
Mathematical Programming 21 (1981) 152-171
North-Holland Publishing Company

A NEW ALGORITHM FOR THE ASSIGNMENT PROBLEM*

Dimitri P. B E R T S E K A S

Department of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, MA 02139, U.S.A.

Received 15 August 1979
Revised manuscript received 6 October 1980

We propose a new algorithm for the classical assignment problem. The algorithm resembles
in some ways the Hungarian method but differs substantially in other respects. The average
computational complexity of an efficient implementation of the algorithm seems to be
considerably better than the one of the Hungarian method. In a large number of randomly
generated problems the algorithm has consistently outperformed an efficiently coded version
of the Hungarian method by a broad margin. The factor of improvement increases with
the problem dimension N and reaches an order of magnitude for N equal to several hundreds.

Key words: Assignment Problems, Network Flows, Hungarian Method, Computational
Complexity.

1. Introduction

The assignment problem was among the first linear programming problems to

be studied extensively. It arises often in practice and it is a fundamental problem

in network flow theory since a number of other problems, such as the shortest

path, weighted matching, t ransportat ion and minimum cost flow problems, can

be reduced to it [l , p. 186-187]. It is characteristic in this respect that the first

specialized method for the assignment problem, namely Kuhn ' s Hungarian

method [2], was subsequently extended for solution of much more general

network flow problems. Fur thermore , some of its main ideas were instrumental

in the development of more general methods such as the out-of-kilter and

nonbiparti te matching methods. This suggests that the assignment problem is not

only important in itself, but is also suitable for development of new com-

putational ideas in network flow theory. It is for this reason that we restrict

attention to the assignment problem even though the ideas of this paper have

extensions to more general problems.

It seems that the currently most popular solution methods for the assignment

problem are specialized forms of the simplex method [3-5] and versions of

Kuhn ' s Hungarian method [6--8]. There has been some cont roversy regarding the

relative merits of simplex codes and primal-dual (i.e. Hungarian) codes]6, 9]. A

recent computat ional study [7] finds simplex and pr imal-dual codes roughly

comparable , while another study [8] reports that a pr imal-dual code based on the

* Work supported by Grant NSF ENG-7906332.

152

D.P. Bertsekas/ Assignment problem 153

work of Edmonds and Karp [10] outperforms simplex-like algorithms by a

considerable margin. The development of specialized codes for the assignment

problem using sophisticated programming techniques is an active research area

so it is difficult to assess the current state of the art.

The computational complexity of many of the existing codes is unknown and

in fact some of these codes [3, 6] are proprietary. It is known that the complexity

of the Hungarian method for full dense, all integer, N × N assignment problems

is O(N 3) [I, p. 205]. There is no simplex type method with complexity as good as

O(N 3) and there are no average complexity estimates for either Hungarian

methods or simplex methods to the extent of our knowledge.

The purpose of this paper is to propose a new method for solving the

assignment problem. We show in Section 3 that the worst case complexity of the

pure form of the method for full dense, all integer, N × N problems with the

elements of the assignment matrix taking values in the interval [0, R] is O(N 3) +

O(RN2). It appears, however, that for large values of R (say R > 100) the

method performs at its best when it is combined with the Hungarian method.

One such combination is described in Section 4 and the worst case complexity of

the resulting method is O(N3). Its average complexity, however, seems to be

substantially better than the average complexity of the Hungarian method. This

is demonstrated by means of extensive computational experiments with ran-

domly generated problems. These experiments show that the new method

consistently outperform s an efficiently implemented version of the Hungarian

method by a broad margin. Indeed, out of more than a thousand randomly

generated problems solved with N -> 20 we did not find a single problem where

our method did not work faster than the Hungarian method. Furthermore, the

factor of improvement increases with N thereby suggesting a better average

complexity. For large problems with N being several hundreds our method can

converge ten or more times faster than the Hungarian method.

Since we have been unable to characterize analytically the average complexity

of our method we cannot claim to fully understand the mechanism of its fast

convergence. On heuristic grounds, however, it appears that the new method

owes its good performance principally to a phenomenon which we refer to as

outpricing. This is explained more fully in the next section but basically it refers

to a property of the method whereby during the course of the algorithm the

prices of some sinks are increased by large increments--much larger than in the

Hungarian method. As a consequence these sinks are temporarily or per-

manently outpriced by other sinks and are in effect driven out of the problem in

the sense that they do not get labeled and scanned further--at least for relatively

long time periods. As a result the algorithm requires fewer row operations since

in effect it deals with a problem of lower dimension.

We finally note that we expect that algorithms similar to the one of the present

paper can be developed for other more general problems such as transportation,

minimum cost flow problems, etc. One such algorithm for the Hitchcock

transportation problem is reported in [11].

154 D.P. Bertsekas/ Ass ignment problem

2. The pure form of the algorithm

Consider a bipartite graph consisting of two sets of nodes S and T each

having N elements and a set of directed links L with elements denoted (i , j)

where i E S and j E T. We refer to elements of S and T as sources and sinks

respectively. Each link (i, j) has a weight a~j associated with it. By an assignment

we mean a subset X of links such that for each source i (sink j) there is at most

one link in X with initial node i (terminal node j). We say that a source i is

unassigned under X if (i, j) ~ X for all (i, j) j~ L. Otherwise we say that source i

is assigned under X. We use similar terminology for sinks. We wish to find an

assignment that maximizes ~i,j)Ex aij over all assignments X of cardinality N.

