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Abstract

In this paper, we present a new algorithm for standard cell global routing. The algorithm

considers all of the interconnection nets simultaneously; this produces superior results since

information about all of the nets is available throughout the global routing process. We formulate

the global routing problem as one of finding the optimal spanning forest on a graph that contains

all of the interconnection information. The result of an important theorems allow us to prune

many non-optimal connections before the global routing process begins. This approach

successfully solves the net ordering and congestion prediction problems which other approaches

suffer. The new algorithm was implemented as part of the DATools system at Xerox PARC. The

benchmarks from the Physical Design Workshop are used as part of the comparison suite. The

new algorithm achieves up to 11% area reduction compared to the previous global routing

package used in the DATools system and obtains up to 17% reduction in the total channel density

compared to the Timberwolf 4.2 package.

Keywords: Global routing, standard cell design, spanning forests.

1. Introduction

The standard cell design style is widely used in the design of VLSI circuits; the cells (either

obtained from a library or constructed) are arranged in horizontal rows. The aim of a standard

cell design system is to generate a correct physical design for a circuit from its logic design with

the best utilization of chip area. Due to the inherent complexity of physical design, the process is

usually divided into three steps: placement, global routing and channel routing. During

placement, we determine the row and the position within the row for each cell in the logic design.

Next, during global routing, we determine the connection pattern, or topology, for each net.

Global routing introduces feedthrough cells making connections across the cell rows, selects the

pins (from the pins that are internally connected within the cells) to be connected, and determines

the routing channels that the net segments belong to. Then, each channel is routed individually by

a channel router which assigns specific layers and tracks for wires to implement the connection
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patterns determined by global routing. This paper studies the global routing problem in standard

cell designs.

The global router in the Highland system [Ro84] was used as the benchmark for standard

cell global routing at the Physical Design Workshop on Placement and Floorplanning [Pr87]. It

builds a minimum spanning tree for each net. The cost for each net edge is a function of channel

density, feedthrough availability and wire length. An subsequent optimization step tries to

improve the solution. Supowit [Su83] gives an odd-even heuristic algorithm for standard cell

global routing. It produces a solution within a factor of 1.5 of the optimal solution (in terms of

total channel density). However, Supowit’s result applies only to problems in which all the nets

are two-pin linear nets. Another global router developed for standard cell designs is part of the

Timberwolf package [SeSa86]. It first connects each net by a minimum spanning tree based on

wire length. Then it employs an iteration algorithm (simulated annealing with t = 0) to improve

the assignment of net segments to channels. The previous standard cell global router [Pr86] used

in the DATools system at Xerox PARC [BaMS88] generates the minimum number of

feedthroughs. Feedthroughs are added only to connect the nets. Feedthroughs are then placed,

along with the other cells, as part of a row-based placement improvement step. More recent work

on standard cell global routing includes the work by Mowchenko and Ma [MoMa87] which

generalized the left edge algorithm for channel routing to global routing, the work by Lee and

Sechen [LeSe88] which generated Steiner trees from minimum spanning trees, a parallel router

by Rose [Ro88] which enumerated all possible two-bend nets, a parallel router by Brouwer and

Banerjee [BrBa90] which is based on Burstein and Pelavin’s hierarchical approach, and a global

router by Meixner and Lauther [MeLa90] based on network flow computation. In [AoKu83] and

[LiSS86], a similar problem was addressed for gate array designs, where the objective was to

minimize the maximum channel density.

A careful study shows that these approaches have one or more of the following

shortcomings:

(1) The final solution produced is sensitive to the order in which the nets are considered

because the nets are connected one by one. However, little is known about what is a good

net order. (In [MoMa87], they avoided net ordering problems by carrying out the routing

on a channel by channel basis. But still, it is difficult to choose a good channel order.) 1

(2) These global routers are not capable of predicting congested area in channels when they add

net segments. This is especially true in the early stage when most net segments have not

been included.

�����������������������������������������������������������������������

1 Parallel global routers usually avoid the net ordering problem.
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(3) The net connection patterns that can be produced are restricted by the algorithm. Only a few

predetermined topologies are allowed.

