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We propose a new algorithm for the classical assignment problem. The algorithm resembles 
in some ways the Hungarian method but differs substantially in other respects. The average 
computational complexity of an efficient implementation of the algorithm seems to be 
considerably better than the one of the Hungarian method. In a large number of randomly 
generated problems the algorithm has consistently outperformed an efficiently coded version 
of the Hungarian method by a broad margin. The factor of improvement increases with 
the problem dimension N and reaches an order of magnitude for N equal to several hundreds. 
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1. Introduction 

The assignment problem was among the first linear programming problems to 

be studied extensively.  It arises often in practice and it is a fundamental  problem 

in network flow theory since a number  of other problems,  such as the shortest  

path, weighted matching, t ransportat ion and minimum cost flow problems,  can 

be reduced to it [l ,  p. 186-187]. It  is characteristic in this respect  that the first 

specialized method for  the assignment problem, namely Kuhn ' s  Hungarian 

method [2], was subsequently extended for solution of much more general 

network flow problems.  Fur thermore ,  some of its main ideas were instrumental 

in the development  of more general methods such as the out-of-kilter and 

nonbiparti te matching methods.  This suggests that the assignment problem is not 

only important  in itself, but is also suitable for development  of new com- 

putational ideas in network flow theory. It is for this reason that we restrict 

attention to the assignment problem even though the ideas of  this paper  have 

extensions to more general problems.  

It seems that the currently most  popular  solution methods for  the assignment 

problem are specialized forms of the simplex method [3-5] and versions of 

Kuhn ' s  Hungarian method [6--8]. There has been some cont roversy  regarding the 

relative merits of  simplex codes and primal-dual  (i.e. Hungarian) codes ]6, 9]. A 

recent  computat ional  study [7] finds simplex and pr imal-dual  codes roughly 

comparable ,  while another  study [8] reports that a pr imal-dual  code based on the 
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work of Edmonds and Karp [10] outperforms simplex-like algorithms by a 

considerable margin. The development of specialized codes for the assignment 

problem using sophisticated programming techniques is an active research area 

so it is difficult to assess the current state of the art. 

The computational complexity of many of the existing codes is unknown and 

in fact some of these codes [3, 6] are proprietary. It is known that the complexity 

of the Hungarian method for full dense, all integer, N × N assignment problems 

is O(N 3) [I, p. 205]. There is no simplex type method with complexity as good as 

O(N 3) and there are no average complexity estimates for either Hungarian 

methods or simplex methods to the extent of our knowledge. 

The purpose of this paper is to propose a new method for solving the 

assignment problem. We show in Section 3 that the worst case complexity of the 

pure form of the method for full dense, all integer, N × N problems with the 

elements of the assignment matrix taking values in the interval [0, R] is O(N 3) + 

O(RN2). It appears, however, that for large values of R (say R > 100) the 

method performs at its best when it is combined with the Hungarian method. 

One such combination is described in Section 4 and the worst case complexity of 

the resulting method is O(N3). Its average complexity, however, seems to be 

substantially better than the average complexity of the Hungarian method. This 

is demonstrated by means of extensive computational experiments with ran- 

domly generated problems. These experiments show that the new method 

consistently outperform s an efficiently implemented version of the Hungarian 

method by a broad margin. Indeed, out of more than a thousand randomly 

generated problems solved with N -> 20 we did not find a single problem where 

our method did not work faster than the Hungarian method. Furthermore, the 

factor of improvement increases with N thereby suggesting a better average 

complexity. For large problems with N being several hundreds our method can 

converge ten or more times faster than the Hungarian method. 

Since we have been unable to characterize analytically the average complexity 

of our method we cannot claim to fully understand the mechanism of its fast 

convergence. On heuristic grounds, however, it appears that the new method 

owes its good performance principally to a phenomenon which we refer to as 

outpricing. This is explained more fully in the next section but basically it refers 

to a property of the method whereby during the course of the algorithm the 

prices of some sinks are increased by large increments--much larger than in the 

Hungarian method. As a consequence these sinks are temporarily or per- 

manently outpriced by other sinks and are in effect driven out of the problem in 

the sense that they do not get labeled and scanned further--at least for relatively 

long time periods. As a result the algorithm requires fewer row operations since 

in effect it deals with a problem of lower dimension. 

We finally note that we expect that algorithms similar to the one of the present 

paper can be developed for other more general problems such as transportation, 

minimum cost flow problems, etc. One such algorithm for the Hitchcock 

transportation problem is reported in [11]. 
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2. The pure form of the algorithm 

Consider a bipartite graph consisting of two sets of nodes S and T each 

having N elements and a set of directed links L with elements denoted (i , j)  

where i E S and j E T. We refer  to elements of S and T as sources and sinks 

respectively. Each link (i, j) has a weight a~j associated with it. By an assignment 

we mean a subset X of links such that for each source i (sink j) there is at most 

one link in X with initial node i (terminal node j). We say that a source i is 

unassigned under X if (i, j) ~ X for all (i, j) j~ L. Otherwise we say that source i 

is assigned under X. We use similar terminology for sinks. We wish to find an 

assignment that maximizes ~i,j)Ex aij over all assignments X of cardinality N. 

