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Abstract. In this paper, we introduce two powerful graph reductions
for the maximum weighted stable set (mwss) in general graphs. We show
that these reductions allow to reduce the mwss in claw-free graphs to
the mwss in a class of quasi-line graphs, that we call bipolar-free. For
this latter class, we provide a new algorithmic decomposition theorem
running in polynomial time. We then exploit this decomposition result
and our reduction tools again to transform the problem to either a single
matching problem or a longest path computation in an acyclic auxil-
iary graph (in this latter part we use some results of Pulleyblank and
Shepherd [10]). Putting all the pieces together, the main contribution
of this paper is a new polynomial time algorithm for the mwss in claw-
free graphs. A rough analysis of the complexity of this algorithm gives
a time bound of O(n6), where n is the number of vertices in the graph,
and which we hope can be improved by a finer analysis. Incidentally,
we prove that the mwss problem can be solved efficiently for any class
of graphs that admits a “suitable” decomposition into pieces where the
mwss is easy.

1 Introduction

A graph is claw-free if no vertex has a stable set of size three in its neighborhood.
While the stable set problem is NP-hard in general, it can be solved in polyno-
mial time for claw-free graphs [8,11,12,6]. The stable set problem on claw-free
graphs is a fundamental generalization of the matching problem. In particular,
from an algorithmic point of view, it generalizes the matching problem in two
different ways, and all the current algorithms exploit either one of those two
generalizations.

A first way to see this problem as a generalization of the matching problem is
in terms of augmenting paths. Berge [1] proved that a matching M is maximal
for a graph G if and only if there is no alternating path that is augmenting for
M . This property, often called the augmenting path property, can be extended
to stable sets in claw-free graphs as Berge also observed [2]. Indeed he proved
that a stable set S is maximal for a claw-free graph G if and only if there is no
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alternating path that is augmenting for S. The algorithms by Sbihi [11], Minty
[8,9] or the variation of Minty’s algorithm given by Schrijver [12] are based on
the detection of augmenting paths.

Another way to see the stable set problem in claw-free graphs as a generaliza-
tion of the matching problem is in terms of graph structure. Indeed, line graphs
are those graphs that can be obtained from a (possibly non simple) undirected
graph G by bijectively mapping the edges of G to the vertices of a new graph
L(G) and by connecting two vertices in L(G) if the corresponding edges are in-
cident in G. It is straightforward to observe that for each vertex v in L(G), N(v)
can be covered by two cliques. The graphs with this latter property are called
quasi-line graphs. Quasi-line graphs (and thus line graphs) are claw-free. Now,
due to the one-to-one mapping between the edges of a graph G and the vertices
of its line graph L(G) and by definition of adjacencies in L(G), there is also a
one-to-one correspondence between matchings in G and stable sets in L(G) and
thus the stable set problem in claw-free graphs is a generalization of the stable
set problem in line graphs, which is a matching problem. Lovász and Plummer
[6] defined graph reductions that preserve the stability number to reduce the
unweighted stable set problem in a claw-free graph to an unweighted stable set
problem in a line graph.

Unfortunately Lovász-Plummer’s approach does not deal with the weighted
version of the stable set problem on claw-free graphs. Therefore, the only algo-
rithm for the weighted case is the one given in 1980 by Minty [8,9] (and the
slightly different version discussed in Schrijver [12]). This algorithm is not very
“natural”, as it converts the original problem to the problem of detecting aug-
menting paths in some auxiliary graphs, called “Edmonds graphs”, on which
some matching problems are solved. Moreover, its overall complexity is O(n6),
where n denotes the number of vertices in the original graph.1 The question
of finding a more direct and fast algorithm arises therefore naturally, as for in-
stance it was recently pointed out in [7] “. . . one needs a better reduction from
weighted claw-free to weighted line graphs, which seems to be a challenging
research problem.”

We also point out that an elegant algorithm has been given by Pulleyblank
and Shepherd [10] for the maximum weighted stable set mwss problem on a
subclass of claw-free graphs, called distance claw-free. The algorithm is based on
finding a longest path in an acyclic digraph and has complexity O(n3).

In this paper, we propose a new algorithm for the maximum weighted stable
set (mwss) problem in claw-free graphs. The algorithm is based on graph reduc-
tions and on a new decomposition theorem for a class of quasi-line graphs, that
we call bipolar-free. First, we perform graph reductions that somehow extend
the approach of Lovász and Plummer to the weighted case as to end up with
an mwss problem on a bipolar-free quasi-line graph. We here use our decompo-
sition theorem stating that a bipolar-free quasi-line graph that is not distance
claw-free can be decomposed into at most n distance claw-free graphs, that,

1 In [7], it is claimed that the complexity of Minty’s algorithm is O(n7); we have
however not been able to convince ourselves that this is correct.
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because of their properties, we call distance simplicial. When the graph is dis-
tance claw-free, we use the algorithm by Pulleyblank and Shepherd [10] and
otherwise, using our decomposition, it is possible to evaluate an mwss for the
original graph by solving a single matching problem. A rough analysis of the com-
plexity of the proposed algorithm gives a time bound of O(n6), which we hope
can be improved by a finer analysis, that we defer to the journal version of
the paper. The steps of the algorithm are summarized below with pointers to
the corresponding results in the paper.

Sketch of the Algorithm

1. Check that G contains a stable set of size 4 by enumeration (O(n4))
– If not, find an mwss by enumeration in O(n3) and stop.

2. Check that G is quasi-line (by detecting 5-wheels)
– If not, reduce the mwss problem on G to the mwss problem on a graph

G′ which is either quasi-line or α(G′) ≤ 3 (O(n4), see Lemma 13). If
α(G′) ≤ 3, solve the problem on G′ by enumeration.

3. G′ is a quasi-line graph (possibly, G′ = G). Check that G′ is bipolar-free (by
detecting bipolar pairs)

– If not, add appropriate edges to turn G′ into a bipolar-free quasi-line
graph G′′ with the same vertex set and αw(G′′) = αw(G′) (O(n6), see
Lemma 17). Every stable set of G′′ is also a stable set of G′.

4. G′′ is a bipolar-free quasi-line graph (possibly, G′′ = G′). Check whether G′′

has strongly regular articulation cliques (O(n3), see Lemma 20)
– If not, G′′ is distance claw-free: find an mwss using the algorithm from

[10] (O(n3))
– else decompose G′′ into distance simplicial strips, evaluate the crucial

stable sets for each of them, and solve a matching problem to re-combine
them to an mwss of G′′ (O(n4), see Lemmas 31 and 5) and therefore
of G′.

The paper is organized as follows. In Section 2, we introduce two graph reduc-
tions for the mwss in general graphs. In Section 3 we show how to use our first
reduction to transform the mwss problem on a claw-free graph to the same prob-
lem on a quasi-line graph. In Section 4 we show how to make use of our second
reduction to reduce the mwss problem on quasi-line graphs to the mwss problem
on bipolar-free quasi-line graphs. Finally, Section 5 is devoted to prove a decom-
position theorem for this last class of graphs describing their structure, and to
present the resulting algorithm for the mwss on the class of claw-free graphs.