Throughout the paper we will assume the following:

(a) There exists at least one assignment of cardinality N,

(b) The weights aij are nonnegative integers not all zero and the maximal

weight will be denoted by R, i.e.,

R = max a~ i >0 .
(i,j)~L

(c) For each source i there are at least two links (i, j) in L.

Assumption (b) can be replaced by the more general assumption that aq are all

integers (not necessarily nonnegative) and for some integer R > 0 we have

max aq - min aq <- R, Vi ~ S.
jET jET

To see this note that if for any source i ~ S we subtract the constant minjcT a~j

from the weights a~i, Vj C T then the value of all possible assignments of

cardinality N changes by the same constant. Assumption (c) involves no loss of

generality, since if for some source i there is only one link (i, j) E L, then (i, j) is

certainly part of any optimal assignment and as a result nodes i and j can be

removed from the problem thereby reducing dimensionality. We use assumption

(c) for convenience in stating our algorithm.

The assignment problem can be embedded into the linear program

maximize ~ a~ix~i,
(i,j)~L

subject to ~, xij = l, Vi = l ,N ,
(i,j)CL

~, x i j = l , V j = I N,
(i,j)~L

x~j>-O, Vi, j = l N. (1)

The corresponding dual problem in the vectors m = (m~ , raN), p = (p~ PN)

is
N N

minimize ~ ml + ~ pj,
i=l j=l

subject to m~ + pj - a~j, V(i, j) ~ L. (2)

D.P. Bertsekas / Assignment problem 155

The scalars pj and (agj-pi) will be referred to as prices and profit margins

respectively. From complementary slackness we have that if (i, j) is part of an

optimal assignment, then for any optimal solution (m, p) of the dual problem we

have

mi = a~i - PJ = max{ai, - p, I all n with (i, n) E L}, (3)

i.e., at an optimum source i is assigned to a sink j offering maximum profit

margin relative to the price vector p.

The Hungarian method solves the dual problem by generating for k = 0, 1

vectors mk, p k together with a corresponding assignment X k. For each k the

vectors mk, p k are dual feasible and for all (i , j) E X k the complementary

slackness condition (3) is satisfied. These features are also shared by the

algorithm we propose. In the Hungarian method if a source i or sink j is assigned

under some X ~ it continues to be assigned under all X k, k >- k. In our method this

is also true for sinks j but it is not true for sources i. Sources may come in and

out of the current assignment with attendant changes in the vectors m and p.

Another difference of our method over the Hungarian method is the manner

in which the dual variables are incremented. In the Hungarian method

every change in the vectors m and p induces a reduction of the value of the

dual cost function. In our method when changes are made on the values of

m and p all that is guaranteed is that the objective function value will not

increase.

Both the Hungarian method and the algorithm we propose involve flow

augmentations along alternating paths and changes in the values of dual vari-

ables. The roles of these two devices are, however, somewhat different in the

two methods. The Hungarian method is geared towards assigning the unassigned

sources by searching directly for an augmenting path along links (i, j) with

m~ + pj = a~j. Dual variable changes are effected only when no more progress can

be made towards generating such an augmenting path. In our method the roles of

searching for an augmenting path and changing the dual variables are in effect

reversed. Primary consideration is given to increasing the prices of assigned sinks as

much as is possible without violating the complementary slackness constraint. The

aim here is to make the prices of unassigned sinks 'competi t ive ' with those of

assigned sinks. Augmentation is in some sense incidental and takes place either

when it can be effected at essentially no computational cost, or when it is no more

possible to continue the process of increasing prices of assigned sinks without

violating the complementary slackness constraint.

We now describe formally our method. A more specific implementation

together with an initialization procedure will be given in Section 3.

The method is initialized with any integer vectors m °, p0 that are dual feasible

and with X ° being the empty assignment.

For k --- 0, 1 given (m k, p k X k) satisfying for all i ~ S

156 D.P. Bertsekas/ Assignment problem

m~+p~=a, j i f (i , j) ~ X k,

m~+p~>-ai, V (i , n) ~ L ,

we stop if X k has cardinality N. Otherwise we use the following procedure to

generate (m k÷~, pk+~, Xk÷~) satisfying for all i E S

m~+~+p~ ÷~=aq i f (i , j) E X k÷j,

k÷l - V(i, n) E L. mki+l+pn ~ain

(k + 1) st iteration of the algorithm

Choose a source i" which is unassigned under X k. Compute the maximum profit

margin

r~ = max{arf - p~] (i-, j) E L} (4)

and find a sink ~- such that

k
th = a ; j - p ; . (5)

Compute also the 'second maximum' profit margin

fit = max{at / - p~] (i, j) E L, j ~ j}. (6)

Proceed as described for the following two cases:

Case 1: r~ > fit, or fit = fit and sink "f is unassigned under X k

Set

fro/k for i~ i,
m ~ + l = (7)

lilt " for i = L

~" p~ for j ~ T p~÷t=
pk + r ~ - fit for j =)-. (8) t J

If j" is unassigned under X k, add (i, j) to X k, i.e.,

x k+' = x k n {(L/)}.

