-PMC)[36]. From Table 14, we find the accuracy of the proposed method

in this paper is higher than other algorithms.

To constitute ”CNN+Classifier” model, we select Softmax, RandomForest, AdaBoost and Bagging as clas-

sifiers, which are popular and superior classifiers among current machine learning models. The configuration of

these models is shown in Table 15. The experiment is performed under both SOC and EOC. As for SOC, the

experiment data and condition are the same as SOC 2. For EOC, the experiment is divided into 4 parts, whose

training set and testing set follow the data in Table 6, Table 8, Table 10, and Table 12, respectively. These four

kinds of data conditions are represented in order with EOC 1, EOC 2, EOC 3, and EOC 4. The recognition ac-

curacy comparison sheet of these four structures is shown in Table 16. From Table 16, it can be found that the

classification results of these five models are marvelous, all above 94%, but CNN+SVM is still better than the

other four models. Therefore, we can draw the conclusion that the modified cost function and Data Augmentation

technic can significantly inhibit the overfitting phenomenon and solve the problem of the scarcity of training data.
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5 Conclusion

Aiming at the issue of SAR image target recognition, this paper presents a novel method of SAR image target

recognition based on CNN. The CNN is improved by adding the class separability information into Cross Entropy

cost function and applying support vector machine (SVM) instead of Softmax classifier. The experimental results

show that the proposed method achieves a recognition accuracy of 99.15% for ten types of targets with extended

training data. In other experiments under EOC, the average recognition accuracy can reach more than 99%. It,

therefore, proves that our method is effective and CNN enjoys a certain potential to be applied in SAR image

target recognition.
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Table 1: The training and testing set of SOC 1

Types Tops Variant
Training set Testing set

Image size

depression angle number depression angle number

2S1
artillery

B 01 17◦ 299 15◦ 274 64∗64

ZSU234 D 08 17◦ 299 15◦ 274 64∗64

BRDM2

truck

E 71 17◦ 298 15◦ 274 64∗64

BTR60 K10YT 17◦ 256 15◦ 195 64∗64

BMP2 SN 9563 17◦ 233 15◦ 195 64∗64

BTR70 C 71 17◦ 233 15◦ 196 64∗64

D7 92V 17◦ 299 15◦ 274 64∗64

ZIL131 E 12 17◦ 299 15◦ 274 64∗64

T62
tank

A 51 17◦ 299 15◦ 273 64∗64

T72 #A64 17◦ 299 15◦ 274 64∗64

sum: 2814 sum: 2503

Table 2: The experimental results of our method under SOC 1

Types
artillery truck tank

Pcc(%)

2S1 ZSU234 BRDM2 BTR60 BTR70 BMP2 D7 ZIL131 T62 T72

2S1 273 1 0 0 0 0 0 0 0 0 99.64

ZSU234 0 274 0 0 0 0 0 0 0 0 100

BRDM2 0 0 272 1 1 0 0 0 0 0 99.27

BTR60 0 0 6 180 6 1 0 0 0 0 93.26

BTR70 0 0 0 10 182 0 0 0 0 0 94.79

BMP2 0 0 6 3 7 179 0 0 0 0 91.79

D7 0 0 0 0 0 0 273 0 1 0 99.64

ZIL131 0 0 0 0 0 0 0 274 0 0 100

T62 0 0 0 0 0 0 0 0 273 0 100

T72 0 0 0 0 0 0 0 0 0 274 100

Total 97.84
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Table 3: The experimental results with the method in Literature [19]

Types
artillery truck tank

Pcc(%)

