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   Abstract— A new algorithm is introduced for motor current 
signature analysis of induction machines operating during 
transients. The algorithm is able to extract the amplitude, phase 
and frequency of a single sinusoid embedded in a non-stationary 
waveform. The algorithm is applied to the detection of broken 
rotor bars in induction machines during startup transients. The 
fundamental component of current, which varies in amplitude, 
phase and frequency, is extracted using the algorithm. The 
residual current is then analyzed using wavelets for the detection 
of broken rotor bars. This method of condition monitoring does 
not require parameters such as speed or number of rotor bars, is 
not load dependent and can be applied to motors that operate 
continuously in the transient mode e.g. wind generators or motor 
operated valves. 

   Keywords - Condition Monitoring, Wavelets, Broken rotor bars. 

I.     INTRODUCTION 
  

HE induction machine is essential in many industrial 
applications. It is therefore desirable to reduce downtime 

by employing methods of machine condition monitoring. A  
widely used method of induction machine condition 
monitoring utilizes the steady-state spectral components of 
stator quantities. These spectral components can include 
voltage, current and power and can be used to detect broken 
rotor bars, bearing failures, air gap eccentricity etc. 
Traditionally these techniques have focused on the detection 
of faults during steady-state machine operation. [1-2] 

The accuracy of these techniques depend on the loading of 
the machine, the assumption that the machine speed is 
constant, as well as the signal to noise ratio of the spectral 
components being examined. 

The rotor bar frequencies are determined by 
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where,  k/p = 1,5,7,11,13… 
fs is the supply frequency 
s is the machine slip 

p is the number of poles.  
 
   These frequencies form the stator current spectrum shown 

in figure 1 and are present irrespective of the machine’s 
condition. The presence of broken rotor bars is indicated by 
the difference in amplitude between the fundamental and the 
left sideband. A difference less than 50dB is an indication of 
broken rotor bars [3-7]. The amplitude of the left sideband 
frequency component of the fundamental frequency is 
proportional to the number of broken rotor bars present [8].  

The right sideband component, fs(1+2s),could also be used 
in monitoring fault severity. Its importance is clearly 
demonstrated in [9-12].  
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Fig. 1. A typical current spectrum of a fully loaded induction motor with 
broken rotor bars. 

 
From (1) it is evident that the rotor bar frequencies are a 

function of the machine slip. If the machine is unloaded, the 
slip will be almost zero. The rotor bar frequencies will be 
masked by the fundamental frequency and thus make detection 
difficult. The only solution is therefore to heavily load the 

T 
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machine in order to separate the frequencies. Overloading a 
machine is undesirable since it reduces the machine’s 
operating lifetime and is not generally under control of the 
operator. Accurate detection therefore is difficult at light 
loading conditions. In addition many machines spend 
substantial periods at light loading conditions. 

A fundamental disadvantage of the assumption of steady-
state speed in condition monitoring is that there are many 
applications where constant speed operation is not achieved 
for example in wind generation or motor operated valves. In 
addition, the steady state algorithms focus only on low slips, 
while improved detection can be accomplished at high slips. 

An alternate approach to the detection of broken rotor bars 
would be to examine the starting transient of an induction 
machine. The advantages would be that the transient has a 
high slip and high signal to noise ratio, which implies that the 
spectral components can be more easily separated. Loading 
does not affect the amplitude of the transient during startup. 
The load only affects the duration time of the startup transient. 
This implies that the detection can be done at low loading 
conditions unlike steady-state techniques.  

A challenge of transient analysis is the difficulty in trying to 
analyze the complex transient startup current signal. This 
comprises a non-stationary fundamental frequency as well as 
non-stationary frequencies associated with the rotor bars. The 
rotor bar frequencies are a function of the machine speed slip 
and change as the machine runs up.  

It is therefore desirable to be able to separate the 
fundamental frequency from the rotor bar frequencies. Using a 
high order notch filter will not accomplish this goal because 
the fundamental frequency is not constant. 

A filter that actively tracks the changing amplitude, phase 
and frequency is needed to extract the fundamental from the 
transient. Once the fundamental frequency has been removed, 
the residual current can be examined using wavelets because 
the entire analysis is done in the transient [13-15] and is not 
amenable to study by Fourier Analysis.  
 

II.     DESCRIPTION OF THE ALGORITHM 
 
Let u(t) denote a signal comprising a sinusoidal component 

in addition to a number of additional components and noise. A 
sinusoidal component of this function, y(t) = Asin(ωt+δ), is of 
interest where A is the amplitude, ω is the frequency (in rad/s), 
δ is the phase and φ(t) = ωt+δ represents the total phase of this 
component. Ideally, parameters A, ω  and δ are fixed 
quantities; but in practice, this assumption does not hold true.  

Consider a general form of�
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Let M be a continuous manifold containing all sinusoidal 
signals defined as   
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and superscript T denotes matrix transposition. 
   The objective is to find an element in M which is closest 

to the sinusoidal component of the signal u(t). The solution 
has to be an orthogonal projection of u(t) onto manifold M, or 
equivalently it has to be an optimum θ which minimizes a 
distance function d between y(t;θ(t)) and u(t), i.e., 
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The following instantaneous distance function d is used: 
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Hence, the cost function is defined as J(t,θ (t)) = d2(t, θ (t)). 