If (f, j') C X k for some ~ C S, obtain X k+' from X k by replacing (f, j-) by (L J), i.e.,

x ~ + ' = i x ~ u {(~-, j -)}]- {(f, i)}.

This completes the (k + 1) St iteration of the algorithm.

Case 2: fit = fit and for some f E S we have (i, j-) ff X k

Give the label '0' to L Set
k

m T ~-- if/,

7rj=oo, j = l ,N , (9)

and perform the following labeling procedure (compare with [1, p. 205]).

D.P. Bertsekas / Assignment problem 157

Step 1 (Labeling): Find a source i with an unscanned label and go to Step la, or

find a sink j ~ j" with an unscanned label and ~'j -- 0 and go to Step lb. If no such

source or sink can be found go to Step 3.

Step la: Scan the label of source i as follows. For each (i, j) ~ L for which

m~ + p ~ - aij < 1rj give node j the label ' i ' (replacing any existing label) and set

~rj ~-- m ~ + p k _ alj. Return to Step 1.

Step lb: Scan the label on the sink j # j with ~-j = 0 as follows. If j is unassigned

under X k go to Step 2. Otherwise identify the unique source i with (i, j) E X k and

give i the label 'j ' . Return to Step 1.

Step 2 (Augmentation): An augmenting path has been found that alternates

between sources and sinks, originates at source r and terminates at the sink j

identified in Step lb. The path can be generated by 'backtracing' from label to

label starting from the terminating sink j to the originating source i. Add to X ~

all links on the augmenting path that are not in X k and remove from X k all links

on the path that are in X k to obtain X k+l. Set m k+~= m k, pk+l=pk. This

completes the (k + 1) st iteration of the algorithm.

Step 3 (Change of dual variables): Find

,3 = min{~-j [j E T, 7r i > 0}.

Set

m~+, [m k-,3 if i has been labeled,

= [m k if i has not been labeled.

(Recall here that m} was set equal to ff~ in the initialization of the labeling

procedure cf. (9)). Set

k+ l=~ p~+~ if ~rj=O,
P; [p~ if ~rj > O.

Obtain X k+' from X k by replacing (f, j) by (i, j-), i.e.,

x k+' -- [x k u (G, ;)}] - ((f,

This completes the (k + l) st iteration of the algorithm.

Notice that, by contrast with the Hungarian method (see Section 3), the

iteration need not terminate with a flow augmentation. It can also terminate with

a change in the dual variables (Case 1, j is assigned, or Case 2, Step 3) but in this

case the source i- under consideration becomes assigned under X k+~, while some

other source i which was assigned under X k becomes unassigned under X k+~.

A useful conceptual aid in understanding the algorithm is to think of it in

terms of an auction. Let us imagine that sinks are items for sale in an auction

158 D.P. Bertsekas/ Assignment problem

and each source i is a person for whom each item j is worth aii. After the k th

iteration of the algorithm some of the items have been temporarily assigned to

persons that have bid up their prices to levels p~. If Case 1 holds at the (k + 1) 't

iteration, the (unassigned) person i- selects the item 1- that offers maximum profit

margin and bids up its price by the amount (t~ - th)-- the maximum amount for

which]" will still offer maximum profit margin. The item ~- is then assigned to the

individual i- in place of any other person f that may have bid earlier for 1". In

these terms the algorithm may be viewed as a process whereby persons compete

for items by trying to outbid each other. One can interpret Case 2, Step 3

similarly except that this interpretation involves the (admittedly less intuitive)

idea of a cooperative bid whereby several persons simultaneously increase the

prices of corresponding items. During actual computation Case 1 occurs far

more frequently than Case 2, so, should someone wish to give a name to the

algorithm, we suggest calling it the auction algorithm.

Unfortunately the description of the algorithm in Case 2 is quite complicated.

For this reason some explanatory remarks are in order. In Case 2 we basically

try to find an augmenting path not containing f from source i- to an unassigned

sink. There are two possibilities. Either an augmenting path will be found

through Step 2 of the labeling procedure, or else a change in the dual variables

will be effected through Step 3. In the first case the link (~i)-) will be retained in

X g÷~ and the sink at which the augmenting path terminates will be assigned

under X k+~ as shown in Fig. 1. In the second case the link (f~ j) will be replaced

by (i, j-) in X k+~ and no new sink will be assigned under X g+~ as shown in Fig. 2.

The dual variables will change, however, by the minimum amount necessary to

obtain m k+~+ p k+~_ aq for some labeled source i and labeled but unscanned sink

j. A similar (but not identical) labeling procedure is used in the Hungarian

method (see Section 3). In the Hungarian method after a change in dual variables

S T

A.

k
X

Case 2, Step 2,

o

o

S T

7

Augmenting ~ j
Path

Xk+l

= Assigned link,

o = Unassigned link (i,j) with mi+Pj=aij ,

o = Unassigned link(i, j) with mi+P j >aij

Fig. 1.

D.P. Bertsekas/ Assignment problem 159

S T S T

A A

i i i i

X k X k+t

Case 2, Step3, o.---.--.-..----~o = Assigned link,

e o = Unassigned l ink (i , j)w i th mi+P j =aij ,

o o = Unassigned l ink (i , j)w i th m i+p j >oi j .