Definitions and Notations
We close the introduction with some definitions and notations. Every graph
G(V, E) will be undirected and simple, i.e. without loops and parallel edges.
The graph complement of G is denoted by G. A matching in G is a set of
edges that are pairwise non-incident. A stable set in G is a set of vertices which
are pairwise non-adjacent. The stability number of G is the size of a stable set
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of maximum cardinality and it is denoted by α(G). Given a weight function
w : V �→ R, the weighted stability number is the weight of an mwss in G and is
denoted by αw(G). Given a set U ⊆ V , we denote by G[U ] the graph induced
by the vertices in U . When no confusion can arise, we write α(U) and αw(U)
instead of α(G[U ]) and αw(G[U ]), respectively. Moreover, we denote by w(U)
the sum of the weights of all vertices of U . A clique in G is a set of pairwise
adjacent vertices. We say that a clique K is maximal if there does not exist a
clique K ′ ⊃ K.

Given a vertex u ∈ V , we denote by NG(u) the neighbors of u in G, i.e. NG(u)
:= {v ∈ V : (u, v) ∈ E}. When no confusion can arise, we denote NG(u) by
N(u). A vertex u ∈ V is said to be universal to v if u is adjacent to v and
to every vertex in N(v) \ {u}; we denote by U(v) the set of vertices that are
universal to v. A vertex u ∈ V is said to be simplicial if N(u) is a clique.
Given a set U ⊆ V , we denote by E(U) the edges with both endpoints in U ,
by δ(U) the edges with one endpoint in U and the other in V (G) \ U and by
N(U) the set {v ∈ V \ U : (u, v) ∈ E, for some u ∈ U}. We also denote for all
j ≥ 2, Nj(U) := N(Nj−1(U)) \ Nj−2(U) with the convention N0(U) := U and
N1(U) := N(U). A vertex u ∈ V is said to be strongly simplicial if N(u) and
N2(u) are cliques. Given two sets U, U ′ ⊆ V , we denote by E(U : U ′) the edges
with one end in U and the other in U ′. Two disjoint sets of vertices A, B are
said to be complete (resp. anticomplete) if E(A : B) = {(a, b) : a ∈ A, b ∈ B}
(resp. E(A : B) = ∅).

A path P of length k in G(V, E) is an ordered sequence of edges (e1, ..., ek)
where ei = (vi, vi+1), vi ∈ V for all i = 1, ..., k and (v1, vk+1) 
∈ E (repetition
of edges is not allowed). We denote P = (e1, ..., ek). Since we consider simple
graphs, we can also define P by the ordered sequence of vertices (v1, ..., vk+1)
that are visited.

A claw (c; v1, v2, v3) is a graph with vertex set {c, v1, v2, v3} and edge set
{(c, v1), (c, v2), (c, v3)}. A 5-wheel (c; v1, ..., v5) is a graph with vertex set {c,
v1, ..., v5} and edge set

⋃5
i=1{(c, vi), (vi, vi+1)} (with the convention v6 = v1). A

net (u1, u2, u3; v1, v2, v3) is a graph with vertex set {u1, u2, u3, v1, v2, v3} and
edge set {(v1, v2), (v2, v3), (v3, v1), (u1, v1), (u2, v2), (u3, v3)}. A gem (v1, v2, v3,
v4, v5) is the graph with vertex set {v1, ..., v5} and edge set {(v1, v2), (v1, v3),
(v2, v3), (v2, v4), (v3, v4), (v3, v5), (v4, v5)}.

Finally, for a set S, a family of subsets {S1, .., Sk} is called a laminar family
if, for 1 ≤ i < j ≤ k, Si ∩ Sj 
= ∅ implies Si ⊆ Sj or Sj ⊆ Si.

2 Reductions for the Maximum Weighted Stable Set
Problem

2.1 A Simple Reduction for Strips-Composed Graphs

Chudnovsky and Seymour [3] introduced a composition operation in order to
define their decomposition result for claw-free graphs. This composition proce-
dure is general and applies to non-claw-free graphs as well. We borrow a couple
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of definitions from their work (even if our definition of gluing is slightly differ-
ent). A strip (G, a, b) is a graph (not necessarily connected) with two designated
simplicial vertices a and b. Observe that, by definition, if a and b are adjacent,
then N(a) ∪ N(b) is a clique.

Given two vertex-disjoint strips (G1, a1, b1) and (G2, a2, b2), we define the
gluing of those two strips as the union of G1 \ {a1, b1} and G2 \ {a2, b2} together
with all edges between NG1(a1) and NG2(a2) and all edges between NG1(b1) and
NG2(b2). Moreover, we add all edges between NG1(a1) and NG1(b1) when a2 and
b2 are adjacent (and vice versa). Observe that this operation is closely related to
the definition of 2-join (cf. [4]). Note also that gluing (G1, a1, b1) and (G2, b2, a2)
would not result in the same graph.

We can generalize the operation of gluing to several strips by introducing a
composition operation.

Definition 1. Let G0 be a disjoint union of cliques with 2k vertices and (G1, a1,
b1), . . . , (Gk, ak, bk) k vertex disjoint strips with (ai, bi) 
∈ E(Gi) for i = 1, ..., k.
Let φ be a one-to-one mapping from {a1, ..., ak, b1, ..., bk} to V (G0). For all
i = 1, ..., k, define Gi as the gluing of (Gi, ai, bi) with (Gi−1, φ(ai), φ(bi)). The
graph Gk is the composition of the strips (Gi, ai, bi), i = 1, ..., k w.r.t. (G0, φ).

It is a simple exercise to prove that the composition does not depend on the
order of the strips. In the following, we will refer to a graph that, as Gk, can
be obtained by this procedure as a strips-composed graph. We will also use the
following alternative definition for strips-composed graphs.

Definition 2. Let (G1, a1, b1), . . . , (Gk, ak, bk) be k vertex disjoint strips with
(ai, bi) 
∈ E(Gi) for i = 1, ..., k and let P := {P1, ..., Pm} be a partition of the
vertices {a1, ..., ak, b1, ..., bk}. Let G0 be the union of the graphs Gi \ {ai, bi},
i = 1, ..., k. For all j = 1, ..., m, define Gj as the graph obtained from Gj−1 by
adding all edges between N(u) and N(v) for all u, v ∈ Pj. The graph Gm is the
composition of the strips (Gi, ai, bi), i = 1, ..., k w.r.t. the partition P.

It is again a simple exercise to prove that the composition does not depend on
the order of the classes in the partition. It is also easy to prove that the two def-
initions are equivalent, i.e. they define the same class of graphs, and that we can
pass easily from one representation to the other. Indeed, the disjoint cliques of G0

(together with φ) define a natural partition of the vertices {a1, ..., ak, b1, ..., bk}
and from a partition it is easy to define a suitable set of disjoint cliques and a
mapping. We skip the details. In both cases, we say that (Gi, ai, bi), i = 1, ..., k
define a strip decomposition, either of Gk w.r.t. (G0, φ) or for Gm w.r.t. P .

The different strips involved in the composition can be complex objects. Nev-
ertheless, when we are dealing with stable set problems, there is a simple reduc-
tion that allows to get rid of non desirable strips (e.g. non-line strips).