Throughout  the paper we will assume the following: 

(a) There exists at least one assignment of cardinality N, 

(b) The weights aij are nonnegative integers not all zero and the maximal 

weight will be denoted by R, i.e., 

R = max a~ i >0 .  
(i,j)~L 

(c) For  each source i there are at least two links (i, j) in L. 

Assumption (b) can be replaced by the more general assumption that aq are all 

integers (not necessarily nonnegative) and for some integer R > 0 we have 

max aq - min aq <- R, Vi ~ S. 
jET jET 

To see this note that if for any source i ~ S we subtract the constant minjcT a~j 

from the weights a~i, Vj C T then the value of all possible assignments of 

cardinality N changes by the same constant. Assumption (c) involves no loss of 

generality, since if for  some source i there is only one link (i, j) E L, then (i, j) is 

certainly part of any optimal assignment and as a result nodes i and j can be 

removed from the problem thereby reducing dimensionality. We use assumption 

(c) for convenience in stating our algorithm. 

The assignment problem can be embedded into the linear program 

maximize ~ a~ix~i, 
(i,j)~L 

subject to ~, xij = l, Vi = l .... ,N ,  
(i,j)CL 

~, x i j = l ,  V j = I  . . . . .  N, 
(i,j)~L 

x~j>-O, Vi, j =  l . . . . .  N. (1) 

The corresponding dual problem in the vectors m = (m~ .... , raN), p = (p~ . . . . .  PN) 

is 
N N 

minimize ~ ml + ~ pj, 
i=l j=l 

subject to m~ + pj - a~j, V(i, j) ~ L. (2) 
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The scalars pj and (agj-pi)  will be referred to as prices and profit margins 

respectively. From complementary slackness we have that if (i, j) is part of an 

optimal assignment, then for any optimal solution (m, p) of the dual problem we 

have 

mi = a~i - PJ = max{ai, - p, I all n with (i, n) E L}, (3) 

i.e., at an optimum source i is assigned to a sink j offering maximum profit 

margin relative to the price vector  p. 

The Hungarian method solves the dual problem by generating for k = 0, 1 .... 

vectors mk, p k together with a corresponding assignment X k. For  each k the 

vectors mk, p k are dual feasible and for all ( i , j ) E X  k the complementary 

slackness condition (3) is satisfied. These features are also shared by the 

algorithm we propose. In the Hungarian method if a source i or sink j is assigned 

under some X ~ it continues to be assigned under all X k, k >- k. In our method this 

is also true for sinks j but it is not true for sources i. Sources may come in and 

out of the current assignment with attendant changes in the vectors m and p. 

Another  difference of our method over  the Hungarian method is the manner 

in which the dual variables are incremented. In the Hungarian method 

every change in the vectors m and p induces a reduction of the value of the 

dual cost  function. In our method when changes are made on the values of 

m and p all that is guaranteed is that the objective function value will not 

increase. 

Both the Hungarian method and the algorithm we propose involve flow 

augmentations along alternating paths and changes in the values of dual vari- 

ables. The roles of these two devices are, however,  somewhat  different in the 

two methods. The Hungarian method is geared towards assigning the unassigned 

sources by searching directly for an augmenting path along links (i, j) with 

m~ + pj = a~j. Dual variable changes are effected only when no more progress can 

be made towards generating such an augmenting path. In our method the roles of  

searching for an augmenting path and changing the dual variables are in effect 

reversed. Primary consideration is given to increasing the prices of  assigned sinks as 

much as is possible without violating the complementary slackness constraint. The 

aim here is to make the prices of unassigned sinks 'competi t ive '  with those of 

assigned sinks. Augmentation is in some sense incidental and takes place either 

when it can be effected at essentially no computational cost, or when it is no more 

possible to continue the process of increasing prices of assigned sinks without 

violating the complementary slackness constraint. 

We now describe formally our method. A more specific implementation 

together with an initialization procedure will be given in Section 3. 

The method is initialized with any integer vectors m °, p0 that are dual feasible 

and with X ° being the empty assignment. 

For  k --- 0, 1 . . . . .  given (m k, p k  X k) satisfying for all i ~ S 
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m~+p~=a, j  i f ( i , j ) ~ X  k, 

m~+p~>-ai,  V ( i , n ) ~ L ,  

we stop if X k has cardinality N. Otherwise we use the following procedure to 

generate (m k÷~, pk+~, Xk÷~) satisfying for all i E S 

m~+~+p~ ÷~=aq i f ( i , j ) E X  k÷j, 

k÷l - V(i, n) E L. mki+l+pn ~ain 

(k + 1) st iteration of the algorithm 

Choose a source i" which is unassigned under X k. Compute the maximum profit 

margin 

r~ = max{arf - p~ ] (i-, j) E L} (4) 

and find a sink ~- such that 

k 
th = a ; j - p ; .  (5) 

Compute also the 'second maximum' profit margin 

fit = max{at / -  p~ ] (i, j) E L, j ~ j}. (6) 

Proceed as described for the following two cases: 

Case 1: r~ > fit, or fit = fit and sink "f is unassigned under X k 

Set 

fro/k for i~  i, 
m ~ + l =  (7) 

lilt " for i =  L 

~" p~ for j ~  T p~÷t= 
pk + r ~ -  fit for j = )-. (8) t J 

If j" is unassigned under X k, add (i, j )  to X k, i.e., 

x k+' = x k n {(L/)}.  