Fig. 2.

occurs the labeling procedure continues until an augmenting path is found. By

contrast in our method the labeling procedure terminates with a change in the

dual variables and a new iteration is started with a new unassigned sink.

The order in which unassigned sources are chosen by the algorithm is not

essential for the convergence result of Proposi t ion 1. However , from the

practical point of view it is important their a scheme that ensures fairness for all

unassigned sources be utilized. In subsequent examples as well in our im-

plementation of the method the scheme adopted is one whereby a list of

unassigned sources is maintained by the algorithm. At each iteration the source

at the top of the list is chosen and if a new source becomes unassigned (Case 1, j

assigned under X k, or Case 2, Step 3) it is placed at the bottom of the list.

We illustrate the algorithm by means of an example.

Example 1. Consider the 4 × 4 full dense problem represented by the following

initial tableau.

p~ 0 0 0 0

j m~

10 1 3 6 1

10 2 4 7 3

10 2 5 7 2

10 I 3 5 1

160 D.P. Ber tsekas/ Ass ignment problem

The matrix of weights is shown in the lower right port ion of the tableau. The row

above the matrix gives the initial prices arbitrarily chosen to be zero. The

column to the left of the matrix shows the initial profit margins. We have chosen

mi = 10 for a l l / - - o n e of the m a n y choices satisfying feasibility. The ext reme left

column gives the sinks j, if any, to which sources are assigned. Here we are

starting with the empty assignment. We describe successive iterations of the

algorithm. The corresponding tableaus are given in Fig 3.

1 st iteration: we choose the unassigned source 2. We have r~ = 6 , rh = 3 ,

f = 3. We are thus in Case 1.

2 nd iteration: we choose the unassigned source 2. We have n~ = rh - -4 .

Suppose j" = 2. Since j" is unassigned we come again under Case 1. (If we had

chosen j = 3, then we would have come under Case 2. We would have obtained

pj 0 0 3 0 pi 0 0 3 0

j m~ i m,

3 1 3 6 1 3 3 1 3 6 1

10 2 4 7 3 2 4 2 4 7 3

10 2 5 7 2 10 2 5 7 2

10 1 3 5 1 10 1 3 5 1

After 1 st iteration

pj 0 1 3 0

j mi

3 3 1 3 6 1

4 2 4 7 3

2 4 2 5 7 2

10 1 3 5 1

After 3 rd iteration

pj 0 2 4 0

j ml

3 2 1 3 6 1

4 3 2 4 7 3

4 2 5 7 2

2 1 1 3 5 1

After 5 th iteration

Fig. 3.

After 2 nd iteration

pj 0 2 4 0

i m~

3 2 I 3 6 1

4 2 4 7 3

4 2 5 7 2

2 1 1 3 5 1

After 4 th iteration

pj 0 2 4 0

i m~

3 2 1 3 6 1

4 3 2 4 7 3

2 3 2 5 7 2

1 1 1 3 5 1

After 6 th iteration

D.P. Bertsekas/ Assignment problem 161

the degenerate augmenting path (2, 2) through Step 2 of the labeling procedure

and the end result would have been the same.)

3 rd iteration: We choose the unassigned source 3. Here rfi = 5, rh = 4, j" = 2.

We are thus again in Case 1. But now source 2 will be driven out of the

assignment and will be replaced by source 3.

4 th iteration: We choose the unassigned source 4. Here rfi = rh = 2. Suppose

j- = 2. We are now in Case 2 with ~ = 3. Applying the labeling procedure we label

first source 4. A simple computation shows that sink 3 is labeled from source 4

and then source 1 is labeled from sink 3. No more labels can be scanned so we

are in Step 3 of Case 2. Source 4 will enter the assignment and source 3 will be

driven out. We have 6 = 1 and the corresponding tableau is shown in Fig. 3.

5 th iteration: We choose the unassigned source 2. Here tfi = rh = 3. Suppose

j----4. We are in Case 1 and (2, 4) will be added to the assignment. (The result

would be the same if j = 3 in which case the degenerate augmenting path (2, 4)

would be obtained via Step 2 of Case 2.)

6 th iteration: We choose the unassigned source 3. Here ff~ = rh = 3. Suppose

= 3. We are in Case 2 with f = 1. Applying the labeling procedure we label first

source 3. Sink 2 is labelled from source 3 and then source 4 is labeled from sink

2. Next sinks 1 and 4 are labeled from source 4. Sink 1 is unassigned and this

yields the augmenting path (3, 2), (4, 2), (4, 1) in Step 2 of Case 2. The algorithm

terminates.

We make the following observations regarding the algorithm.

(a) The sequences {ink}, i = 1, . . . , N are monotonically nonincreasing while

the sequences {p~} are monotonically nondecreasing.

(b) If for some/~ a sink j is assigned under X ~, then it remains assigned under

X k for all k >/~.

(c) At each iteration initiated with an unassigned source i- one of two things

can happen. Either the cardinality of the assignment increases by one (Case 1, ~-

is unassigned, or Case 2, Step 2), or else at least one variable mi will decrease

strictly by an integer amount and at least one price will increase strictly by an

integer amount (Case l, f is assigned, or Case 2, Step 3).