2S1 ZSU234 BRDM2 BTR60 BTR70 BMP2 D7 ZIL131 T62 T72

2S1 190 1 9 5 5 14 0 21 7 22 69.3

ZSU234 1 249 1 3 0 1 4 6 2 7 90.8

BRDM2 3 0 220 6 18 9 0 15 1 2 80.2

BTR60 4 0 11 168 4 0 4 1 1 2 86.1

BTR70 4 0 4 3 181 3 0 1 0 0 92.3

BMP2 4 4 9 2 9 157 0 6 0 4 80.5

D7 0 7 0 0 0 0 252 5 8 2 91.9

ZIL131 12 0 6 5 7 5 1 226 3 9 82.4

T62 7 2 1 5 0 2 4 7 242 3 88.6

T72 8 1 3 1 1 3 0 9 2 168 85.7

Total 84.7

Table 4: The experimental results of our method under SOC 2

Types
artillery truck tank

Pcc(%)

2S1 ZSU234 BRDM2 BTR60 BTR70 BMP2 D7 ZIL131 T62 T72

2S1 274 0 0 0 0 0 0 0 0 0 100

ZSU234 0 274 0 0 0 0 0 0 0 0 100

BRDM2 0 0 269 0 0 5 0 0 0 0 98.18

BTR60 0 0 5 188 2 0 0 0 0 0 96.42

BTR70 0 0 1 1 193 1 0 0 0 0 98.47

BMP2 0 0 0 1 2 192 0 0 0 0 98.46

D7 0 0 0 0 0 0 274 0 0 0 100

ZIL131 0 0 0 0 0 0 0 274 0 0 100

T62 0 0 0 0 0 0 0 0 273 0 100

T72 0 0 0 0 0 0 0 0 0 274 100

Total 99.15

Table 5: The experimental results with the method in Literature [27]

Types
artillery truck tank

Pcc(%)

2S1 ZSU234 BRDM2 BTR60 BTR70 BMP2 D7 ZIL131 T62 T72

2S1 266 0 0 2 1 2 0 0 0 3 97.08

ZSU234 0 271 0 0 0 0 3 0 0 0 98.91

BRDM2 0 0 271 0 0 0 0 3 0 0 98.91

BTR60 0 4 3 177 7 0 0 0 0 4 90.77

BTR70 0 0 0 2 193 0 0 0 0 1 98.47

BMP2 1 0 0 4 5 547 0 0 0 30 93.19

D7 0 0 0 0 0 0 273 1 0 0 99.64

ZIL131 1 0 0 0 0 0 1 272 0 0 99.27

T62 1 0 0 0 0 0 2 0 268 2 98.17

T72 1 0 0 0 0 0 0 0 0 581 99.83

Total 97.58
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Table 6: The training and testing data of EOC 1

Type
Training set Test set

Image size

variant depression angle number variant depression angle number

2S1 B 01 17◦ 299*3000 B 01 30◦ 288 64∗64

ZSU234 D 08 17◦ 299*3000 D 08 30◦ 288 64∗64

BRDM2 E 71 17◦ 298*3000 E 71 30◦ 287 64∗64

T72 #A64 17◦ 299*3000 #A64 30◦ 288 64∗64

sum: 1195*3000 sum: 1151

Table 7: The experimental results of our method under EOC 1

artillery truck tank

Type
2S1 ZSU234 BRDM2 T72

Pcc(%)

2S1 288 0 0 0 100

ZSU234 5 225 0 0 98.26

BRDM2 0 0 287 0 100

T72 0 0 0 288 100

Total 99.57

Table 8: The training and testing set of EOC 2

Target Training set Test set
Image size

type variant status depression angle number status depression angle number

ZSU234 D 08 Baseline 17◦ 299*3000 Articulated 30◦ 118 64∗64

BRDM2 E 71 Baseline 17◦ 298*3000 Articulated 30◦ 133 64∗64

T72 #A64 Baseline 17◦ 299*3000 Articulated 30◦ 133 64∗64

sum: 896*3000 sum: 384

Table 9: The experimental results of our method under EOC 2

artillery trucks tank

Type
ZSU234 BRDM2 T72

Pcc(%)