Lemma 3. Let G be the gluing of two strips (H, a, b) and (H ′, c, d) where (a, b) 
∈
E(H). Let w : V �→ R be a weight function on the vertices of G. Let G′ be the
gluing of (T, v1, v5) and (H ′, c, d), where (T, v1, v5) is a gem. Let A := NH(a),
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B := NH(b), C = NH′(c) and D = NH′(d) and define a weight function w′ for
G′ as follows:

– w′(v) = w(v) if v ∈ V (H ′ \ {c, d})
– w′(v2) := wB − wA∪B

– w′(v3) = wH − wA∪B

– w′(v4) := wA − wA∪B.

where wH is the weight of an mwss in H \ {a, b} if (c, d) 
∈ H ′ or the weight of
an mwss in H \ {a, b} picking at most one vertex in A ∪ B if (c, d) ∈ H ′, while
wB (resp. wA, wA∪B) is the weight of an mwss in H \ {a, b} not intersecting B
(resp. A, A ∪ B). Then αw′(G′) = αw(G) − wA∪B.

Proof. Let S be an mwss in G. We have to deal with four cases. Either S does
not pick any vertex in C ∪D or it picks a vertex in D but not in C, or it picks a
vertex in C but not in D, or it picks a vertex in C and a vertex in D (possibly
the same if C ∩ D 
= ∅).

Let us analyse the first situation. We claim that w(S ∩ V (H)) = wH . If c
and d are not adjacent, S ∩ V (H) must be an mwss in V (H) \ {a, b}: otherwise,
if wS∩V (H) < wH = w(SH), for some suitable stable set SH ⊆ V (H) \ {a, b},
SH ∪ (S ∩ V (H ′)) would be a better stable set for G (it is a stable set, since
there are no adjacencies between V (H) and V (H ′) \ (C ∪ D) in G and there is
no new adjacency in G[V (H)]). If c and d are adjacent, then S ∩ V (H) takes at
most one vertex in A ∪ B (by definition A is complete to B in G in that case)
and must thus be an mwss in V (H) \ {a, b} picking at most one vertex in A∪B
for the same reasons.

Now in G′, S′ = {v3} ∪ (S ∩ V (H ′)) is a stable set (since S does not intersect
C ∪D). But w′(S′) = w′(S ∩ V (H ′)) + w′(v3) = w(S ∩ V (H ′)) + wH −wA∪B =
w(S∩V (H ′))+w(S∩V (H))−wA∪B = w(S)−wA∪B . Hence αw′(G′) ≥ αw(G)−
wA∪B. The three other cases can be analyzed similarly.

Conversely, let S′ be an mwss in G′. Again we have to deal with the four
cases above. Let us analyze the case where S′ does not intersect C ∪ D: in this
case, w.l.o.g., we may assume that v3 ∈ S′ (since w′(v4) ≤ w′(v3) ≥ w′(v2)).
Thus let S′′ be an mwss in H \ {a, b} (picking at most one vertex in A ∪ B
if c and d are adjacent). S = S′′ ∪ (S′ ∩ V (H ′)) is a stable set in G. But
w(S) = w(S′′) + w(S′ ∩ V (H ′)) = wH + w′(S′ ∩ V (H ′)) = w′(v3) + wA∪B +
w′(S′ ∩ V (H ′)) = w′(S′) + wA∪B. Thus αw′(G′) ≤ αw(G) − wA∪B. Again the
three other cases can be analyzed similarly. �
Let (H, a, b) be a strip and let SH be an mwss in H \ {a, b} (picking at most
one vertex in A ∪ B if c and d are adjacent), SB, (resp. SA, SA∪B) an mwss in
H \ {a, b} not intersecting B (resp. A, A ∪ B). We say that SH , SB, SA, SA∪B

are the crucial mwss for (H, a, b).

Remark 4. From the proof of the above lemma not only one can get αw(G) from
αw′(G′), but also one can build an mwss for G from an mwss for G′ in constant
time, if the crucial mwss for (H, a, b) are given.
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We have a result similar to Lemma 3 for strips-composed graphs.

Lemma 5. Let G be the composition of the strips (Gi, ai, bi), i = 1, ..., k w.r.t.
a partition P. Suppose that the crucial mwss can be computed in time O(pi(n))
for the different strips i = 1, ..., k (n being the number of vertices of G). Then
the mwss problem on G can be solved in time O(

∑
i=1,...,k pi(n) + match(n)),

where match(n) is the time required to solve a matching problem on a graph with
n vertices. If pi(n) is polynomial for each i, then the mwss problem can be solved
in polynomial time.

Proof. First of all, as we pointed out above, we can equivalently express G as
the composition of the strips (Gi, ai, bi), i = 1, ..., k, w.r.t. some pair (G0, φ). We
now use the procedure defined in Lemma 3 and associate to each strip (Gi, ai, bi)
a gem (T i, vi

1, v
i
5) with suitable weights. Let H be the composition of the strips

(T i, vi
1, v

i
5), i = 1, ..., k w.r.t. (G0, φ). For each strip i, let wAi∪Bi

be the weight
of an mwss in Gi \ {ai, bi} not intersecting Ai ∪ Bi, where Ai = NGi(ai) and
Bi = NGi(bi).

Claim 6. αw(H) = αw(G) − ∑
i=1,...,k wAi∪Bi

.

Proof. G is the composition of (G1, a1, b1), . . . , (Gk, ak, bk) w.r.t. (G0, φ). Let G′

be the composition of (G1, a1, b1), . . . , (Gk−1, ak−1, bk−1), (T k, vk
1 , vk

5 ) w.r.t.
(G0, φ). It follows from Lemma 3 that αw(G) = αw(G′) + wAk∪Bk

. Recall that
the composition does not depend on the order of the strips, i.e. G′ is also the
composition of (G1, a1, b1), . . . , (Gk−2, ak−2, bk−2), (T k, vk

1 , vk
5 ), (Gk−1, ak−1,

bk−1) w.r.t. (G0, φ). We now define G′′ to be the composition of (G1, a1, b1), . . . ,
(Gk−2, ak−2, bk−2), (T k, vk

1 , vk
5 ), (T k−1, vk−1

1 , vk−1
5 ) w.r.t. (G0, φ). We have that

αw(G′) = αw(G′′) + wAk−1∪Bk−1
. The claim follows by iterating this reasoning.

(End of the claim.)

Claim 7. H is the line graph of a graph F and F can be built in time O(k).

Proof. First, note that H has 3k vertices. G0 is a graph with 2k vertices that is

the disjoint union of p cliques. By definition, each clique of G0 induces a clique of
H . We then consider the family K of cliques of H that is made of the p previous
cliques together with the cliques {v1

2 , v
1
4}, . . . , {vk

2 , vk
4}. It is easy to see that K

covers all the edges of H and that every vertex of H belongs to exactly 2 cliques
of K. It is shown in [6] that, in this case, H is the line graph of a graph F , that
can be built as follows. For each clique K in K, we associate a vertex vK in F .
For all vertices vK 
= vK′ , we add |K ∩ K ′| edges (vK , vK′). Observe that we
can build F directly from G, i.e. we do not need to build H , in time O(k), since
|V (F )| = k + p ≤ 3k and |E(F )| = |V (H)| = 3k. (End of the claim.)

We are thus left with solving a weighted matching problem in F . The weights
of the edges of F (vertices of H) can be given in time O(

∑
i=1,...,k pi(n)). More-

over, it follows by induction from Remark 4 that an mwss of G can be built in
time O(k) from an mwss of H , i.e. a maximum weighted matching of F . Observe
that k = O(n). The statement follows. �
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We want to stress again that Lemma 3 and Lemma 5 apply not only to claw-free
graphs, but to all graphs that can be obtained as the composition of strips.