In this paper, we present a new algorithm for standard cell global routing which

successfully overcomes the shortcomings mentioned above. This algorithm processes all the nets

in parallel, so the results are independent of the order in which the nets are considered.

Furthermore, better results are produced since information about all of the nets is available

throughout the global routing process. We introduce the net connection graph and formulate the

problem as finding an optimal spanning forest of the net connection graph. We prove a theorem

which allows us to simplify the net connection graph by pruning a large number of non-optimal

connections. This makes it computationally feasible to consider the optimal connections in all

the channels at the same time. Thus, our algorithm can predict very accurately the densest areas

in each channel and, therefore, distribute density evenly over all channels to minimize the total

channel density. The new algorithm was implemented as part of the DATools system at Xerox

PARC. Benchmarks from the Physical Design Workshop are used as part of the comparison

suite. The new algorithm achieves up to 11% reduction in area compared to the previous global

routing package used in the DATools system and obtains up to 17% reduction in the total channel

density compared to the Timberwolf 4.2 package. In no case does the new algorithm do worse

than its competitors.

The remainder of this paper describes the algorithm. Section 2 defines the problem

formulation. The two-stage algorithm is discussed in Section 3. The comparative results are

presented in Section 4. An extended abstract of this paper was presented in ICCAD’88 [CoPr88].

2. Formulation of the Problem

The goal of global routing is to determine the connection pattern for each net and achieve

the best utilization of chip area. The connection pattern is defined by positions for feedthroughs,

the pins to be connected, and channels in which the net segments that connect the pins lie. Chip

area is equal to the product of the width of the chip and the height of the chip, where the width of

the chip is the maximum length (including any feedthroughs) of any row of the chip, and the

height of the chip is the sum of the heights of all cell rows and the total channel density times the

line-to-line spacing.

We define the net connection graph to be an undirected graph G = (V , E ), where V is the

set of pins currently in the design. An edge (pi , pj ) is in E if the two pins pi and pj are in the

same net. We also call (pi , pj ) a net segment if pi and pj are in the same channel. Clearly, each

net in the net connection graph is a connected component and is represented by a complete graph

on the pins of the net. Note that V may grow as we perform the global routing because new pins

are introduced when feedthroughs are added. A global routing solution is a spanning forest of the

net connection graph. A spanning forest which yields the minimum chip area is called an optimal
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spanning forest.

There are two problems involved in standard cell global routing. The first problem is to

determine whether and where to add feedthroughs. Generally speaking, feedthroughs have two

functions. One function is to complete the connections among pins that make up the nets. For the

example shown in Figure 1(a), we have to insert a feedthrough in row 2 to complete the

connections for the net as shown in Figure 1(b). The other function of feedthroughs is to reduce

the total channel density. Consider the net shown in Figure 2(a). Although we can complete the

connection without adding any feedthroughs, by adding a feedthrough in row 2 we save a long

wire in channel 2. This may reduce the total channel density. The second problem in standard

cell global routing is to determine the net segments to complete the connection of the nets after

feedthroughs have been added. Figure 3 shows three different choices of net segments to connect

a net. At this stage, since the width of the chip is fixed, the problem is to build a spanning forest
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Figure 1 A feedthrough allows a net to cross a cell row. The feedthrough in row 2 is required to

complete the connection.
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Figure 2 Feedthroughs can also be used to reduce the total channel density.
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Figure 3 For the net shown, three different choices of net segments.
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within the net connection graph to minimize the total channel density.

In some standard cell families, many cells have build-in feedthroughs. In this case, the

feedthrough insertion problem is eliminated or simplified. In [Su83] and [MoMa87], it was

assumed that all the feedthroughs have been added and only the problem of determining the net

segments was studied. In [SeSa86] and [Pr86], simple methods were used to determine

feedthrough locations for completing the connections. Their algorithms concentrated on the

problem of determining the net segments. In our global router, we also use a rather

straightforward method to compute the feedthroughs first. Then, we focus on the optimal

selection of net segments.

The standard cell global routing problem is computationally difficult; we can show the

problem of finding an optimal spanning forest is NP-hard. In fact, the problem of determining net

segments itself is already NP-hard even for a small number of cell rows (assuming that no

feedthroughs need to be added). To be more precise, we state the following theorem based on a

result in [BlKL87]:

Theorem 1 Given a standard cell placement in which no feedthroughs are needed to

complete the net connections, the problem of choosing net segments to minimize total channel

density is NP-hard if there are five or more cell rows in the design.