If (f, j') C X k for some ~ C S, obtain X k+' from X k by replacing (f, j-) by (L J), i.e., 

x ~ + ' =  i x  ~ u {(~-, j -)}]-  {(f, i)}. 

This completes the (k + 1) St iteration of the algorithm. 

Case 2: fit = fit and for some f E S we have (i, j-) ff X k 

Give the label '0' to L Set 
k 

m T ~-- if/,  

7rj=oo, j = l  .... ,N ,  (9) 

and perform the following labeling procedure (compare with [1, p. 205]). 
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Step 1 (Labeling): Find a source i with an unscanned label and go to Step la, or 

find a sink j ~ j" with an unscanned label and ~'j -- 0 and go to Step lb. If no such 

source or sink can be found go to Step 3. 

Step la: Scan the label of source i as follows. For  each (i, j ) ~  L for which 

m~ + p ~ -  aij < 1rj give node j the label ' i '  (replacing any existing label) and set 

~rj ~-- m ~ + p k _ alj. Return to Step 1. 

Step lb: Scan the label on the sink j #  j with ~-j = 0 as follows. If j is unassigned 

under X k go to Step 2. Otherwise identify the unique source i with (i, j) E X k and 

give i the label 'j ' .  Return to Step 1. 

Step 2 (Augmentation): An augmenting path has been found that alternates 

between sources and sinks, originates at source r and terminates at the sink j 

identified in Step lb. The path can be generated by 'backtracing' from label to 

label starting from the terminating sink j to the originating source i. Add to X ~ 

all links on the augmenting path that are not in X k and remove from X k all links 

on the path that are in X k to obtain X k+l. Set m k+~= m k, pk+l=pk. This 

completes the (k + 1) st iteration of the algorithm. 

Step 3 (Change of dual variables): Find 

,3 = min{~-j [ j  E T, 7r i > 0}. 

Set 

m~+, [m k-,3 if i has been labeled, 

= [ m k if i has not been labeled. 

(Recall here that m} was set equal to ff~ in the initialization of the labeling 

procedure cf. (9)). Set 

k+ l=~ p~+~  if ~rj=O, 
P; [p~ if ~rj > O. 

Obtain X k+' from X k by replacing (f, j )  by (i, j-), i.e., 

x k+' -- [ x k  u (G,  ;)}]  - ((f, 

This completes the (k + l) st iteration of the algorithm. 

Notice that, by contrast  with the Hungarian method (see Section 3), the 

iteration need not terminate with a flow augmentation. It can also terminate with 

a change in the dual variables (Case 1, j is assigned, or Case 2, Step 3) but in this 

case the source i- under consideration becomes assigned under X k+~, while some 

other source i which was assigned under X k becomes unassigned under X k+~. 

A useful conceptual aid in understanding the algorithm is to think of it in 

terms of an auction. Let  us imagine that sinks are items for sale in an auction 
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and each source i is a person for whom each item j is worth aii. After the k th 

iteration of the algorithm some of the items have been temporarily assigned to 

persons that have bid up their prices to levels p~. If Case 1 holds at the (k + 1) 't 

iteration, the (unassigned) person i- selects the item 1- that offers maximum profit 

margin and bids up its price by the amount (t~ - th)-- the maximum amount for 

which ]" will still offer maximum profit margin. The item ~- is then assigned to the 

individual i- in place of any other person f that may have bid earlier for 1". In 

these terms the algorithm may be viewed as a process whereby persons compete 

for items by trying to outbid each other. One can interpret Case 2, Step 3 

similarly except that this interpretation involves the (admittedly less intuitive) 

idea of a cooperative bid whereby several persons simultaneously increase the 

prices of corresponding items. During actual computation Case 1 occurs far 

more frequently than Case 2, so, should someone wish to give a name to the 

algorithm, we suggest calling it the auction algorithm. 

Unfortunately the description of the algorithm in Case 2 is quite complicated. 

For this reason some explanatory remarks are in order. In Case 2 we basically 

try to find an augmenting path not containing f from source i- to an unassigned 

sink. There are two possibilities. Either an augmenting path will be found 

through Step 2 of the labeling procedure, or else a change in the dual variables 

will be effected through Step 3. In the first case the link (~i)-) will be retained in 

X g÷~ and the sink at which the augmenting path terminates will be assigned 

under X k+~ as shown in Fig. 1. In the second case the link (f~ j) will be replaced 

by (i, j-) in X k+~ and no new sink will be assigned under X g+~ as shown in Fig. 2. 