(d) For every k and i ~ S we have

m k + p ~ = a 0 if (i , j) ~ X k, (10)

m~ +pk,>>-ai, V (i , n) E L . (11)

From (10) and (11) we see that dual feasibility and complementary slackness

are maintained throughout the algorithm. Thus if the algorithm terminates (by

necessity at an assignment of cardinality N) , then the assignment and dual

variables obtained are optimal. The following proposition shows that termination

is guaranteed under the assumption made earlier that there exists at least one

assignment of cardinality N.

162 D.P. Bert sekas / Assignment problem

Proposition 1. The algorithm of this section terminates at an optimal assignment

in a finite number of iterations.

Proof. Assume that the algorithm does not terminate. Then after a finite number

of iterations the cardinality of the current assignment will remain constant and at

each subsequent iteration at least one variable ml will decrease strictly and at

least one price will increase strictly (observation (c) above). Hence the sets

S~, T~ defined by

S~ = {i ~ S [lim m ~ = -oo},
k-->~

T~ = {j E T I lim p ~ = oo}

are nonempty. For all k sufficiently large the sinks in T~ are assigned under X k

(observation (b)) and they must be assigned to a source in S~ (observation (d)).

Furthermore, since the algorithm does not terminate, some source in S~ must be

unassigned under X k. It follows that the cardinality of S~ is strictly larger than

that of T~. From (1 l) it is clear that there cannot exist a link (i, j) E L such that

i E S~ and j ~ T~. Thus we have

{j [(i , j) E L , i ~ S ~ } C T~

while S~ has larger cardinality than T~. This contradicts the assumption that

there exists an assignment of cardinality N.

3. Computational complexity analysis

We now estimate the worst case computational complexity of the algorithm

for full dense problems (i.e. for problems such that (i,]) E L for all i E S, j ~ T).

By subtracting (11) from (10) we have for all k, i E S and n E T

p ~ - p ~ < - a i j - a i n < - R i f (i , j) E X k. (12)

Suppose that B~ and B2 are lower and upper bounds for all initial prices, i.e.

B]<-p°<-B2, V j C T . (13)

For each k there must be at least one unassigned sink, say ~k and we must have
k 0 P~k = P~k -< B2. It follows from (12) and observation (a) that

B1<-p°<-p~<-R+B2, Vk =0 , 1 and j ~ T. (14)

It is easy to see that there is an integer y such that the k 'h iteration of the

algorithm requires at most ~/zkN computer operations where

1, in Case 1,
zk = number of labeled sources, in Case 2,

D.P. Bertsekas/ Assignment problem 163

There can be at most N iterations at which the cardinality of X k increases so the

number of operations needed for these is bounded by vN 3. At each iteration k

for which the cardinality of X ~ does not increase, zk prices will be increased by

at least unity. It follows from z~---N and (14) that the total number of these

iterations is bounded by R + (B2 - B0. Hence the total number of operations for

these iterations is bounded by 3,(R + B 2 - BON 2. If we restrict the initial prices

so that for some integer ~ we have B2-B~-< qR (as indeed would be the case

with any reasonable initialization procedure including the one used in our

experiments) we obtain the upper bound ~N3+ ~(1-t-~)RN 2 on the number of

operations necessary for problem solution. Thus the worst case complexity of

the pure form of the algorithm for full dense problems is

O(N 3) -t- O(RN2). (15)

While the worst case complexity of the algorithm is inferior to the one of the

Hungarian method for large R, we would like to emphasize that, as experience

with the simplex method has shown, worst case complexity and average com-

plexity of an algorithm can be quite different. Thus t w o algorithms with

comparable worst case complexity can differ substantially in their performance

in sovling randomly generated problems or problems typically arising in practice.

In our computational experiments with random problems we found that the

algorithm often performed surprisingly better than the Hungarian method. The

following example illustrates what we believe is the mechanism responsible for

this superior performance.

Example 2. Consider the N × N full dense problem specified by the assignment

matrix

" N

N N - 1

N N - 1 N - 2

3

2 2

3 2 1

N N - 1 N - 2

with all elements above the diagonal equal to zero. Le t us trace the iterations of

our algorithm for this problem starting with p = 0 and the empty assignment. In

the first iteration source 1 is chosen, we have ffl = N, rh = 0, j-= 1 and, under

Case 1, link (1, 1) is added to the assignment while price pl is increased to N. In

the second iteration source 2 is chosen, we have fit = N - 1, rh = 0, ~ = 2 and,

under Case 1, link (2, 2) is added to the assignment while price P2 is increased to

N - 1. Continuing in this manner we see that at the k th iteration link (k, k) will be

added to the assignment and the price pk is increased to k. Thus the algorithm

terminates in N iterations and its computat ion time for this problem is O(N2).

164 D.P. Bertsekas/ Assignment problem

If we apply the Hungarian method of the next section to the same problem

with the same initial conditions we find that at every iteration except the first all

sources will be scanned leading to a computation time O(N3).--essentially N

times slower than with our method. This type of example does not depend on the

initial prices as much as it may appear, since if the standard initialization

procedure of the Hungarian method were adopted (see next section), then by

adding a row of the form [N, N , - . . N] and a column consisting of zeros in all

positions except the last to the assignment matrix, the computation times of the

two methods remain essentially unchanged for large N.