Proof First, let us look at a simplified net segment selection problem. Suppose that each

net has two logical pins. Moreover, the two logical pins in each net are in the cells of the same

row. Such a net is called a two-pin linear net [Su83, Ka86]. Since each logical pin has two

physical pins, there are two possible ways to connect each linear net, one way to use the channel

below the net and the other to use the channel above the net (see Figure 4). We want to connect

each two-pin linear net so that the total channel density is minimum. This problem is called the

two-pin linear net routing (TLNR) problem. Clearly, we do not need to introduce feedthroughs to
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Figure 4 Two possible ways to connect a two-pin linear net.
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connect any net in the TLNR problem. Moreover, the two possible ways of connecting a two-pin

linear net correspond to the two net segments of the net. Therefore, the TLNR problem is a

special case of the general net segment selection problem that we are interested. However, the

TLNR problem was shown to be NP-hard if there are five or more cell rows in the design

[BlKL87]. Thus, the net segment selection problem is NP-hard if there are five or more cell rows

in the design.
�

In the remainder of this paper, we present an efficient heuristic algorithm for computing a

standard cell global routing solution.

3. The Standard Cell Global Routing Algorithm

Our global router works in two stages. In the first stage, we determine all the feedthroughs

to be added and determine their locations within the rows. In the second stage, we choose which

physical pins will be connected (and thus choose the net segments) to complete connections for

each net.

3.1. Determine Feedthroughs

In most previous algorithms, feedthroughs are added only when connections for some nets

cannot be completed. In our algorithm, we use feedthroughs not only to complete the connections

but also to trade off the width and height of the chip. Additional feedthroughs can often reduce

track density and thus reduce chip height with no expense in width. An additional feedthrough on

other than the longest row will not increase the width of the chip.

We generalize Kruskal’s minimum spanning tree algorithm [AhHU74] to build a minimum

spanning forest of the net connection graph. Feedthroughs are determined by the intersections of

cell rows and the edges in the minimum weighted spanning forest.

We weight each edge according to the length of the edge and the cost to insert feedthroughs

for the edge. For each edge e = (pi , pj ) in the net connection graph connecting two pins pi and

pj in the same net, we define the weight of e

w (e ) = � xi − xj � + K .
e∩Ri ≠φ

Σ weight (Ri )

where xi and xj are the horizontal coordinates for pi and pj , respectively. K is a constant factor.

e ∩Ri ≠ φ means that net edges e intersects row Ri . weight (Ri ) is the weight of row Ri , which

is based on the current length of row Ri . Assume we choose e to be included in the minimum

weighted spanning forest. If pi and pj are in the same channel, we simply add e into the

solution. If pi and pj are in different channels, we add feedthroughs f 1, f 2, . . . , f l in rows

Ri 1
, Ri 2

, . . . , Ril
which intersect with e . Then we add the path from pi to pj through these

feedthroughs into the solution. The cost of an edge thus defined is a function of both the
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wirelength and the cost of adding feedthroughs. By assigning different weights to different rows,

we discourage adding feedthroughs in the longest rows since this will increase the width of the

chip. On the other hand, when two pins are far apart we may connect them to nearby pins in the

same net, even at the cost of extra feedthroughs. These extra feedthroughs may decrease the total

channel density and thus decrease the height of the chip. We adjust the factor K to control the

trade-off between the width and the height of a chip.

Note that the weight of each net edge is not static. After a feedthrough is added, some pin

locations and the weights of some rows may change. If we construct the minimum spanning

forest by building a minimum weighted spanning tree net by net, a different order for considering

the nets will quite likely lead to a different result. However, there is no efficient algorithm

available to determine an optimal net order. In order to avoid the net ordering problem, our

algorithm builds a minimum spanning forest directly by considering all of the nets

simultaneously based on a generalization of the Kruskal’s minimum spanning tree algorithm

[AhHU74]. It keeps adding the minimum weighted edge selected from the entire net connection

graph into the spanning forest as long as no cycle is introduced. The edge insertion process ends

when all the nets are connected. Our algorithm for the first stage is shown as follows, in which F

represents the spanning forest to be constructed.