2.2 Semi-homogeneous Pairs of Cliques

The notion of semi-homogeneous pair of cliques extend the classical concept of
homogeneous pair of cliques (a pair of cliques (A, B) is homogeneous if for all
x ∈ V \ {A ∪ B}, x is either complete to A ∪ B or anti-complete to A ∪ B or
complete to A (resp. B) and anti-complete to B (resp. A)).

Definition 8. A pair of cliques (A, B) in a graph G(V, E) is semi-homogeneous
if for all x ∈ V \ {A ∪ B}, x is either complete to A or complete to B or anti-
complete to A ∪ B.

Lemma 9. Let G = (V, E) be a graph with a weighted function w on its vertices.
Let (A, B) be a semi-homogeneous pair of cliques. Let {a, b} be an mwss of size
two in A ∪ B. Adding any edge different from (a, b) between a vertex of A and
vertices of B does not change αw; moreover, every stable set of the new graph is
a stable set of G with the same weight.

Proof. Suppose that S is an mwss of G picking a vertex a′ in A and a vertex
b′ in B. For all s ∈ S \ {a′, b′}, s is neither complete to A nor to B. Thus since
(A, B) is semi-homogeneous, s is anti-complete to A ∪ B. Therefore we could
replace a′ by a and b′ by b and getting a stable set of weight as big. �
We will use the previous lemma to get rid of some “annoying” pairs of vertices
in quasi-line graphs, that we call bipolar. In fact we will show that if a quasi-line
graph has a bipolar pair of vertices, then it contains a semi-homogeneous pair of
cliques (A, B) such that there are at least two missing edges between A and B.

3 From Claw-free Graphs to Quasi-Line Graphs

Recall that a graph G is quasi-line if, for all v in V (G), N(v) can be covered by
two cliques, that is, G[N(v)] is bipartite. Therefore, a claw-free graph G is not
quasi-line if and only if there exists a vertex v with an odd-hole in G[N(v)].

While claw-free graphs with small stability number can be significantly dif-
ferent from quasi-line graphs, Fouquet [5] proved that claw-free graphs with
stability number greater than 3 do not differ that much from quasi-line graphs.

Lemma 10. [5] A connected claw-free graph G with α(G) ≥ 4 that does not
contain a 5-wheel is quasi-line.

We have now a couple of lemmas whose proofs we defer to the journal version of
the paper. The first one deals with the gluing operation that we defined in the
previous section for general graphs. When we restrict to claw-free graphs, this
operation preserves the structure of the graph.
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Lemma 11. The gluing of two claw-free strips is a claw-free graph.

The second lemma shows that a connected claw-free G, that is not quasi-line and
has stability number at least four, is indeed the gluing of two claw-free strips.

Lemma 12. Let G(V, E) be a connected claw-free graph with α(G) ≥ 4. Let
W := (a; u1, u2, u3, u4, u5) be a 5-wheel. Then G is the gluing of two claw-
free strips (H1, a1, b1) and (H2, a2, b2) where W is a subgraph of H1, α(G[H1 \
{a1, b1}]) ≤ 3 and (a1, b1) 
∈ E(H1). The two graphs H1 and H2 can be built in
time O(n3).

Lemma 13. Let G(V, E, w) be a claw-free graph, with n vertices and w : V �→ R.
There exists a claw-free graph G̃(Ṽ , Ẽ, w̃), with w̃ : Ṽ �→ R such that:

– αw(G) = αw̃(G̃) and |Ṽ | ≤ n;
– either G̃ is quasi-line or α(G̃) ≤ 3.

Moreover, the graph G̃ can be built in time O(n4), while an mwss for G can be
built in time O(n) from one in G̃.

Proof. The statement is trivial if either G is quasi-line or α(G) ≤ 3, so suppose
G is not quasi-line and with α(G) ≥ 4. There must exist a vertex v with an
odd-hole in G[N(v)]. Indeed detecting an odd-hole in a graph H that is triangle-
free is standard (G[N(v)] is triangle-free since G is claw-free) and can be done
in O(m). We need to visit an auxiliary graph H ′, where each vertex u ∈ V (H)
is duplicated into u′, u′′ and, for each edge (u, v) ∈ E(H), we add two edges
(u′, v′′) and (u′′, v′) in H ′. It is not difficult to see that a path of minimum
length connecting u′ to u′′ corresponds, after shrinking duplicated vertices, to a
shortest odd hole in H . Since G is not quasi-line, in time O(nm) we must detect
an odd-hole in some G[N(v)]: we take the smallest one. This has to be a 5-hole
by Lemma 10.

So we have detected a 5-wheel in G. Using Lemma 12, we build in time
O(n3) the claw-free strips (H1, a1, b1) and (H2, a2, b2), where H1 has an induced
subgraph that is a 5-wheel and (a1, b1) 
∈ E(H1). We replace H1 by a gem and
define the graph G′(V ′, E′, w′) that is the gluing of (H2, a2, b2) with the gem, as
in Lemma 3. Therefore, αw(G) = αw′(G′) + wA∪B. Note that the crucial stable
sets for H1, and therefore the weights w′ on the vertices of the gem, can be
computed in O(n3) by enumeration since α(G[H1 \{a1, b1}]) ≤ 3. G′ is claw-free
because of Lemma 11.

Observe that, all together, G′ can be built in time O(n3) from G. Now observe
that G′ contains less vertices (at least two less) than G. If either α(G′) ≤ 3 or
G′ is quasi-line, we stop and let G̃ = G′, else we repeat this procedure (at most
O(n) times since we remove at least two vertices each time). Therefore, G̃ can be
built in time O(n4) from G and has less than n vertices. Finally, we may build
an mwss of G from an mwss of G̃ in time O(n) by applying inductively Remark
4. The statement follows. �
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We are now left to solve the stable set problem in quasi-line graphs. Even if
quasi-line graphs are more friendly from a structural point of view than claw-
free graphs, there is a configuration that always annoyed us and can be easily
removed when dealing with the stable set problem: bipolar pairs of vertices.

4 From Quasi-Line Graphs to Bipolar-Free Quasi-Line
Graphs

Lovász and Plummer [6] called regular a vertex of a claw-free graph such that
{v} ∪ N(v) can be covered by two maximal cliques. We say that v is strongly
regular when this covering is unique. Recall that U(v) is the set of vertices that
are universal to some vertex v.

Lemma 14. A vertex v of a quasi-line graph G(V, E) is strongly regular if and
only if H = G[N(v) \ U(v)] is connected. In this case, (H1 ∪ U(v) ∪ {v}, H2 ∪
U(v) ∪ {v}) is the unique pair of maximal cliques covering {v} ∪ N(v), where
(H1, H2) are the classes of the (unique) bi-coloring of V (H).

Definition 15. Given a quasi-line graph G and two vertices v1, v2 that are not
universal to each other (i.e., v1 is not universal to v2 and v2 is not universal to
v1), we say that they form a bipolar pair if there exists a maximal clique K such
that v1, v2 ∈ K and (N(v1) ∪ N(v2)) \ K is a clique.

A quasi-line graph without bipolar pairs of vertices is said to be bipolar-free.
The notion of bipolar pair of vertices for quasi-line graphs is closely related to
the more general concept of semi-homogeneous pair of cliques that we defined
in Section 2.2, as it is confirmed by the following lemma.

Lemma 16. Let G be a quasi-line graph and let (v1, v2) be a bipolar pair. Let
A = {v1, v2} and B =

(
N(v1)\ (N(v2)∪{v2})

)∪(
N(v2)\ (N(v1)∪{v1})

)
. Then

(A, B) is a semi-homogeneous pair of cliques in G.