In analyzing the success of our method in this example we find that it is due to

the fact that by contrast with the Hungarian method, it tends to increase prices

by as large increments as is allowed by the complementary slackness constraint.

Thus in the first iteration p~ is increased by N. This has the effect of outpricing

sink 1 relative to the other sinks in the sense that the price of sink 1 is increased

so much that, together with source 1, it plays no further role in the problem.

Thus in effect after the first iteration we are dealing with a problem of lower

dimension. By contrast the Hungarian method in the first iteration will add link

(I, 1) to the assignment but will not change its price from zero. As a result source

1 and sink 1 are labeled and scanned at every subsequent iteration. Outpricing

sink 1 has another important effect namely it allows a large price increase and

attendant outpricing for sink 2 at the second iteration. This in turn allows

outpricing sink 3 at the third iteration and so on. This illustrates that outpricing

has the character of a chain phenomenon whereby outpricing of some sinks

enhances subsequent outpricing of other sinks.

The preceding example is obviously extreme and presents our method in the

most favorable light. If, for example, the first row contained some non-zero

elements other than N, the change in the price p~ at the first iteration would be

smaller than N. In this case the effect of outpricing, while still beneficial, would

not be as pronounced and it would drive source 1 and sink 1 out of the problem

only temporarily until the prices of other sources increase to comparable levels.

While we found that the algorithm of this section performs on the average

substantially better than the Hungarian method for randomly generated prob-

lems, we often observed a pattern whereby the algorithm would very quickly

assign most sinks but would take a disproportionally large number of iterations

to assign the last few sinks. For example for N = 100 we observed some cases

where 75% of the iterations were spent for assigning the last two or three sinks.

Predictably in view of the complexity estimate (15) this typically occured for

large values of R (over 100). This points to the apparent fact that the beneficial

effect of outpricing is most pronounced in the initial and middle phases of the

algorithm but sometimes tends to be exhausted when there are only few

unassigned sources. The remedy suggesting itself is to combine the algorithm

with some form of the Hungarian method so that if the algorithm does not make

sufficiently fast progress a switch is made to the Hungarian method. One of the

D.P. Bertsekas/ Assignment problem 165

many possible such combined methods is presented in Section 4. Its wors t case

computat ional complexi ty is O(N3)- - the same as for the Hungarian method. Its

pe r formance on randomly generated problems was found to be consistently

superior to the Hungarian method and (for R > 100) to the pure form of the

algorithm as well. Significantly, the factor of improvemen t over the Hungar ian

method increases with problem dimension, thereby suggesting a bet ter average

computat ional complexity.

4. Combination with the Hungarian method--computational results

Since we intend to compare and combine our method with the Hungar ian

method we describe here the implementat ion of the Hungar ian method that we

used in our computat ional experiments.

The initial assignment X ° is taken to be the empty assignment and the initial

dual variables are chosen according to the usual scheme

0 _ m a x { a i j l j E T } , i = l , N, m i - . . . ,

p 0 = m a x { a ~ j _ m 0 1 i E S } , j = l N.

Notice that the equations above imply

m°+p°>-a~j, V(i , j)~L.

For k = 0, 1 N - 1, given (m k, pk, X k) satisfying for all i E S

m~ +p~=a~j if (i,j) EXk, 1

m~+p~>al, V(i ,n)EL,

we obtain (m TM, pk÷~, Xk+~) satisfying for all i ~ S

m~+l+p~+l=aij i f (i ,]) E ~ " ..k+l,

ml * >ain V (i , n) E L ,

according to the following labeling procedure.

Step 0: Give the label '0 ' to all unassigned sources under X k. Set ~rj = o%

j = l N.

Step 1 (Labeling): Find a source i with an unscanned label and go to Step la,

or find a sink j with an unscanned label and 7ri = 0 and go to Step lb. If no such

source or sink can be found, go to Step 3.

Step la: Scan the label of source i as follows. For each (i,j)E L for which

1 k k Actually throughout the algorithm the stronger condition m~ = max{a~, - p n [(i, n) E L} holds for all
k k k k and i ~ S. We state the algorithm in this form in order to emphasize that (m , p , X) need only satisfy

the same conditions as in the algorithm of the previous section, thereby simplifying the transition from
one algorithm to the other.

166 D.P. Bertsekas/ Assignment problem

m k + p ~ - a~ < ~rj give node j the label ' i ' (replacing any existing label) and set
k ~r s ~ m ~ + p s - aij. Return to Step 1.

Step lb: Scan the label on the sink j with ~i = 0 as follows. If j is unassigned

under X ~ go to Step 2. Otherwise identify the unique source i with (i, j) ~ X ~,

and give i the label 'j ' . Return to Step 1.

Step 2 (Augmentation): An augmenting path has been found that alternates

between sources and sinks originating at a source unassigned under X k and

terminating at the sink j identified in Step lb. The path is generated by

'backtracing' from label to label starting from the terminating sink j. Add to X k

all links on the augmenting path that are not in X k and remove from X k all links

on the augmenting path that are in X k. This gives the next assignment X k+'. Set

mk+~ = m ~, p~.~ = pk. (Note that m k and pk may have been changed through Step

3). This completes the iteration of the algorithm.