The dual variables will change, however, by the minimum amount necessary to 

obtain m k+~+ p k+~_ aq for some labeled source i and labeled but unscanned sink 

j. A similar (but not identical) labeling procedure is used in the Hungarian 

method (see Section 3). In the Hungarian method after a change in dual variables 

S T 

A. 

k 
X 

Case 2, Step 2, 

o 

o 

S T 

7 

Augmenting ~ j 
Path 

Xk+l 

= Assigned link, 

o = Unassigned link (i,j) with mi+Pj=aij , 

o = Unassigned link(i, j) with mi+P j >aij 

Fig. 1. 
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S T S T 

A A 

i i i i 

X k X k+t  

Case 2, Step3,  o.---.--.-..----~o = Assigned link, 

e o = Unassigned l ink ( i , j )w i th  mi+P j =aij , 

o o = Unassigned l ink ( i , j )w i th  m i+p j  >oi j .  

Fig. 2. 

occurs the labeling procedure continues until an augmenting path is found. By 

contrast  in our method the labeling procedure terminates with a change in the 

dual variables and a new iteration is started with a new unassigned sink. 

The order in which unassigned sources are chosen by the algorithm is not 

essential for the convergence result of Proposi t ion 1. However ,  from the 

practical point of view it is important their a scheme that ensures fairness for  all 

unassigned sources be utilized. In subsequent examples as well in our im- 

plementation of the method the scheme adopted is one whereby a list of 

unassigned sources is maintained by the algorithm. At each iteration the source 

at the top of the list is chosen and if a new source becomes unassigned (Case 1, j 

assigned under X k, or Case 2, Step 3) it is placed at the bottom of the list. 

We illustrate the algorithm by means of an example. 

Example 1. Consider the 4 × 4 full dense problem represented by the following 

initial tableau. 

p~ 0 0 0 0 

j m~ 

10 1 3 6 1 

10 2 4 7 3 

10 2 5 7 2 

10 I 3 5 1 
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The matrix of weights is shown in the lower right port ion of the tableau. The row 

above the matrix gives the initial prices arbitrarily chosen to be zero. The 

column to the left of the matrix shows the initial profit margins. We have chosen 

mi = 10 for a l l / - - o n e  of the m a n y  choices satisfying feasibility. The ext reme left 

column gives the sinks j, if any,  to which sources are assigned. Here  we are 

starting with the empty  assignment.  We describe successive iterations of the 

algorithm. The corresponding tableaus are given in Fig 3. 

1 st iteration: we choose the unassigned source 2. We have  r~ = 6 ,  rh = 3 ,  

f = 3. We are thus in Case 1. 

2 nd iteration: we choose the unassigned source 2. We have n~ = rh - -4 .  

Suppose j" = 2. Since j" is unassigned we come again under Case 1. (If  we had 

chosen j = 3, then we would have come under Case 2. We would have obtained 

pj 0 0 3 0 pi 0 0 3 0 

j m~ i m, 

3 1 3 6 1 3 3 1 3 6 1 

10 2 4 7 3 2 4 2 4 7 3 

10 2 5 7 2 10 2 5 7 2 

10 1 3 5 1 10 1 3 5 1 

After 1 st iteration 

pj 0 1 3 0 

j mi 

3 3 1 3 6 1 

4 2 4 7 3 

2 4 2 5 7 2 

10 1 3 5 1 

After 3 rd iteration 

pj 0 2 4 0 

j ml 

3 2 1 3 6 1 

4 3 2 4 7 3 

4 2 5 7 2 

2 1 1 3 5 1 

After 5 th iteration 

Fig. 3. 

After 2 nd iteration 

pj 0 2 4 0 

i m~ 

3 2 I 3 6 1 

4 2 4 7 3 

4 2 5 7 2 

2 1 1 3 5 1 

After 4 th iteration 

pj 0 2 4 0 

i m~ 

3 2 1 3 6 1 

4 3 2 4 7 3 

2 3 2 5 7 2 

1 1 1 3 5 1 

After 6 th iteration 
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the degenerate augmenting path (2, 2) through Step 2 of the labeling procedure 

and the end result would have been the same.) 

3 rd iteration: We choose the unassigned source 3. Here  rfi = 5, rh = 4, j" = 2. 

We are thus again in Case 1. But now source 2 will be driven out of the 

assignment and will be replaced by source 3. 

4 th iteration: We choose the unassigned source 4. Here  rfi = rh = 2. Suppose 

j- = 2. We are now in Case 2 with ~ = 3. Applying the labeling procedure we label 

first source 4. A simple computation shows that sink 3 is labeled from source 4 

and then source 1 is labeled from sink 3. No more labels can be scanned so we 

are in Step 3 of Case 2. Source 4 will enter the assignment and source 3 will be 

driven out. We have 6 = 1 and the corresponding tableau is shown in Fig. 3. 

5 th iteration: We choose the unassigned source 2. Here tfi = rh = 3. Suppose 

j----4. We are in Case 1 and (2, 4) will be added to the assignment. (The result 

would be the same if j = 3 in which case the degenerate augmenting path (2, 4) 

would be obtained via Step 2 of Case 2.) 

6 th iteration: We choose the unassigned source 3. Here ff~ = rh = 3. Suppose 

= 3. We are in Case 2 with f = 1. Applying the labeling procedure we label first 

source 3. Sink 2 is labelled from source 3 and then source 4 is labeled from sink 

2. Next  sinks 1 and 4 are labeled from source 4. Sink 1 is unassigned and this 

yields the augmenting path (3, 2), (4, 2), (4, 1) in Step 2 of Case 2. The algorithm 

terminates. 