Proof. We have to prove that a vertex v 
∈ A∪B that is neither complete to A nor
to B is anticomplete to A∪B. By hypothesis, (v1, v2) is a bipolar pair, i.e. there
exists a maximal clique K such that v1, v2 ∈ K and (N(v1)∪N(v2))\K is a clique.
Assume w.l.o.g. that v is not adjacent to v2. In particular, v 
∈ K. Moreover,
v is not adjacent to v1, since otherwise, v ∈ (N(v1) \ N(v2)) ⊆ B. Assume
that v is not anti-complete to B, then there exists w w.l.o.g. in N(v2) \ N(v1)
that is adjacent to v (w exists since v1 is not universal to v2). But then v is
complete to N(v1) \ N(v2). Indeed suppose that there is z ∈ N(v1) \ N(v2) not
adjacent to v, then (w; z, v2, v) is a claw. But we can apply the same reasoning
with w ∈ N(v1) \ N(v2) to show that v is complete to N(v2) \ N(v1). Thus v is
complete to B a contradiction. �
Lemma 17. Let G(V, E, w) be a quasi-line graph with n vertices and w : V �→
R. There exists a bipolar-free quasi-line graph G′(V, E′, w), with E′ ⊇ E, such
that αw(G) = αw(G′). Moreover, the graph G′ can be built in time O(n6).
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Proof. Let w : V �→ R be the weight function on the vertices of G. Our procedure
goes as follows. We detect a bipolar pair of vertices for G, if any. If G has no
bipolar pairs of vertices, we stop. Else, let v1, v2 be a bipolar pair for G. We
know from Lemma 16 that A = {v1, v2} and B =

(
N(v1) \ (N(v2) ∪ {v2})

) ∪(
N(v2) \ (N(v1) ∪ {v1})

)
form a semi-homogeneous pair of clique. Without loss

of generality assume that {v2, w1} is an mwss of size two in A∪B. We define a
graph G′ by adding to G every edge different from (v2, w1) between a vertex of
A and vertices of B. We know from Lemma 9 that αw(G) = αw(G′) and every
stable set of G′ is a stable set of G with the same weight. The graph G′ is still
quasi-line (see the following). If G′ has no more bipolar pairs of vertices, we stop;
else we iterate. Since we cannot add more than O(n2) edges to G, we iterate at
most O(n2) times.

Our proof follows by induction if we prove that:

1 Detecting a bipolar pair of vertices of a quasi-line graph G, if any, can be
done in time O(n4).

2 G′ is still quasi-line.

1. Let u and v be a pair of vertices that are not universal to each other. It is
straightforward to see that they form a bipolar pair if and only if G[N(u) ∪ N(v)]
is bipartite and admits a bi-coloring where u and v get the same color. Therefore,
we can detect a bipolar pair of vertices in time O(n4).

2. We consider the case where G′ = G∪ (v1, w2), i.e. A is complete to B but for
the edges {v2, w1} and (v1, w2) (the general case follows easily by induction).

We want to show that G′ is still quasi-line, i.e. the neighborhood of each vertex
can be covered by two cliques. Observe that, by definition, E(G) ⊂ E(G′) and,
by hypothesis, G is quasi-line. Therefore, for any vertex v 
∈ {v1, w2}, NG′(v)
can be still covered by two cliques, since NG′(v) = NG(v). As far as v1 and w2

are concerned, it will be enough to show that:

(i) there exist two cliques of G covering NG(v1) ∪ {w2};
(ii) there exist two cliques of G covering NG(w2) ∪ {v1}.
First, we need some definitions and a claim. Let K1 (K2, resp.) be a maximal

clique such that K and K1 (K and K2, resp.) cover N(v1) (N(v2), resp.).
Denote by S1, S2, . . . , S8 a partition of the vertex set V (G) of G, defined as

follows: S1 = {v : v ∈ (K ∩ K1) \ K2}, S2 = {v : v ∈ (K ∩ K2) \ K1}, S3

= {v : v ∈ K2 \ (K1 ∪ K)}, S4 = {v : v ∈ K1 \ (K2 ∪ K)}, S5 = {v : v ∈
K ∩K1 ∩K2}, S6 = {v : v ∈ (K1 ∩K2) \K}, S7 = {v : v ∈ K \ (K1 ∪K2)}, S8

= {v : v ∈ V \ (K ∪ K1 ∪ K2)}.
Claim 18. If there exists z ∈ S8 such that (z, w2) ∈ E or (z, w1) ∈ E, then z
is complete to S3 and to S4.

Proof. W.l.o.g. suppose ∃z ∈ S8 s.t. (z, w2) ∈ E. First we prove that z is
complete to S4. In fact, S4, z, v2 ⊆ N(w2). Moreover S4 ∪ {z} is anticomplete to
v2. Thus, S4 ∪ {z} must be a clique, since G is quasi-line. Now we prove that z



88 G. Oriolo, U. Pietropaoli, and G. Stauffer

is complete to S3. In fact, S3, z, v1 ⊆ N(w1). Moreover S3 is not complete to v1

and z is not adjacent to v1. Thus, S3∪{z} must be a clique, since G is quasi-line.
(End of the claim.)

(i). From the above definitions, NG(v1) = S1 ∪ S5 ∪ S2 ∪ S7 ∪ S4 ∪ S6. Since
S1 ∪ S5 ∪ S2 ∪ S7 = K and S4 ∪ S6 ∪ {w2} are both cliques of G, by hypothesis
or construction, the statement follows.

(ii). We have: NG(w2) = S3∪S6∪S4∪S2∪S5∪ S̃1∪ S̃7∪ S̃8, where S̃i denotes
the set of vertices belonging to Si that are adjacent to w2. Observe that v1 is
complete to S6 ∪ S2 ∪ S5 ∪ S̃1 ∪ S̃7. Therefore, in order to prove our statement,
it is enough to show that there exist two cliques KL, KR of G covering NG(w2)
and such that S3∪S4 ∪ S̃8 belongs to a same clique, say KL. This is the same as
showing that there is a valid bi-coloring of the bipartite graph H = G[NG(w2)]
such that S3, S4, S̃8 get the same color, which for our purposes will be either red
or blue. In the following, we build such a coloring.

S̃7

S̃8

S2

S3

S4

S5

S6

S̃1

Fig. 1. The possible adjacencies in H . Two sets are connected by a dotted edge if and
only if they are not complete to each other in G. S4 and S3 are complete by hypothesis;
S̃8 is complete to S3 ∪ S4 by Claim 18; other pairs that are complete belong to a same
clique in {K, K1, K2}.

The graph H is in general not connected and in Fig. 1 we represent the
possible adjacencies in H among the sets S̃1, S2, S3, S4, S5, S6, S̃7, S̃8, i.e. two
sets are connected by a dotted edge if and only if they are not complete to each
other in G. Consider the component C1 in H containing v2 and say v2 is blue.
The set S4 and S̃8 are anticomplete in G to v2 and thus they are in C1 and
they have to be red. By maximality of the clique K1, each vertex in S2 has a
non-neighbor in S4 and thus S2 is in C1 and has to be blue. Consider a vertex
v ∈ S5. By definition, v is complete to each Si but, possibly, S8. Therefore, if v
is complete to S̃8, then it is a singleton for H and thus can be made arbitrarily
blue; else v belongs to C1 and it is again blue.