Step 3 (Change of dual variables): Find

;~ = min{~rs I J E T, ~r s > 0}. (16)
Set

k k m i *-- m ~ - ~ for all i E S that are labeled,

p ~ <--- p ~ + ~ for all j E T with irj = 0,

zr l <--- ,rj - ~ for all j ~ T that are labeled and ~rj > 0.

and go to Step 1.

Notice that the labeling procedure will terminate only upon finding an aug-

menting path at Step 2 and therefore at each iteration the cardinality of the

current assignment is increased by one. Thus X N has cardinality N and is an

optimal assignment. It can be shown that the worst case computational com-

plexity of this algorithm is 0(3/3).

As already discussed, for R > 100 it appears advantageous to combine our

new algorithm with the Hungarian method. A switch from the new algorithm to

the Hungarian method is very simple in view of the similarities of the two

methods. We have used the following scheme in our experiments. There are

several other possibilities along similar lines.

We are making use of two lists of unassigned sources during execution of the

algorithm. Each unassigned source is contained in one and only one of the two

lists. We select at each iteration the unassigned source which is at the top of the

first list. If in that iteration a new source becomes unassigned (Case 1, j-

assigned, or Case 2, Step 3) this source is placed at the bottom of the second list.

Initially the first list contains all sources and the second list is empty. As the

algorithm proceeds the size of the first list decreases while the size of the second

list increases. When the first list is emptied the contents of the second list are

transferred to the first and the second list becomes empty. We refer to the

portion of the algorithm between the time that the first list is full to the time it is

empty as a cycle. At the end of each cycle we compare the number of sources in

the second list with the number of sources contained in the first list at the

D.P. Bertsekas / Assignment problem 167

beginning of the cycle. If they are the same (implying that no augmentation

occured during the cycle) a counter initially set at zero is incremented by one.

The counter is also incremented by one if during the cycle Case 2, Step 3 was

reached more than a fixed prespecified number of times (4 in our experiments)

with the number of labeled sources being more than a fixed prespecified number

(10 in our experiments) 2. At the point where the counter exceeds a prespecified

threshold value a switch is made to the Hungarian method of the previous

section. The threshold value was set at 0.1N in all of our experiments, but the

average performance of the algorithm seems fairly insensitive to this value

within broad limits. It is a straightforward but tedious exercise to show that the

complexity of this combined algorithm is bounded by O(N3). The proof essen-

tially consists of showing that at most O(N 3) operations are necessary before a

switch to the Hungarian method takes place. In almost all the problems we

solved, the great majority (95-100%) of sinks were assigned by the new al-

gorithm and the remainder by the Hungarian method after a switch was made.

This was particularly true for small values of R when for most problems a

switch to the Hungarian method was not necessary.

Finally regarding initialization we have in all cases chosen X °-- empty, and
0__ 0__ p j - 0, m ~ - R for all i and j. However at the end of the first cycle (i.e. at the end

of the N 'h iteration) the prices of all unassigned sinks j are changed from p~ = 0

to

p~ = max{all - mY [i: assigned under Xn}.

The remaining prices and all values m~ N are left unchanged. This is in effect an

initialization procedure quite similar to the one for the Hungarian method given

earlier. Its purpose is to reduce the prices of the unassigned sinks as much as

possible without violating the complementary slackness constraint. It has wor-

ked quite well in our experiments.

Tables 1 and 2 show the results of our computational experiments with

randomly generated full dense, N x N problems. Each entry represents an

average over five problems, which were the same for all three methods and for

each N. The weights were chosen from a uniform distribution over [0, 1] and

subsequent multiplication by R (Table 1), or f rom a normal distribution N(0, 1)

and subsequent multiplication by ~ (Table 2). They were then truncated to the

nearest integer. The programs were written in Fortran and compiled with the

optimizing compiler in the OPT = 2 mode. The times given in the top entry of

each cell refer to the IBM 370/168 at M.I.T. We give in the bot tom entry of each

cell the average number of sources scanned for each method (Case 1 in the new

algorithm corresponds to one source scanned). The average computat ion time

per source scanned does not differ much from one method to another, so the

2 Actually this last device does not seem to play an important role for practical purposes. It was
introduced in order to make possible a proof of an O(N 3) complexity bound for the combined
algorithm.

168 D.P. Bertsekas/ Assignment problem

z

t ~

< ~

O~

t'~ ¢q

~5 T M

¢'4 "~"

¢q

¢q

tr~

D.P. Bertsekas[Assignment problem 169

Table 2
Top entry in each cell = time in secs on IBM 370. Bottom entry = number of sources scanned.

Average over five N × N full dense problems with weights chosen by normal distribution
N(0, 1) and subsequent multiplication by ~ and truncation to the nearest integer.