We make the following observations regarding the algorithm. 

(a) The sequences {ink}, i =  1, . . . ,  N are monotonically nonincreasing while 

the sequences {p~} are monotonically nondecreasing. 

(b) If for some/~ a sink j is assigned under X ~, then it remains assigned under 

X k for all k >/~. 

(c) At each iteration initiated with an unassigned source i- one of two things 

can happen. Either the cardinality of the assignment increases by  one (Case 1, ~- 

is unassigned, or Case 2, Step 2), or else at least one variable mi will decrease 

strictly by an integer amount and at least one price will increase strictly by an 

integer amount  (Case l, f is assigned, or Case 2, Step 3). 

(d) For  every k and i ~ S we have 

m k + p ~ = a 0  if ( i , j ) ~ X  k, (10) 

m~ +pk,>>-ai, V ( i , n ) E L .  (11) 

From (10) and (11) we see that dual feasibility and complementary slackness 

are maintained throughout  the algorithm. Thus if the algorithm terminates (by 

necessity at an assignment of cardinality N) ,  then the assignment and dual 

variables obtained are optimal. The following proposition shows that termination 

is guaranteed under the assumption made earlier that there exists at least one 

assignment of cardinality N. 
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Proposition 1. The algorithm of this section terminates at an optimal assignment 

in a finite number of  iterations. 

Proof. Assume that the algorithm does not terminate. Then after a finite number 

of iterations the cardinality of the current assignment will remain constant and at 

each subsequent iteration at least one variable ml will decrease strictly and at 

least one price will increase strictly (observation (c) above). Hence the sets 

S~, T~ defined by 

S~ = {i ~ S [lim m ~ = -oo}, 
k-->~ 

T~ = {j E T I lim p ~ = oo} 

are nonempty. For  all k sufficiently large the sinks in T~ are assigned under X k 

(observation (b)) and they must be assigned to a source in S~ (observation (d)). 

Furthermore,  since the algorithm does not terminate, some source in S~ must be 

unassigned under X k. It follows that the cardinality of S~ is strictly larger than 

that of T~. From (1 l) it is clear that there cannot exist a link (i, j ) E  L such that 

i E S~ and j ~  T~. Thus we have 

{j [ ( i , j ) E L ,  i ~ S ~ } C  T~ 

while S~ has larger cardinality than T~. This contradicts the assumption that 

there exists an assignment of cardinality N. 

3. Computational complexity analysis 

We now estimate the worst case computational complexity of the algorithm 

for full dense problems (i.e. for  problems such that (i, ]) E L for all i E S, j ~ T). 

By subtracting (11) from (10) we have for all k, i E S and n E T 

p ~ - p ~ < - a i j - a i n < - R  i f ( i , j ) E X  k. (12) 

Suppose that B~ and B2 are lower and upper bounds for all initial prices, i.e. 

B]<-p°<-B2, V j C T .  (13) 

For  each k there must be at least one unassigned sink, say ~k and we must have 
k 0 P~k = P~k -< B2. It follows from (12) and observation (a) that 

B1<-p°<-p~<-R+B2,  Vk =0 ,  1 . . . . .  and j ~ T. (14) 

It is easy to see that there is an integer y such that the k 'h iteration of the 

algorithm requires at most ~/zkN computer  operations where 

1, in Case 1, 
zk = number of labeled sources, in Case 2, 
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There can be at most N iterations at which the cardinality of X k increases so the 

number of operations needed for these is bounded by vN 3. At each iteration k 

for which the cardinality of X ~ does not increase, zk prices will be increased by 

at least unity. It follows from z~---N and (14) that the total number of these 

iterations is bounded by R + (B2 - B0. Hence the total number of operations for 

these iterations is bounded by 3,(R + B 2 -  BON 2. If we restrict the initial prices 

so that for some integer ~ we have B2-B~-<  qR (as indeed would be the case 

with any reasonable initialization procedure including the one used in our 

experiments) we obtain the upper bound ~N3+ ~(1-t-~)RN 2 on the number of 

operations necessary for problem solution. Thus the worst  case complexity of 

the pure form of the algorithm for full dense problems is 

O(N 3) -t- O(RN2). (15) 

While the worst  case complexity of the algorithm is inferior to the one of the 

Hungarian method for large R, we would like to emphasize that, as experience 

with the simplex method has shown, worst  case complexity and average com- 

plexity of an algorithm can be quite different. Thus t w o  algorithms with 

comparable worst  case complexity can differ substantially in their performance 

in sovling randomly generated problems or problems typically arising in practice. 

In our computational experiments with random problems we found that the 

algorithm often performed surprisingly better than the Hungarian method. The 

following example illustrates what we believe is the mechanism responsible for  

this superior performance.  