Although the cost function is not necessarily quadratic, the 
parameter vector θ is estimated using the gradient descent 
method�
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where the positive diagonal matrix µ is the algorithm 
regulating constant matrix. Given a quadratic cost function, it 
is clear that the algorithm employing this method converges to 
the minimum solution for the cost function. In more complex 
cases than those involving quadratic functions, the gradient 
descent method may still achieve minimization although this is 
not true in general. Global convergence of the gradient descent 
method is guaranteed for quadratic distance functions; 
otherwise, its convergence has to be directly proven.  

   The output signal is defined as�
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t
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Formulating the algorithm accordingly using the parameter 
vector θ = [A,δ,ω], i.e. the amplitude, phase angle and 
frequency of the desired component, results in the following 
set of equations1:�
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1 Strictly following the least squares error minimization using the method 

of gradient descent results in a time-varying set of equations in which the time 
variable t is explicitly present in the equations. In the equations presented 
here, the time variable t is replaced by a constant number. This replacement 
converts the time-varying system into a time-invariant system. The apparently 
arbitrary formulation of the algorithm calls for mathematically rigorous 
justification which is presented in [16-17]. 
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The dot on top (.) represents the differentiation with respect 

to time. Note that 
⋅⋅

+= δωφ  is used in deriving the third 
differential equation. State variables A(t), φ(t) and ω(t) directly 
provide instantaneous estimates of the amplitude, phase and 
frequency of the extracted sinusoid, respectively. Undesired 
components and noise imposed on the sinusoidal component 
of interest altogether are provided by e(t). The parameters µ1, 
µ2 and µ3 are positive numbers which determine the behavior 
of the algorithm in terms of convergence rate versus accuracy. 
This dynamic model presents an algorithm which is capable of 
extracting a specified sinusoidal signal, estimating its 
amplitude, frequency and phase, and accommodating 
variations in the amplitude, frequency and phase of such a 
sinusoidal component.�

Equations (2) to (6) constitute the governing set of 
equations of the generalized algorithm. The following 
theorem, proved in [17], deals with the stability issues of this 
dynamical system: 

   Theorem 1: Let u(t) = Ao sin(ωot + δo) + g(t) where Ao,ω0, 
and δo are real constants and g(t) is an arbitrary To–periodic 
bounded continuous function which has no frequency 
component at ωo. For a proper choice of parameters {µ1,i = 1, 
2,3}, the dynamical system (2) to (6) has a unique periodic 
orbit γ(t) in (A,ω,φ) space in a neighborhood of uo(t)=Aosin(ωot 
+ δo). This neighborhood is determined by the function g(t) 
and the parameters µ1 to µ3. Moreover, this periodic orbit is 
asymptotically stable. The periodic orbit coincides with uo(t) 
when g(t) is zero. 

   The theorem indicates that there is a unique periodic orbit 
to which the system converges. This periodic orbit is located 
in a neighborhood of the ideal desired component. The tighter 
this neighborhood is, the more accurately the desired 
component is estimated. The extent of this neighborhood is 
determined by the level of “pollution” g(t) and the step sizes 
µ1,µ2 and µ3. Smaller values for step sizes µ1 and µ2 result in a 
more refined periodic orbit in a tighter neighborhood. On the 
other hand, the step-sizes determine the speed of the 
convergence to the solution of the differential equations. As 
well, if the parameters in the input function (including 
amplitude and phase angle) vary with time, the desired 
solution will follow those variations provided that the speed of 
the convergence to the solution, determined by the step sizes, 
is sufficiently high. A trade-off. therefore exists between the 
transient convergence speed and the steady state accuracy.  

In terms of the engineering performance of the system, this 
indicates that the output of the system will approach a 
sinusoidal component of the input signal u(t). Moreover, time 
variations of parameters in u(t) are tolerated by the system. 

Figure 2 shows a snapshot of the performance of the algorithm 
when the frequency and amplitude of the input signal jump 
from 50 Hz to 100 Hz and 1 to 2, respectively. Initially, the 
periodic orbit is a circle with unit radius which lies on the 
horizontal plane of f = 50 Hz, then it flows to another circle 
with radius 2 which lies on the plane of f = 100Hz.  

   Figure 3 shows implementation of the algorithm in the 
form of composition of simple blocks suitable for schematic 
software development tools. Numerically, a possible way of 
writing the set of equations governing the present algorithm in 
discrete form, which can be readily used in any programming 
language, is 

 
],[][][]1[ 1 nsinneTnAnA s φµ+=+  

],[][][][]1[ 2 ncosnAneTnn s φµωω +=+  

],[][][][][]1[ 32 ncosnAneTnTnn ss φµµωφφ ++=+  

      ],[][][ nsinnAny φ=  
       ][][][ nynune −= . 

 
where a first order approximation for derivatives is 

assumed; in other words, the time-derivative of a quantity X is 
approximated by 

sT
nXnX ][]1[ −+ in discrete form. The 

iterative expression of (8) is used to provide the value of 
frequency ω needed in (4) which results in the explicit 
expression of (9). Ts is the sampling time and n is the time 
index. 