Algorithm Determine_Feedthrouths.
1. V := all the vertices in the net connection graph;

E := all the edges in the net connection graph;
F := φ;

2. while E <> φ do
remove the minimum weighted edge e from E ;
if F ∪ {e } does not have a cycle
then include e (or the path induced by e ) in F ;

if e crosses some cell rows
then introduce feedthroughs at the intersections and add them to V ;

introduce edges connected to the new feedthroughs and add them to E ;
end-while

3. output F
Algorithm 1 Determine Feedthroughs (Stage 1 of Global Routing)

The advantage of this algorithm is clear. Since we consider the edges of all nets at the same

time, the algorithm is independent of input net order. The spanning tree for each net gets an

equal chance to grow. Information about all nets is available throughout the process.

It is necessary to show that this algorithm will converge since we keep adding new vertices

(induced by feedthroughs) to the net connection graph. In [Ro84], a limit is set on the total

number of vertices allowed for each net. However, we can show that our algorithm ends after a

linear number of edge insertions.
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Theorem 2 The Stage 1 algorithm will converge to a spanning forest after n − k steps of

edge insertions, where n is the total number of original pins in the design, and k is the number of

nets.

Proof Let m be the number of steps of edge inclusion that we execute to obtain a spanning

forest. Let Vi be the set of vertices in the net connection graph after the i -th step of edge

inclusion. Let Fi be the set of edges in the partially constructed spanning forest after the i -th step

of edge inclusion. Initially, � V 0 � = n and � F 0 � = 0. When we obtain a spanning forest, we have

k connected components and each of them is a spanning tree. Thus, � Vm � − � Fm � = k .

Let ei = (ui , vi ) be the edge included in the i -th step. There are two cases: (i) If ui and vi

are in the same channel, then Vi = Vi −1 and Fi = Fi −1∪{(ui , vi )}; (ii) If ui and vi are in different

channels, suppose that f i , f 2, ..., f l are the vertices along the path introduced by adding

feedthroughs, then Vi = Vi −1 ∪ {f 1, f 2, ..., f l } and Fi = Fi −1 ∪ {(ui , f 1), (f 1, f 2), ..., (f l , vi )}.

In both cases, we have

� Vi � − � Fi � = � Vi −1 � − � Fi −1 � − 1

By induction, it is easy to show that

� Vm � − � Fm � = � V 0 � − � F 0 � − m

It follows that k = n − m , i.e., m = n − k . �

In the implementation of Algorithm 1, we use the union-find operations [AhHU74].

Initially, we start with n sets. Each set contains a single vertex. When we include an edge

(u , v ), we union the two sets that vertices u and v belong to, together with the set of new vertices

introduced by adding feedthroughs. At any time of execution, each set contains a collection of

vertices which have been connected. Cycle detection becomes very easy. To see whether

F ∪ {(u , v )} contains a cycle, we need to only check whether u and v belong to the same vertex

set. In fact, after each edge insertion, we remove all the edges connecting vertices of the same

set. Moreover, we update all the edge costs after each edge insertion. Let p be the maximum

number of pins per net (in CMOS technology, p is bounded by a small constant). Then, each

edge insertion takes (kp 2) time. Since there are n − k edge insertions and O (kp ) = O (n ), the

time complexity is O (pn 2) for Stage 1 of our global routing algorithm.

Note that after Stage 1 of our algorithm, we actually obtain a global routing solution in

which the feedthroughs are specified by the vertices in the spanning forest and the net segments

are specified by the edges in the spanning forest. However, the selection of the net segments is

made without consideration of global density distribution, and may lead to a poor routing

solution in terms of minimizing the total channel density. Therefore, our algorithm will go

through the second stage, as described in the next subsection, to re-compute the best net segment

selection for total channel density minimization.
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3.2. Determine Net Segments

After Stage 1, all of the required feedthroughs have been added and their positions have

been determined; we shall not add new feedthroughs. Thus, we can remove those edges that

cross the cell rows (but are not built-in edges that represent feedthroughs or connections within

the cells) from the net connection graph. Figure 5 shows an example of a connected component

induced by a net in the net connection graph at the beginning of Stage 2. The solution of Stage 2

is a spanning forest S within the net connection graph such that each edge in S lies entirely in

one channel. Since the width of a chip is fixed after Stage 1, the objective in Stage 2 is to

minimize the height of the chip by minimizing the total channel density.