ZSU234 118 0 0 100

BRDM2 0 133 0 100

T72 0 0 133 100

Total 100

Table 10: The training and testing set data of EOC 3

Training set Test set

type variant depression angle number type variant depression angle number

ZSU234 D 08 17◦ 299*3000

T72

#A04 15◦, 17◦ 573

BRDM2 E 71 17◦ 298*3000 #A05 15◦, 17◦ 573

BMP2 SN 9563 17◦ 233*3000 #A07 15◦, 17◦ 573

T72 #A64 17◦ 299*3000 #A10 15◦, 17◦ 567

#A32 15◦, 17◦ 572

sum: 1129*3000 sum: 2858
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Table 11: The experimental results of our method under EOC 3

artillery trucks tank
T72

variant ZSU234 BMP2 BRDM2 T72
Pcc(%)

#A04 0 0 0 573 100

#A05 0 0 0 573 100

#A07 0 0 0 573 100

#A10 0 0 0 567 100

#A32 0 0 0 572 100

Total 100

Table 12: Training set and test set parameter configuration (EOC 4) for the experiment on the classification of

mixed depression angle of variant of multi models and multi targets

Training set Test set

type variant depression angle number type variant depression angle number

ZSU234 D 08 17◦ 299*3000
BMP2

SN 9566 15◦, 17◦ 428

BRDM2 E 71 17◦ 298*3000 C 21 15◦, 17◦ 429

BMP2 SN 9563 17◦ 233*3000

T72

#A04 15◦, 17◦ 573

T72 #A64 17◦ 299*3000 #A05 15◦, 17◦ 573

#A07 15◦, 17◦ 573

#A10 15◦, 17◦ 567

#A32 15◦, 17◦ 572

#A62 15◦, 17◦ 573

#A63 15◦, 17◦ 573

sum: 1129*3000 sum: 4861

Table 13: The experimental results of our method under EOC 4

Type artillery trucks tanks

top variant ZSU234 BMP2 BRDM2 T72
Pcc(%)

BMP2 SN 9566 0 423 4 0 99.06

C 21 0 426 3 0 99.3

T72 #A04 0 0 0 573 100

#A05 0 0 0 573 100

#A07 0 0 0 573 100

#A10 0 0 0 567 100

#A32 0 0 0 572 100

#A62 0 0 0 573 100

#A63 0 0 0 573 100

Total 99.82

Table 14: Comparison sheet of classification accuracy between Our method and other algorithms

Model SOC(%) EOC 1(%)

EMACH [32] 88 77

IGT [33] 95 85

MSRC [34] 93.6 98.4

MSS [35] 96.6 98.2

M-PMC [36] 98.8 98.2

Our method 99.04 99.57
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Table 15: ”CNN+Classifier” model parameter configuration

Softmax RandomForest AdaBoost Bagging

Conv.10@11

Conv.120@22

Conv.120@55 + Max-pooling@22

Conv.18@99 + Max-pooling@77

A B C D

Convolutional neural network configuration

Table 16: Comparison of experimental results of ”CNN+Classifier” models in Table 15 under SOC and EOC

Model SOC 2(%) EOC 1(%) EOC 2(%) EOC 3(%) EOC 4(%)

A 98.58 96.55 99.05 99.13 98.98

B 98.74 95.36 99.11 99.04 98.25

C 98.13 94.32 98.24 98.14 97.33

D 98.29 95.67 98.04 97.04 98.08

Our method 99.15 99.57 100 100 99.82



A New Algorithm of SAR Image Target Recognition based on Improved Deep Convolutional Neural Network 15

Figures

List of Figures

1 The proposed DCNN+SVM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Various variants included in the MSTAR database . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 SAR image samples and corresponding optical images of ten types of targets in the MSTAR

database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 An operation sample of shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 ZSU234 articulated gun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Variant targets optical images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Fig. 1: The proposed DCNN+SVM model
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Fig. 2: Various variants included in the MSTAR database

Fig. 3: SAR image samples and corresponding optical images of ten types of targets in the MSTAR database
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(a) Computing target translation (b) Result of target translation

Fig. 4: An operation sample of shifting

(a) Turret straight (b) Turret articulated

Fig. 5: ZSU234 articulated gun

Fig. 6: Variant targets optical images
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