So far we have seen that there exists a valid partial bi-coloring of H such that
w.l.o.g. S4 and S̃8 are red while S2 and S5 are blue. We now show that also the
vertices of S3 that are in C1 are red. Observe that, since H is bipartite and C1
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is connected, the coloring of the vertices of C1 is forced: vertices that have even
distance from the vertices in S4 ∪ S̃8 are red, vertices that have odd distance
from the vertices in S4 ∪ S̃8 are blue; therefore it is enough to show that no
vertex of S3 ∩ V (C1) has odd distance from some vertex in S4 ∪ S̃8. Therefore,
suppose to the contrary that s3 ∈ S3 and x ∈ S4 ∪ S̃8 have odd distance and
assume w.l.o.g. their distance to be minimum. Let P = (s3, u2, u3, . . . , u2k ≡ x)
be a path attaining such minimum distance.

We base our analysis on the possible edges in H from the graph of Fig. 1.
Recall that the sets S̃1, S2, S3, S4, S5, S6, S̃7 are cliques for G (and therefore
stable sets for H). It is clear that P does not contain any vertex of S̃1 (since
P is of minimum distance between S3 and S4 ∪ S̃8, in this case it would be a
path of length 2 from S3 to S̃8). Analogously, P cannot take any vertex from
S4, else P would be an even path from s3 to S4, and it cannot take any edge
from S̃7 to S8, else P would be an even path from S3 to S̃8. It is thus clear
that P alternates between vertices of S̃7 and S6 before ending with a vertex of
S8: namely, u3, u5, . . . , u2k−1 ∈ S6 and u2, u4, . . . , u2k−2 ∈ S̃7. Let V (P ) be the
vertices in P ; it follows that the vertices in V (P )∩S6 are blue while the vertices
in V (P ) ∩ S̃7 are red. Therefore, in H there cannot be adjacencies between
vertices in S4 and vertices in V (P ) ∩ S̃7, that is, vertices in S4 are complete to
vertices in V (P )∩ S̃7 in G. Now observe that P is of minimum distance, hence it
is an induced odd path of H . The subgraph of H induced by V (P ) ∪ {v1} is an
induced odd-hole (v1 is complete in G to S6, S̃7 and anticomplete to S̃8 and S3).
Therefore G[V (P )∪{v1}] is an induced anti-hole. But (V (P )∪{v1}) ⊆ NG(w1).
Indeed w1 is complete to S6, v1, S3 by definition, to S̃8 by the previous claim
and, since it belongs to S4, it is complete to V (F )∩ S̃7 as we have just observed.
It follows that NG(w1) contains an odd antihole, but this is in contradiction with
G being quasi-line. Therefore, the vertices of S3 that are in C1 are red.

Finally, let Q be the set of vertices of H that are not in C1 and are not from
S5. It follows from above that Q ⊆ S̃1 ∪ S̃7 ∪ S3 ∪ S6. Clearly, any coloring for
the vertices of Q that is valid for H [Q] is also valid for H . In particular, we may
give color red to the vertices of Q ∩ (S3 ∪ S6) and color blue to the vertices in
Q ∩ (S̃1 ∪ S̃7).

We have therefore built a valid bi-coloring for H where S3, S4, S̃8 get the same
color (red) and statement (ii) is proved. �

From Lemma 13 and Lemma 17, we know that in order to solve the mwss
problem in claw-free graphs, we only need to be able to solve the mwss problem
in bipolar-free quasi-line graphs. We will now analyze the structure of those
graphs in order to devise a polynomial time algorithm.

5 A Decomposition Theorem for Bipolar-Free Quasi-Line
Graphs

In this section we give our main structural result, concerning the structure of
bipolar-free quasi-line graphs. In particular, we will show that a rich class of
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bipolar-free quasi-line graphs is the composition of suitable strips that can be
found by identifying articulation cliques.

Definition 19. A maximal clique K of a graph G is an articulation clique if,
for each v ∈ K, N(v) \ K is a clique.

An articulation clique K of a quasi-line graph G(V, E) is called strongly regular
if each vertex v ∈ K is strongly regular. Observe that K is a strongly regular
articulation clique if and only if, for each v ∈ K, there is a unique pair of
maximal cliques covering N(v) ∪ {v} and K is one of these cliques. Detecting if
a quasi-line graph has a strongly regular articulation clique is therefore easy.

Lemma 20. One can check in time O(n3) if a quasi-line graph G(V, E) has
a strongly regular articulation clique. Actually, one can list all strongly regular
articulation cliques in time O(n3).

Proof. In order to detect a strongly regular articulation clique, we first build the
set R of strongly regular vertices and, for each vertex v ∈ R, the unique pair of
maximal cliques (K1(v), K2(v)) covering N(v) ∪ {v}. That can be done in time
O(n3), thanks to Lemma 14. Let K(R) = {K1(v), K2(v), v ∈ R}. A clique K
of G is a strongly regular articulation one if and only if K ⊆ R and, for each
v ∈ K, K ∈ {K1(v), K2(v)}. Since |K(R)| ≤ 2n, it follows that we can list all
strongly regular articulation cliques in time O(n3). �
Definition 21. A maximal clique K is a net clique if there exists a stable set
of size three {s1, s2, s3} in N(K) and each vertex in K is adjacent to at most
one vertex in {s1, s2, s3}.
Lemma 22. In a quasi-line graph, a net clique K is a strongly regular articu-
lation clique.

Proof. It is enough to show that, for every vertex v ∈ K, there exists a maximal
clique K(v) such that (K, K(v)) is the unique covering of N(v) into two maximal
cliques.

By definition, there exists a stable set {s1, s2, s3} ⊆ N(K) and each v ∈ K
is adjacent to at most one vertex in {s1, s2, s3}. So let K1 = K ∩ N(s1), K2 =
K ∩ N(s2), K3 = K ∩ N(s3), K4 = K \ (K1 ∪ K2 ∪ K3) (K1, K2, K3 
= ∅ since
{s1, s2, s3} ⊆ N(K)).

First, suppose v ∈ K1. Let (Q1, Q2) be a pair of maximal cliques such that
N(v)∪ {v} = Q1 ∪Q2 (such a pair exists, since the graph is quasi-line). Assume
w.l.o.g. that s1 ∈ Q1, it follows that K \ K1 ⊆ Q2. We now show that every
vertex z ∈ N(v) \ K is not complete to K \ K1. Suppose the contrary, i.e. there
exists z ∈ N(v) \ K that is complete to K \ K1. Since K is maximal, there
exists w ∈ K1, w 
= v, such that (w, z) 
∈ E. Since z is adjacent to v, it cannot
be adjacent to both s2 and s3 (otherwise there would be the claw (z; s2, s3, v)).
Assume w.l.o.g. z is not linked to s3. Let z3 be a vertex in K3. Then (z3; s3, w, z)
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is a claw, a contradiction. Therefore, every vertex in z ∈ N(v)\K is not complete
to K\K1 and so it must belong to Q1. It follows that Q1 = (N(v)\K)∪{v}∪U(v)
and Q2 = K, that is, (Q1, K) is the unique covering of N(v) into two maximal
cliques. The same holds for any vertex v in K2 or K3.