Most previous approaches to global routing build a spanning tree for each net one by one.

And for each net, these algorithms keep adding the minimum weighted feasible edge until a

spanning tree is obtained. A serious problem exists with these approaches. It is very difficult to

decide whether and where a net segment should be added to a channel since these algorithms

have no knowledge of the density distribution in the final solution, especially early in the

execution of the algorithms when only few net segments are present. Also, these approaches face

the problem of choosing a good order in which to process the nets.

To avoid these problems, we develop a new algorithm based on the iterative deletion

approach. First, the basic approach is described; then we will show the performance

improvements and refinements. The algorithm constructs a minimum weighted spanning forest to

approximate the optimal spanning forest. We define the weight of an edge e to be

w (e ) = d (e )/d , where d (e ) is the maximum density over the edge in the channel to which e

belongs, and d is the density of the channel. First, we put all the edges in the net connection

graph into an edge set S . Then, we repeatedly remove the maximum weighted edge from S as

long as we do not disconnect any net. We update the weights of edges in a channel whenever an
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Figure 5 The connected component induced by a net in the net connection graph at the begining

of Stage 2.
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edge is removed from that channel. The process terminates when S is a spanning forest. Clearly,

this approach has two advantages:

(1) Since all the edges are considered from the start, the algorithm has global information and

knows where the most congested areas are. The weight of each edge during the

construction reflects the relative density over that edge in the resulting spanning forest, and

the removal of the maximum weighted edges distributes the routing density evenly in the

design;

(2) Since we process all nets in parallel, the result of our algorithm does not depend on the

order in which nets are processed.

However, a straightforward implementation of the above algorithm may suffer two

problems. First, there may be Θ(n 2) edges in the net connection graph at the beginning of Stage 2

(even after we removed edges, other than the built-in edges, which crossed cell rows), where n is

the number of pins after Stage 1. Since there are only O (n ) edges in the final spanning forest, we

may have to go through Θ(n 2) steps of edge deletion; which is quite time consuming. Moreover,

since most of the initial edges are to be removed, the weight of an edge at the beginning of the

deletion process may not closely approximate the channel density over that edge in the final

spanning forest. Both problems are due to the fact that we may have to start with a quadratic

number of edges at the beginning of the edge deletion process. A careful study showed that we

can further simplify the net connection graph before we compute the optimal spanning forest. We

define the simplified net connection graph SG to be an undirected graph, whose vertex set is the

set of pins in the design, and for two pins pi and pj of the same net, (pi , pj ) is an edge of SG if

and only if they satisfy one of the following conditions: (1) pi and pj are on the same cell or

feedthrough and are connected internally (i.e., they are connected by a build-in edge); or (2) pi

and pj are in the same channel and have no other pins of the same net in the same channel

between them. Figure 6 shows the example of a connected component induced by a net in the

simplified net connection graph. Note it is much more sparse than the one shown in Figure 5. In

fact, we can make the following claims:

Theorem 3 Let n and m be the number of vertices and edges, respectively, in the

simplified net connection graph. Then

(1) m ≤ 1.5n .

(2) The simplified net connection graph can be constructed in O (n logn ) time, where n is the

total number of pins in the design.

(3) The simplified net connection graph contains an optimal spanning forest.
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Figure 6 The connected component induced by the same net in the simplified net connection

graph is much sparse than the one in Figure 5. The optimal spanning forest is not lost by this

simplification.

Proof (1) For each vertex v , the degree d (v ) of v in the simplified net connection graph is

at most 3, since it can be connected only to its left closest pin in the same net, its right closest pin

in the same net, and its equivalent pin in the same cell (see Figure 6). We have

2m =
i =1
Σ
n

d (vi ) ≤ 3n

Thus, m ≤ 1.5n .