Example 2. Consider the N × N full dense problem specified by the assignment 

matrix 

" N  

N N - 1  

N N - 1  N - 2  

3 

2 2 

3 2 1 

N N - 1  N - 2  

with all elements above the diagonal equal to zero. Le t  us trace the iterations of 

our algorithm for this problem starting with p = 0 and the empty assignment. In 

the first iteration source 1 is chosen, we have ffl = N, rh = 0, j-= 1 and, under 

Case 1, link (1, 1) is added to the assignment while price pl is increased to N. In 

the second iteration source 2 is chosen, we have fit = N -  1, rh = 0, ~ = 2 and, 

under Case 1, link (2, 2) is added to the assignment while price P2 is increased to 

N - 1. Continuing in this manner we see that at the k th iteration link (k, k) will be 

added to the assignment and the price pk is increased to k. Thus the algorithm 

terminates in N iterations and its computat ion time for this problem is O(N2). 
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If we apply the Hungarian method of the next section to the same problem 

with the same initial conditions we find that at every iteration except the first all 

sources will be scanned leading to a computation time O(N3).--essentially N 

times slower than with our method. This type of example does not depend on the 

initial prices as much as it may appear, since if the standard initialization 

procedure of the Hungarian method were adopted (see next section), then by 

adding a row of the form [N, N , - . . N ]  and a column consisting of zeros in all 

positions except the last to the assignment matrix, the computation times of the 

two methods remain essentially unchanged for large N. 

In analyzing the success of our method in this example we find that it is due to 

the fact that by contrast with the Hungarian method, it tends to increase prices 

by as large increments as is allowed by the complementary slackness constraint. 

Thus in the first iteration p~ is increased by N. This has the effect of outpricing 

sink 1 relative to the other sinks in the sense that the price of sink 1 is increased 

so much that, together with source 1, it plays no further role in the problem. 

Thus in effect after the first iteration we are dealing with a problem of lower 

dimension. By contrast the Hungarian method in the first iteration will add link 

(I, 1) to the assignment but will not change its price from zero. As a result source 

1 and sink 1 are labeled and scanned at every subsequent iteration. Outpricing 

sink 1 has another important effect namely it allows a large price increase and 

attendant outpricing for sink 2 at the second iteration. This in turn allows 

outpricing sink 3 at the third iteration and so on. This illustrates that outpricing 

has the character of a chain phenomenon whereby outpricing of some sinks 

enhances subsequent outpricing of other sinks. 

The preceding example is obviously extreme and presents our method in the 

most favorable light. If, for example, the first row contained some non-zero 

elements other than N, the change in the price p~ at the first iteration would be 

smaller than N. In this case the effect of outpricing, while still beneficial, would 

not be as pronounced and it would drive source 1 and sink 1 out of the problem 

only temporarily until the prices of other sources increase to comparable levels. 

While we found that the algorithm of this section performs on the average 

substantially better than the Hungarian method for randomly generated prob- 

lems, we often observed a pattern whereby the algorithm would very quickly 

assign most sinks but would take a disproportionally large number of iterations 

to assign the last few sinks. For example for N = 100 we observed some cases 

where 75% of the iterations were spent for assigning the last two or three sinks. 

Predictably in view of the complexity estimate (15) this typically occured for 

large values of R (over 100). This points to the apparent fact that the beneficial 

effect of outpricing is most pronounced in the initial and middle phases of the 

algorithm but sometimes tends to be exhausted when there are only few 

unassigned sources. The remedy suggesting itself is to combine the algorithm 

with some form of the Hungarian method so that if the algorithm does not make 

sufficiently fast progress a switch is made to the Hungarian method. One of the 
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many  possible such combined methods is presented in Section 4. Its wors t  case 

computat ional  complexi ty  is O(N3)- - the  same as for the Hungarian method.  Its 

pe r formance  on randomly generated problems was found to be consistently 

superior to the Hungarian method and (for R > 100) to the pure form of the 

algorithm as well. Significantly, the factor  of improvemen t  over  the Hungar ian  

method increases with problem dimension, thereby suggesting a bet ter  average 

computat ional  complexity.  

4. Combination with the Hungarian method--computational results 

Since we intend to compare  and combine our method with the Hungar ian 

method we describe here the implementat ion of the Hungar ian method that we 

used in our computat ional  experiments.  

The initial assignment X ° is taken to be the empty  assignment  and the initial 

dual variables are chosen according to the usual scheme 

0 _ m a x { a i j l j E T } ,  i = l ,  N, m i -  . . . ,  

p 0 = m a x { a ~ j _ m 0 1 i E S } ,  j = l  . . . . .  N. 

Notice that the equations above imply 

m°+p°>-a~j, V(i , j )~L.  

For k = 0, 1 . . . . .  N - 1, given (m k, pk, X k) satisfying for  all i E S 

m~ +p~=a~j if (i,j) EXk,  1 

m~+p~>al, V( i ,n)EL,  

we obtain (m TM, pk÷~, Xk+~) satisfying for all i ~ S 

m~+l+p~+l=aij i f ( i , ] ) E ~ "  ..k+l, 

ml * >ain V ( i , n ) E L ,  

according to the following labeling procedure.  

Step 0: Give the label '0 '  to all unassigned sources under X k. Set ~rj = o% 

j = l  . . . . .  N. 