Now suppose that v ∈ K4. If v is a simplicial vertex, then the statement is
trivial. Now suppose that there exists w 
∈ K such that (w, v) ∈ E. Observe
that w is adjacent to at most one vertex of {s1, s2, s3}: if the contrary, assume
w.l.o.g. s1, s2 ∈ N(w), there would be the claw (w; v, s1, s2). Hence there exists
a stable set of size three in {w, s1, s2, s3} containing w and we are back to the
previous case. �
Definition 23. Let K be an articulation clique. For every v ∈ K, we define:

Q(v) =
{ {v} if v is simplicial

Q(v) = U(v) ∪ {v} else .

Moreover, we let Q(K) be the family of inclusion-wise maximal cliques in {Q(v),
v ∈ K} and say that v generates Q, for some Q ∈ Q(K), if Q = Q(v).

Lemma 24. Let G(V, E) be a quasi-line graph and K ⊆ V an articulation
clique. The following statements hold:

(i) For each v ∈ K, v ∈ Q(v) ⊆ K.
(ii) For each u, v ∈ K, if u ∈ Q(v) then Q(u) ⊆ Q(v).

(iii) If G is bipolar-free, then Q(K) defines a partition of K.
(iv) If G is bipolar-free and Q ∈ Q(K), then N(Q) \ K is a clique.

Proof. Let v be a vertex of K. (i) It is trivial if v is simplicial. Else, let u be
a vertex in N(v) \ K. Since K is maximal, there exists some vertex z ∈ K
such that (u, z) 
∈ E; therefore u is not universal to v and does not belong to
Q(v). (ii) Suppose that u, v ∈ V , u 
= v. Observe that v is not simplicial. The
statement is trivial if u is simplicial. So assume that it is not. Let z ∈ Q(u),
we want to show that z ∈ Q(v). It is trivial if z ≡ u, so assume that z 
= u.
By definition, N(u) ∪ {u} ⊆ N(z) ∪ {z}. On the other hand, since u ∈ Q(v),
N(v) ∪ {v} ⊆ N(u) ∪ {u}. Therefore, N(v) ∪ {v} ⊆ N(z) ∪ {z}. (iii) It follows
from (i) that, in order to show that Q(K) defines a partition of K, it is enough
to show that the family {Q(v), v ∈ K} is laminar. Suppose to the contrary that
that there exist u, v with Q(v) ∩ Q(u), Q(v) \ Q(u), Q(u) \ Q(v) 
= ∅. Therefore
u and v are not simplicial and it follows from (ii) that v 
∈ Q(u) and u 
∈ Q(v).
That is, u and v are not universal to each other. Therefore, there exists z such
that (z, v) ∈ E and (z, u) 
∈ E. Similarly, there exists y such that (y, u) ∈ E and
(y, v) 
∈ E. Let w ∈ Q(v) ∩ Q(u). Observe that N(u) \ K and N(v) \ K belong
to N(w), since w is universal to u and v. On the other hand, K is an articula-
tion clique, therefore N(w) \ K is a clique. It follows that (N(u) ∪ N(v)) \ K
is a clique. Then (u, v) is a bipolar pair, a contradiction. (iv) Suppose the con-
trary. There exist x, y ∈ N(Q)\K such that (x, y) 
∈ E. Since K is an articulation
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clique, it follows that no vertex of Q is joined to both x and y. Therefore there
exist u, v ∈ Q such that (u, y) ∈ E, (u, x) 
∈ E, (v, x) ∈ E, (v, y) 
∈ E. Neither
u nor v can generate Q, as (u, y) ∈ E and (u, x) 
∈ E, as well as (v, x) ∈ E
and (v, y) 
∈ E. Therefore there exists w ∈ K that generates Q. Such a vertex w
is not simplicial (otherwise it could not generate Q), thus there exists a vertex
n 
∈ K such that (n, w) ∈ E. The neighbors of w outside K must be universal
to u and v, thus (n, u) ∈ E and (n, v) ∈ E (therefore n 
∈ {x, y}). For the same
reason x, y 
∈ N(w). Finally, (n, x) ∈ E and (n, y) ∈ E, otherwise u or v would
be vertices of K with a stable set of size 2 in their neighborhood outside K. It
follows that (n; x, y, w) is a claw, which is a contradiction. �
Definition 25. Let G be a bipolar-free quasi-line graph and K an articulation
clique with Q(K) = {Q1, ..., Qk}. The ungluing of the articulation clique K
produces the graph G|K , defined as follows:

1. Remove all the edges between vertices of Qi and vertices of Qj, for i, j ∈
{1, ..., k}, i 
= j.

2. Add a set A(K) := {a1, ..., ak} of artificial vertices. For each i ∈ {1, ..., k},
let NG|K (ai) = Qi.

We defer to the journal version of this paper the proof of the following lemma,
showing that the ungluing operation preserves quasi-lineness, bipolar-freeness
and has other useful properties.

Lemma 26. Let K be an articulation clique in a connected bipolar-free quasi-
line graph G. The following statements hold:

(i) G|K is quasi-line.
(ii) G|K is bipolar-free.

(iii) In each component of G|K there is a vertex from G and a vertex from
A(K). Moreover each vertex from A(K) is strongly simplicial and all ver-
tices of A(K) are pairwise non-adjacent in G|K .

(iv) If w 
∈ K is simplicial for G, then w is simplicial for G|K too.

5.1 Distance Simplicial Graphs

Pulleyblank and Shepherd [10] showed that, given a fixed k, the mwss prob-
lem can be solved via longest paths in an acyclic digraph in time O(nk+1) for
connected graphs with a vertex v having α(Nj(v)) ≤ k for all j. This moti-
vated them to define distance claw-free a connected graph such that, for every
v and every j, α(Nj(v)) ≤ 2. Trivially, distance claw-free graphs are a subclass
of claw-free graphs and it follows from what above that one can solve the mwss
problem in distance claw-free graphs in time O(n3). They also proved that a
connected claw-free graph that is not distance claw-free has an induced net. We
have therefore the following lemma, whose proof is omitted.

Lemma 27. Let G be a connected claw-free graph. If G is not distance claw-free
then it has an induced net clique.
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Definition 28. A connected graph G(V, E) is distance simplicial if there exists
a vertex v ∈ V such that Nj(v) is a clique for each j.

It follows from above that the mwss problem can be solved in time O(n2) for
distance simplicial graphs. It is possible to show that a distance simplicial graph
is distance claw-free, but, since we do not need this statement for the following,
we defer it and its proof to the journal version of this paper.

We also defer the proof of the following lemma, showing that a claw-free graph
with a strongly simplicial vertex is either distance simplicial or has a net-clique
K, that we can use to unglue G. Moreover, G|K has some useful properties.

Lemma 29. Let G(V, E) be a connected claw-free graph with a strongly simpli-
cial vertex a. If G is not distance simplicial, then it has an induced net clique
K, where K = Nj−1(a) ∪ H, with H ⊆ Nj−2(a), for some j ≥ 3. Moreover, the
following statements hold:

(i) K can be found in time O(n2).
(ii) No vertex of K is strongly simplicial.

(iii) If G is quasi-line and bipolar-free, then G|K is not connected.
(iv) If G is quasi-line and bipolar-free and a′ is a strongly simplicial vertex not

adjacent to a (possibly, a′ ≡ a), then a′ is strongly simplicial in G|K too.

5.2 The Decomposition Algorithm

We are now ready to define our decomposition procedure (cf. Algorithm 1). The
algorithm receives a connected graph G that is quasi-line and bipolar-free, but
not distance claw-free. It returns: a graph GL (still quasi-line and bipolar-free)
such that V (GL) = V (G) ∪ AL (the vertices in AL are artificial) and such that
each component is distance simplicial; a partition P of the vertices in AL. As
we show later, the components of GL and the partition P can be used to define
a strip decomposition of G.