(2) The simplified net connection graph can be constructed by sorting pins in each channel,

then do a linear scan to compute the left closest pin and the right closest pin in the same net for

each pin in the channel. The total computation time is bounded by O (
i =1
Σ
k

ni ), where k is the

number of nets and ni is the number of pins in channel i . Note that
i =1
Σ
k

ni = n , thus

i =1
Σ
k

ni logni ≤ (
i =1
Σ
k

ni )log
i =1
Σ
k

ni = n logn

(3) Let F be an optimal spanning forest. Suppose e = (u , v ) is an edge in F but e is not in

the simplified net connection graph, without loss of generosity, assume v is right to u . Let

w 1, w 2, ..., wl be all the pins of the same net in the same channel from left to right between u and

v . Clearly, (u ,w 1), (w 1, w 2), ..., (wl ,v ) are all in the simplified net connection graph. It is not

difficult to show that we can remove (u , v ) and add a set of edges (probably all) of

(u , w 1), (w 1, w 2), ..., (wl , v ) to make another spanning forest F ′. It is clear that d (F ′) ≤ d (F ).

Thus, F ′ is also an optimal spanning forest. By repeating this process, we can remove all the

edges in F but not in the simplified net connection graph to obtain another optimal spanning

forest which contains edges only from the simplified net connection graph.
�
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The benefits from the theorem are clear. Since we only have to go through approximately

0.5n edge deletions, our algorithm runs much faster. Also, since only a relatively small number

of edges in SG are to be removed, the weight of each edge measures more accurately the density

over the edge in the resulted spanning forest. Moreover, we can compute the simplified net

connection graph efficiently without losing the optimal spanning forest. We summarize our

algorithm for Stage 2 as follows:

Algorithm Determine the Net Segments.
1. build the simplified net connection graph;
2. S := all the edges in the simplified net connection graph;
3. repeat

Remove the maximum weighted edge in S that is in a cycle;
Update edge weights for the affected edges;

until S is a spanning forest;
4. output S .

Algorithm 2 Determine the Net Segments (Stage 2 of Global Routing)

In our implementation, we use the graph biconnectivity algorithm in [ReND77] to identify

all the edges which are in some cycles. An edge is in some cycle if and only if it belongs to a

biconnected component with no less than 3 vertices. We can generate all the biconnected

components of a graph in linear time using the depth first search algorithm. Moreover, after

removing an edge, we need to update the weights of all the edges in the same channel. We may

have Θ(n ) edges in the channel in the worst case, and a straightforward computation of each edge

weight takes O (L ) time, where L is the number of physical pins in the channel. Thus, updating

all the edge weights takes O (nL ) time, and the time complexity of the second stage of our

algorithm is O (n 2L ).

For large designs, we can use a data structure called segment tree [ShPr85] to reduce the

time for updating an edge weight from O (L ) to O (logL ). For each channel C , we construct a

segment tree TC so that the maximum density over any given interval in the channel can be

computed in O (logL ) time. Without loss of generality, we assume that L = 2l for some l . Let

x 1, x 2, ..., xL be the x-coordinates of the pins in the channel C . The segment tree TC is a

balanced binary tree with L leaves in which each leaf corresponds to the x-coordinate of a pin

(i.e., an interval of length zero) and each internal node (root of a subtree) corresponds to an

interval (from the leftmost leaf to the rightmost leaf in the subtree). Clearly, the root of the i -th

subtree of height j corresponds to the interval [x (i −1).2j +1, xi .2j ]. Such an interval is called a

power interval. Each node X in the tree has three fields: X_interval stores the corresponding

power interval, X_density stores the maximum density over the power interval X_interval , and

X_delete indicates how many times that X_interval is deleted from the subtree rooted at X . At

the beginning of the iterative deletion algorithm, we compute X_density for each node in the tree

TC and set X_delete to be zero. For example, Figure 7 (a) shows a set of intervals and the
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corresponding segment tree. Suppose that we want to remove an edge in channel C whose

interval is I . It is not difficult to show that I can be decomposed into O (logL ) maximal power

intervals I 1, I 2, ..., It , which correspond to a set of nodes X 1, X 2, ..., Xt in the segment tree. For

example, in Figure 7 (a), interval J 5 = [5, 7] can be decomposed into intervals [5, 6] and [7, 7],

and interval J 8 = [3, 8] can be decomposed into intervals [3, 4] and [5, 8]. Then, we make the

following updates:

Xi _delete = Xi _delete + 1 and Xi _density = Xi _density − 1 (1 ≤i ≤t )

Moreover, we update the nodes on the paths to Xi ’s. Let Yi be the sibling of Xi and Zi be the

parent node of Xi . Then,

Zi _density = max(Xi _density , Yi _density ) − Zi _delete

and the update of the density field propagates upward in the tree. For example, Figure 7 (b)

shows the corresponding segment tree after we remove intervals J 5 and J 8 from Figure 7 (a). In

order to compute the maximum density over a given interval I , we, again, decompose I into

O (logL ) maximal power intervals I 1, I 2, ..., It . Let X 1, X 2, ..., Xt be the corresponding nodes in

the tree. Let Pi be the path in the tree TC from the root to the parent node of Xi . Then, the

maximum density over the interval Ii is

d [Ii ] = Xi _density −
Y ∈Pi
Σ Y_delete ,

and the maximum density over I is
i =1

max
t

d [Ii ]. For example, the maximum density over the

interval J 2 in Figure 7 (b) is

max(d [4], d [5,6]) = max(3 − 1, 3 − 1) = 2.

Therefore, we can update each edge weight in O (logL ) time after we remove an edge from the

channel. With this refinement, the second stage of our global routing algorithm can be

implemented in O (n 2logL ) time.

4. Experimental Results

We implemented our algorithm in the Cedar language running on Xerox Dorado

workstations (2-MIPS machines) and incorporated it into the DATools system developed at

Xerox PARC. Table 1 summarizes the examples used to compare the new algorithm with the

previous global router in the DATools system and with the global router in Timberwolf 4.2. The

counters and adders are the circuits synthesized by the DATools system when no performance

requirements are imposed. Both types of circuits are simple, ripple-carry designs. Primary 1 and

Primary 2 are the benchmarks from the Physical Design Workshop [Pr87].
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J1

J4

J6

J2

J5

J7

J8

J3

[ 1, 8 ]

[ 5, 8 ]

[ 7, 8 ][ 5, 6 ][ 3, 4 ][ 1, 2 ]

[ 1, 4 ]

1 2 3 4 5 6 7 8

4/0

4/0

3/04/03/03/0

3/0

2/0 3/0 3/0 3/0 4/0 4/0 3/0 2/0

Figure 7 (a) A set of intervals and its corresponding segment tree.
The labels at each node X specify X_density /X_delete , respectively.

J1

J4

J6

J2

J5

J7

J8

J3

[ 1, 8 ]

[ 5, 8 ]

[ 7, 8 ][ 5, 6 ][ 3, 4 ][ 1, 2 ]

[ 1, 4 ]

1 2 3 4 5 6 7 8

3/0

2/1

2/03/12/13/0

3/0

2/0 3/0 3/0 3/0 4/0 4/0 2/1 2/0

Figure 7 (b) The new segment tree after intervals J 5 and J 8 are deleted.
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� �������������������������������������������������������������������������������������������
Ex. # cells # IOs # nets # pins� �������������������������������������������������������������������������������������������

16-bit adder 144 50 177 546� �������������������������������������������������������������������������������������������
16-bit counter 173 56 206 609� �������������������������������������������������������������������������������������������
32-bit adder 288 98 355 1090� �������������������������������������������������������������������������������������������
32-bit counter 342 104 396 1203� �������������������������������������������������������������������������������������������
64-bit adder 576 194 707 2178� �������������������������������������������������������������������������������������������
64-bit counter 681 200 783 2393� �������������������������������������������������������������������������������������������
Primary 1 752 81 904 2737� �������������������������������������������������������������������������������������������
Primary 2 2907 107 3029 8758� �������������������������������������������������������������������������������������������
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Table 1 A summary of the example circuits used to compare the new algorithm with the previ-

ous algorithm and with the global router in Timberwolf 4.2.

Table 2 summarizes the experiments comparing the old and new algorithms. Compared to

the previous standard cell global routing package used in the DATools system, the new algorithm

achieves a 6% to 11% area reduction. In general, more feedthroughs are added by the new

algorithm, but the chip widths are not increased. The extra feedthroughs are being used to reduce

chip height by reducing total track density.