Step 1 (Labeling): Find a source i with an unscanned label and go to Step la,  

or find a sink j with an unscanned label and 7ri = 0 and go to Step lb. If  no such 

source or sink can be found,  go to Step 3. 

Step la: Scan the label of source i as follows. For  each (i,j)E L for  which 

1 k k Actually throughout the algorithm the stronger condition m~ = max{a~, - p n [ (i, n) E L} holds for all 
k k k k and i ~ S. We state the algorithm in this form in order to emphasize that (m , p , X ) need only satisfy 

the same conditions as in the algorithm of the previous section, thereby simplifying the transition from 
one algorithm to the other. 
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m k + p ~ -  a~ < ~rj give node j the label ' i '  (replacing any existing label) and set 
k ~r s ~ m ~ + p s - aij. Return to Step 1. 

Step lb: Scan the label on the sink j with ~i = 0 as follows. If j is unassigned 

under X ~ go to Step 2. Otherwise identify the unique source i with (i, j ) ~  X ~, 

and give i the label 'j ' .  Return to Step 1. 

Step 2 (Augmentation): An augmenting path has been found that alternates 

between sources and sinks originating at a source unassigned under X k and 

terminating at the sink j identified in Step lb. The path is generated by 

'backtracing' from label to label starting from the terminating sink j. Add to X k 

all links on the augmenting path that are not in X k and remove from X k all links 

on the augmenting path that are in X k. This gives the next  assignment X k+'. Set 

mk+~ = m ~, p~.~ = pk. (Note that m k and pk may have been changed through Step 

3). This completes the iteration of the algorithm. 

Step 3 (Change of dual variables): Find 

;~ = min{~rs I J E T, ~r s > 0}. (16) 
Set 

k k m i *-- m ~ - ~ for all i E S that are labeled, 

p ~ <--- p ~ + ~ for all j E T with irj = 0, 

zr l <--- ,rj - ~ for all j ~ T that are labeled and ~rj > 0. 

and go to Step 1. 

Notice that the labeling procedure will terminate only upon finding an aug- 

menting path at Step 2 and therefore at each iteration the cardinality of the 

current assignment is increased by one. Thus X N has cardinality N and is an 

optimal assignment. It can be shown that the worst case computational com- 

plexity of this algorithm is 0(3/3). 

As already discussed, for  R > 100 it appears advantageous to combine our 

new algorithm with the Hungarian method. A switch from the new algorithm to 

the Hungarian method is very  simple in view of the similarities of the two 

methods. We have used the following scheme in our experiments.  There are 

several other possibilities along similar lines. 

We are making use of two lists of unassigned sources during execution of the 

algorithm. Each unassigned source is contained in one and only one of the two 

lists. We select at each iteration the unassigned source which is at the top of the 

first list. If in that iteration a new source becomes unassigned (Case 1, j- 

assigned, or Case 2, Step 3) this source is placed at the bottom of the second list. 

Initially the first list contains all sources and the second list is empty. As the 

algorithm proceeds the size of the first list decreases while the size of the second 

list increases. When the first list is emptied the contents of the second list are 

transferred to the first and the second list becomes empty. We refer to the 

portion of the algorithm between the time that the first list is full to the time it is 

empty as a cycle. At the end of each cycle we compare the number of sources in 

the second list with the number of sources contained in the first list at the 



D.P. Bertsekas / Assignment problem 167 

beginning of the cycle. If they are the same (implying that no augmentation 

occured during the cycle) a counter initially set at zero is incremented by one. 

The counter  is also incremented by one if during the cycle Case 2, Step 3 was 

reached more than a fixed prespecified number of times (4 in our experiments)  

with the number of labeled sources being more than a fixed prespecified number 

(10 in our experiments) 2. At the point where the counter  exceeds a prespecified 

threshold value a switch is made to the Hungarian method of the previous 

section. The threshold value was set at 0.1N in all of our experiments,  but the 

average performance of the algorithm seems fairly insensitive to this value 

within broad limits. It is a straightforward but tedious exercise to show that the 

complexity of this combined algorithm is bounded by O(N3). The proof  essen- 

tially consists of showing that at most O(N 3) operations are necessary before  a 

switch to the Hungarian method takes place. In almost all the problems we 

solved, the great majority (95-100%) of sinks were assigned by the new al- 

gorithm and the remainder by the Hungarian method after a switch was made. 

This was particularly true for small values of R when for most problems a 

switch to the Hungarian method was not necessary.  

Finally regarding initialization we have in all cases chosen X °-- empty,  and 
0__ 0__ p j - 0, m ~ -  R for all i and j. However  at the end of the first cycle (i.e. at the end 

of the N 'h iteration) the prices of all unassigned sinks j are changed from p~ = 0 

to 

p~ = max{all - mY [i: assigned under Xn}. 

The remaining prices and all values m~ N are left  unchanged. This is in effect an 

initialization procedure quite similar to the one for the Hungarian method given 

earlier. Its purpose is to reduce the prices of the unassigned sinks as much as 

possible without violating the complementary slackness constraint. It has wor- 

ked quite well in our experiments.  