Algorithm 1. An algorithm to decompose a bipolar-free quasi-line graph that
is not distance claw-free
Require: A quasi-line and bipolar-free connected graph G that is not distance claw-

free.
Ensure: A graph GL such that V (GL) = V (G) ∪ AL; a partition P of the vertices in

AL.

1: Detect a strongly regular articulation clique K and unglue it.
2: Let G0 := G|K . Let l = 0, A0 := A(K) and P := {A(K)}.
3: while ∃a ∈ Al such that α(Nj(a)) > 1 for some j ≥ 3 do
4: Let Kl with Kl ∩ Al = ∅ be a net clique.
5: Unglue Kl i.e. define Gl+1 := Gl

|Kl , P := P ∪{A(Kl)} and Al+1 := Al ∪A(Kl).

6: Let l := l + 1.
7: end while
8: Let L = l.
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In the algorithm, we start with a connected graph G that is quasi-line and
bipolar-free but not distance claw-free. Hence G has a net clique by Lemma 27,
and therefore a strongly regular articulation clique K by Lemma 22. We unglue
K and set A0 equal to the set of artificial vertices A(K). By statements (i)
and (ii) of Lemma 26, G0 := G|K is quasi-line and bipolar-free, moreover, by
statement (iii), the vertices in A0 are pairwise non-adjacent, every vertex of A0

is strongly simplicial and in every component of G0 there is a vertex from A0

and a vertex from G.
We then check whether in some component of G0 there exists a vertex a ∈ A0

such that α(Nj(a)) > 1 for some j. If not, by Lemma 29, each component of G0

is distance simplicial and the algorithm terminates; else, there exists a net clique
K0, that we unglue, setting G1 := G0

|K0 and A1 := A0 ∪ A(K0). Observe that,
by Lemma 29, no vertex of K0 is strongly simplicial, therefore K0 ∩ A0 = ∅,
G1 has at least one component more than G0 and each vertex of A0 is strongly
simplicial in G1 (we can use the fourth statement of Lemma 29, since the vertices
in A0 are pairwise non-adjacent).

By Lemma 26, G1 is quasi-line, bipolar-free, the vertices in A(K0) are pairwise
non-adjacent and every vertex of A(K0) is strongly simplicial in G1. Also in
every component of G1 there is a vertex of A1 and a vertex from G (about
this last statement, observe that each new component has a vertex from K0

and K0 ∩ A0 = ∅). Moreover the vertices in A1 are still pairwise non-adjacent:
we have already seen that vertices in A0 are pairwise non-adjacent and vertices
in A(K0) are pairwise non-adjacent. Now observe that A0 is anti-complete to
A(K0): this is because the only adjacencies defined during the reduction of K0

are adjacencies between vertices of A(K0) and vertices of K0 and no vertex of
A0 belongs to K0.

We set l = 1 and iterate. It follows, by induction, that at each step l of
the algorithm: the graph Gl is quasi-line and bipolar-free; the set Al is made of
pairwise non-adjacent strongly simplicial vertices; in each component of Gl there
is at least one vertex from Al and at least one vertex from G. Therefore, at each
step, unless each component of Gl is distance simplicial, there is a net clique
to unglue. The algorithm will terminate after L iterations when no component
of GL has a vertex a ∈ AL such that α(Nj(a)) > 1 for some j, i.e. when each
component of GL is distance simplicial. In particular, since we cannot have more
than n = |V (G)| components with at least a vertex from G, it follows that L ≤ n.
Moreover, since each iteration can be done in time O(n3), the running time of
the algorithm is O(n4).

We finally show how the components of GL and P can be used to define a
strip decomposition of G. Observe that, by construction, V (GL) = V (G)∪A(L)
and P defines a partition of the vertices in AL.

Lemma 30. Each component of GL has at most two vertices from AL.

Proof. Suppose to the contrary that there exists a connected component C in GL

with more than two vertices from AL. Let a1, a2, a3 ∈ C ∩ AL. In the following,
we refer to the graph GL. Recall that each vertex in AL is strongly simplicial
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and that the vertices in AL are pairwise non-adjacent. Assume a2 ∈ Nj(a1) and
a3 ∈ Nk(a1) for some k ≥ j ≥ 1. Actually, j > 1 since otherwise a1 and a2

would be adjacent. Since each component of GL is distance simplicial, it follows
that α(Nl(a1)) ≤ 1 for all l ≥ 1. Therefore, k > j and thus Nj+1(a1) 
= ∅.
Each vertex v ∈ Nj+1(a1) is not adjacent to a2 (else a2, that is adjacent to
some vertex in Nj−1(a1), would not be simplicial). But then since there exists
w ∈ Nj−2(a1)∩N2(a2), it follows that {v, w} is a stable set of size two in N2(a2),
a contradiction. �
Suppose now that GL has p components H1, . . . , Hp. Each component Hi, for
i = 1..p, has either two vertices ai, bi from AL or one vertex ai from AL. W.l.o.g.
assume that each component has two artificial vertices (else we might add a
singleton to the component). Consider therefore the strips (H1, a1, b1), . . . , (Hp,
ap, bp). It is easy to see that G is the composition of the strips (Hi, ai, bi), i =
1, ..., p w.r.t. the partition P : in fact, GL, GL−1, . . . , G0 is exactly the sequence
defined in the alternative definition of strips-composed graph (see Def. 2).

We can summarize our previous results as follows:

Lemma 31. Let G be a connected and bipolar-free quasi-line graph G that is
not distance claw-free. By Algorithm 1 we can produce a strip decomposition of
G in time O(n4).

Theorem 32. Let G be a connected bipolar-free quasi-line graph.

– Either G is a distance claw-free graph without strongly simplicial vertices
and without strongly regular articulation cliques;

– or G is the composition of at most n distance simplicial strips.

We now have all the ingredients to state our main result.

Theorem 33. The mwss problem can be solved in time O(n6) for a claw-free
graph G.

Proof. We check if there exists a stable set of size 4 in G by enumeration: this
can be done in time O(n4). If not, we enumerate in time O(n3) all stable sets
of G of size 1, 2 and 3 and take the best one. Else, if the graph has stability
number greater than 3, we use Lemma 13 to reduce to the mwss problem in
a quasi-line graph G1 in time O(n4). We now use Lemma 17 to reduce to the
mwss problem in a bipolar-free quasi-line graph G2 in time O(n6). We search
for strongly regular articulation cliques in G2: this can be done in time O(n3)
from Lemma 20. If there are no strongly regular articulation cliques, then we
know from Lemma 22 that G2 has no net cliques and therefore (Lemma 27) G2 is
distance claw-free; hence we use the algorithm of Pulleyblank and Shepherd [10]
and find an mwss in time O(n3). Else, we get a strip decomposition of G2 into
distance simplicial strips from Lemma 31 in time O(n4). The crucial stable sets
can be found in each strip in time O(n2) (first recall that in a distance simplicial
graph an mwss can be found in time O(n2), then observe that each crucial stable
set is an mwss, if we give weight 0 to some suitable set of vertices). Therefore,
from Lemma 5, we can find an mwss in G2 in time O(n3). All together, we can
solve the mwss problem for G in time O(n6). �
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