N

50

Hungarian method

X 30 100 10 000

0.079 0.085 0.089

440 449 458

Combined new algorithm

and Hungarian method

30 100 10 000

0.024 0.025 0.026

135 136 140

Pure form of the new
algorithm

30 100 10 000

0.033 0.037 0.038

192 233 238

100 0.419 0.455 0.487 0.091 0.091 0.094 0.103 0.118 0.113
1317 1383 1447 285 288 283 326 388 395

150 1.25 1.40 1.53 0.260 0.267 0.292 0.342 0.425 0.420

2868 3128 3265 570 599 601 728 929 1024

200 2.78 3.07 3.43 0.492 0,486 0.533 0.603 1.00 0.800

4975 5395 5700 808 819 852 975 1607 1536

300 8.25 10.0 1.21 1.15 1.45 2.21
10101 11864 1318 1268 1576 2270

400 20.4 24.8 2.63 2.45 2.85 9.55
19103 22755 2140 2083 2350 8108

number of sources scanned represents a valid measure of compar i son which is

independent of the computer , compiler , p rogrammer and time of the day the run

was made. The results c lear ly indicate that the combined method is overal l

superior to the others. The pure form of the new algorithm also appears superior

to the Hungar ian method, but not by as much as the combined method. Also for

R > 100 the var iance of computa t ion time exhibi ted by the pure form of the

algori thm is larger than those of t he Hungar ian and the combined methods. The

combined method had the smallest var iance in computa t ion time over the three

methods tested. For R <--100 the pe r fo rmance of the pure and the combined

forms of the algori thm are nearly identical indicating that in most cases a switch

to the Hungar ian method was never made and when it was it did not resul t to

any substantial improvement .

While we h~/ve not developed a sparse problem code, we did test the

algori thms on sparse problems with the full dense code by employing the device

of setting the weights of a fixed percentage of links ranging from 50% to 90% to

(essential ly) - ~ and choosing the weights of the remaining links via a uniform

dis t r ibut ion as in Table 1. The results were qual i tat ively similar to those of Table

1. The number of rows scanned was decreased by roughly 10% on the average

for the pure and combined forms of the new algorithm and by roughly 5% for

170 D.P. Bertsekas / Assignment problem

the Hungarian method. Computation times were not recorded as these are

meaningless in the absence of special data structure techniques exploiting

sparsity. However , when such techniques are implemented the comparison of

computation times should favor our algorithm even more since Step 3 (Case 2)

of our algorithm (which is relatively time consuming for sparse problems) is

executed far less frequently tban the corresponding Step 3 of the Hungarian

method.

As a final comparison with existing methodology it is worth observing that the

computation time of Table 1 for the combined method and 200 x 200 problems

with weights in the range [0, 100] is 0.526seconds. There are five 200x

200 N E T G E N benchmark assignment problems with weights in the range [0, 100]

that have been solved by a number of presently available codes. The best

solution times achieved range from 0.96 to 1.68 secs on a CDC 6600 [3,7] and

0.38 to 0.90secs on an IBM 370/168 [12]. Making an adjustment for the

advantage in speed of the IBM 370 over the CDC 6600 we conclude that our time

is comparable ([14] gives an advantage in speed of 5 to 6 for the IBM 370 over

the CDC 6600 for network problems although there has been some question on

the accuracy of this figure). Yet the N E T G E N problems are only 3 - 12% dense

while our time corresponds to 100% dense problems. Since existing codes are

constantly improved, these figures do not constitute definite proof that our

algorithm is superior to other algorithms based on simplex or primal-dual

methods. They do, however, suggest that our algorithm can provide, with the aid

of sophisticated programming techniques, the basis for improved codes for

assignment.

Acknowledgment

The assistance of Eli Gafni with the computational experiments as well as helpful

discussions are gratefully acknowledged.

References

[1] E. Lawler, Combinatorial optimization: networks and matroids (Holt, Rinehart and Winston,
1976).

[2] H.W. Kubn, "The Hungarian method for the assignment problem", Naval Research Logistics
Quarterly 2 (1955) 83-97.

[3] R.S. Barr, F. Glover and D. Klingman, "The alternating basis algorithm for assignment
problems", Mathematical Programming 13 (1977) I.

[4] G.H. Bradley, G.G. Brown and G.W. Graves, 'Design and implementation of large scale primal
transhipment algorithms", Management Science 24 (1977) I.

[5] R.V. Helgason and J.L. Kennigton, "NETFLOW program documentation", technical report
IEOR 76011, Department of Industrial Engineering and Operations Research, Southern
Methodist University (1976).

[6] R.S. Hatch, "Bench marks comparing transportation codes based on primal simplex and
primal-dual algorithms", Operations Research 23 (1975) 1167.

D.P. Bertsekas / Assignment problem 171

[7] L.F. McGinnis, "Implementation and testing of a primal-dual algorithm for the assignment

problem", Industrial and Systems Engineering report series No. J-78-31, Georgia Institute of

Technology (November 1978).

[8] A. Weintraub, and F. Barahona, "A dual algorithm for the assignment problem", Departmento

de Industrias Report No. 2, Universidad de Chile-Sede Occidente (April 1979).

[9] F. Glover and D. Klingman, "Comment on a note by Hatch on network algorithms" Operations
Research 26 (1978) 370.

[10] J. Edmonds and R. Karp, "Theoretical improvements in algorithmic efficiency for network

flow problems", Journal of the Association for Computing Machinery 19 (1972) 248-264.

[11] D.P. Bertsekas, "An algorithm for the Hitchcock transportation problem", Proceedings of the 18 th

AUerton conference on communication, control and computing, Allerton Park, 11 Oct. 1979.

[12] M.D. Grigoriadis, Talk at Mathematical Programming Symposium, Montreal, August 1979 (also

private communication).