Tables 1 and 2 show the results of our computational experiments with 

randomly generated full dense, N x N problems. Each entry represents an 

average over five problems, which were the same for all three methods and for 

each N. The weights were chosen from a uniform distribution over [0, 1] and 

subsequent multiplication by R (Table 1), or f rom a normal distribution N(0,  1) 

and subsequent multiplication by ~ (Table 2). They  were then truncated to the 

nearest  integer. The programs were written in Fortran and compiled with the 

optimizing compiler in the OPT = 2 mode. The times given in the top entry of 

each cell refer to the IBM 370/168 at M.I.T. We give in the bot tom entry of each 

cell the average number of sources scanned for each method (Case 1 in the new 

algorithm corresponds to one source scanned). The average computat ion time 

per source scanned does not differ much from one method to another,  so the 

2 Actually this last device does not seem to play an important role for practical purposes. It was 
introduced in order to make possible a proof of an O(N 3) complexity bound for the combined 
algorithm. 
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Table 2 
Top entry in each cell = time in secs on IBM 370. Bottom entry = number of sources scanned. 

Average over five N × N full dense problems with weights chosen by normal distribution 
N(0, 1) and subsequent multiplication by ~ and truncation to the nearest integer. 

N 

50 

Hungarian method 

X 30 100 10 000 

0.079 0.085 0.089 

440 449 458 

Combined new algorithm 

and Hungarian method 

30 100 10 000 

0.024 0.025 0.026 

135 136 140 

Pure form of the new 
algorithm 

30 100 10 000 

0.033 0.037 0.038 

192 233 238 

100 0.419 0.455 0.487 0.091 0.091 0.094 0.103 0.118 0.113 
1317 1383 1447 285 288 283 326 388 395 

150 1.25 1.40 1.53 0.260 0.267 0.292 0.342 0.425 0.420 

2868 3128 3265 570 599 601 728 929 1024 

200 2.78 3.07 3.43 0.492 0,486 0.533 0.603 1.00 0.800 

4975 5395 5700 808 819 852 975 1607 1536 

300 8.25 10.0 1.21 1.15 1.45 2.21 
10101 11864 1318 1268 1576 2270 

400 20.4 24.8 2.63 2.45 2.85 9.55 
19103 22755 2140 2083 2350 8108 

number  of sources scanned represents  a valid measure  of compar i son  which is 

independent  of the computer ,  compiler ,  p rogrammer  and time of the day the run 

was made.  The results  c lear ly indicate that  the combined method is overal l  

superior  to the others.  The pure form of the new algorithm also appears  superior  

to the Hungar ian method,  but  not by  as much as the combined method.  Also for  

R > 100 the var iance of computa t ion  time exhibi ted by the pure form of the 

algori thm is larger than those of t he  Hungar ian and the combined methods.  The 

combined method had the smallest  var iance in computa t ion  time over  the three 

methods  tested.  For  R <--100 the pe r fo rmance  of the pure and the combined 

forms of the algori thm are nearly identical  indicating that  in most  cases  a switch 

to the Hungar ian  method was never  made and when it was it did not  resul t  to 

any substantial  improvement .  

While we h~/ve not developed a sparse  problem code,  we did test  the 

algori thms on sparse problems with the full dense code by employing the device  

of setting the weights of a fixed percentage  of links ranging from 50% to 90% to 

(essential ly) - ~  and choosing the weights of the remaining links via a uniform 

dis t r ibut ion as in Table 1. The results  were qual i tat ively similar to those of Table 

1. The number  of rows scanned was decreased  by  roughly 10% on the average 

for  the pure and combined forms of the new algorithm and by  roughly 5% for 
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the Hungarian method. Computation times were not recorded as these are 

meaningless in the absence of special data structure techniques exploiting 

sparsity. However ,  when such techniques are implemented the comparison of 

computation times should favor our algorithm even more since Step 3 (Case 2) 

of our algorithm (which is relatively time consuming for sparse problems) is 

executed far less frequently tban the corresponding Step 3 of the Hungarian 

method. 

As a final comparison with existing methodology it is worth observing that the 

computation time of Table 1 for  the combined method and 200 x 200 problems 

with weights in the range [0, 100] is 0.526seconds. There are five 200x 

200 N E T G E N  benchmark assignment problems with weights in the range [0, 100] 

that have been solved by a number of presently available codes. The best 

solution times achieved range from 0.96 to 1.68 secs on a CDC 6600 [3,7] and 

0.38 to 0.90secs on an IBM 370/168 [12]. Making an adjustment for the 

advantage in speed of the IBM 370 over the CDC 6600 we conclude that our time 

is comparable ([14] gives an advantage in speed of 5 to 6 for the IBM 370 over 

the CDC 6600 for network problems although there has been some question on 

the accuracy of this figure). Yet the N E T G E N  problems are only 3 -  12% dense 

while our time corresponds to 100% dense problems. Since existing codes are 

constantly improved, these figures do not constitute definite proof that our 

algorithm is superior to other algorithms based on simplex or primal-dual 

methods. They do, however,  suggest that our algorithm can provide, with the aid 

of sophisticated programming techniques, the basis for  improved codes for 

assignment. 
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