We also compared our global routing results with the results produced by the Timberwolf

4.2 global routing on the two Physical Design Workshop benchmarks. In both examples, the

global routing is performed on the same placement (the one produced by Timberwolf). Figure 8

illustrates the comparison process. Table 3 shows the comparisons on these examples. We

obtained 5% to 17% reduction in total track density and over 20% reduction in the number of

inserted feedthroughs compared to Timberwolf 4.2. We could not compare our algorithms with

other algorithms since we were unable to obtain the common placement solutions. (We observed

that the placement solution affects both the number of feedthroughs and the total channel density

significantly. Thus, it would be very inaccurate to compare global routing results based on

�����������������������������������������������������������������������������������������������������������������������������
previous algo. new algo.# of ���������������������������������������������������������Ex.

rows width height width height
improvement

�����������������������������������������������������������������������������������������������������������������������������
16-bit adder 4 1104 812 1104 764 6.3%�����������������������������������������������������������������������������������������������������������������������������
16-bit counter 5 1320 1120 1320 1008 11.1%�����������������������������������������������������������������������������������������������������������������������������
32-bit adder 6 1528 1415 1528 1324 6.8%�����������������������������������������������������������������������������������������������������������������������������
32-bit counter 7 1904 1736 1904 1624 8.5%�����������������������������������������������������������������������������������������������������������������������������
64-bit adder 8 2448 1956 2448 1860 5.1%�����������������������������������������������������������������������������������������������������������������������������
64-bit counter 9 3096 2744 3096 2456 11.7%�����������������������������������������������������������������������������������������������������������������������������
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Table 2 Comparisons with the previous global routing package in the Xerox PARC DATools

system.
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Timberwolf
Placer

placement
solution

Timberwolf
G-router

G-routing
solution

DATools
G-router

G-routing
solution

compare

Figure 8 Comparison of global routing solutions is based on the same placement solution.

different placement solutions.)

Our global router is a straightforward implementation of the algorithm described here. As a

result, there are a number of opportunities to significantly improve the results. Some standard

cell global routing packages improve the global routing (and further reduce area) by exchanging

adjacent cells in the same row or modifying the cell orientation ([Ro84, SeSa86, Pr86]). In

addition, the cells in the Physical Design Workshop Benchmarks (Primary 1 and Primary 2) have

a large number of built-in feedthroughs that are exploited by Timberwolf, but not by the global

router described here. (The standard cells used at Xerox PARC do not have built-in feedthroughs

so this feature was not included.) We did not implement these refinements in the current version

of our global routing package.
� �����������������������������������������������������������������������������������������������������������������������������

Timberwolf new algo. improvement# of � �����������������������������������������������������������������������������������������������������Ex.
rows # FTs # tracks # FTs # tracks # FTs # tracks� �����������������������������������������������������������������������������������������������������������������������������

P1 17 1380 223 1120 190 23.2% 17.4%� �����������������������������������������������������������������������������������������������������������������������������
P2 29 4621 474 3761 449 22.9% 5.6%� �����������������������������������������������������������������������������������������������������������������������������
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Table 3 Comparisons with the global routing algorithm in Timberwolf 4.2 [SeSa86] on Primary

1 and Primary 2 benchmarks from the Physical Design Workshop.

5. Remarks and Conclusions

In this paper, we present a new algorithm for standard cell global routing. By processing all

the nets in parallel, we avoid the problems associated with net ordering and the problems created

by lack of information early in the global routing process. By simplifying the net connection

graph and applying an iterative deletion algorithm for building spanning trees, we can more

accurately predict congested areas. This global routing algorithm produces high quality solutions

in polynomial time.
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In both Stage 1 and Stage 2, the weights for net edges are dynamic. A significant amount of

time is spent on updating edge weights in our current implementation. We are studying how to

reduce the computation time for updating edge weights. One possibility is to use more

sophisticated data structures to identify those edges whose weights need to be updated more

efficiently (without scanning all the edges). This will certainly speed up the re-computation for

edge weights. Another possibility is not to update the edge weights after every iteration but to

update the edge weights after several iterations. Our experience is that small errors in the edge

weights will not affect the quality of final solution significantly.
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