 
 
 

 
Fig. 2.   Phase portrait diagram when both the amplitude and frequency of the 
input signal undergo a jump of 100%. 
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Fig. 3. Block Diagram implementation of the algorithm. 

 

 

 
Fig. 4. Response of the algorithm to a step change in the frequency of the 
input signal. 

 

In the simulations presented in this paper, Matlab 
SimulinkTM computational software is used as the main 
computational tool. Figure 4 shows the performance of the 
algorithm for an example in which the frequency of the input 
signal undergoes a step change of 10%. It is observed that the 
variations are effectively tracked with a transient lasting just a 
few cycles. Values of the parameters are chosen to be µ1 = 
100, µ2 = 10000 and µ3 = 0.02 for this simulation. 

The dynamics of the algorithm presents a notch filter in the 
sense that it extracts (i.e. lets pass through) one specific 
sinusoidal component and rejects all other components 
including noise. It is adaptive in the sense that the notch filter 
accommodates variations of the characteristics of the desired 
output over time. The center frequency of such an adaptive 
notch filter is specified by the initial condition of frequency ω. 
In Figure 3 this initial value, ωo, is explicitly shown for easy 
visualization. 

 

III.     APPLICATION OF THE ALGORITHM 
 
The measured startup current transient of an 11kW 

induction motor is shown in Figure 5. Before implementing 
the algorithm, the individual measured line currents are 
transformed into a single rotating current vector as shown in 
Figure 6. This vector is then transformed into the time domain 
and used as an input to the extraction algorithm. The algorithm 
estimates the frequency, amplitude and phase of the 
nonstationary fundamental as shown in Figures 7,8,9. The 
fundamental component (which varies with magnitude, 
frequency and phase) can be extracted with this algorithm. 
This estimate is then subtracted from the input. The resulting 
waveform shown in Figure 10 has information relating to the 
health of the machine including bad bearings, broken rotor 
bars etc. 

 
 

 
Fig. 5. Startup current transient.  
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Fig. 6. A plot of the current vector. 

 
The algorithm takes a few cycles to converge to the 

amplitude and frequency of the fundamental. This is shown in 
Figures 8 and 10. As a result when the estimated fundamental 
is subtracted from the original waveform, the algorithm’s 
output between 0 and 0.4 seconds should be discarded to allow 
for convergence. 

 
Fig. 7. The time domain representation of the current vector. 

 

 
Fig. 8. The estimated fundamental startup current of the algorithm. 

 
Fig. 9. Frequency of the algorithm. 

 
Fig 10. The startup current after extraction of the fundamental. 

 
Figure 10 shows the estimated frequency of the 

fundamental. An accurate estimate of the frequency is only 
available after 0.4s. 

IV.     DETECTION OF BROKEN ROTOR BARS 
The algorithm was used to detect broken rotor bars in a ½ hp 
induction motor. Two identical rotors were used in this 
experiment except that one had a broken rotor bar. The same 
bearings and stator was used in order to minimize their 
influences on the startup transients. The machine was tested 
under loading conditions varying from 30% to 100% to 
determine if this method of detection could be successful and 
independent of the loading conditions.  
 

 
Fig. 11. Wavelet decomposition levels D9 of a healthy machine loaded 30%  
to 100%. 
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Fig. 12. Wavelet decomposition levels D9 of a damaged machine loaded 30%  
to 100%. 
 

The fundamental frequency of the stator current vector was 
removed from the total inrush current using the extraction 
algorithm. The discrete wavelet transform, using Daubechies 8 
wavelet, was then applied to the residual current vector. 
Figures 11 and 12 show the level 9 detail coefficients of both 
healthy and damaged machine under various loads. By 
inspection of figures 11 and 12, two dominant features are 
present that characterize the condition of the machine. The 
first feature is found between samples 8 and 13 of all the 
loading conditions. This feature is present in both the healthy 
and damaged machine. The second feature found between 
samples 45 and 53 is only present in the case of the damaged 
machine. The second feature can be used to discriminate 
between a healthy and a damaged machine. An automated 
fault detection analyzer is envisioned based on this algorithm. 

V.      CONCLUSIONS 
A new algorithm for use in transient motor current signature 

analysis has been introduced and applied to the detection of 
broken rotor bars in induction machines. The algorithm is able 
to extract a single non-stationary sinusoid embedded within a 
non-stationary waveform. 

This is then applied to the transient inrush current of an 
induction motor and a wavelet analysis is conducted on the 
balance of the current. 

 

Although results presented here are unique to the machine  
being diagnosed, the methodology applied to extracting the 
transient fundamental current and analysis of the residual 
currents is universal and can be applied to any machine. 

The analysis clearly shows that the broken rotor bar can be 
can be detected using measured transient inrush currents. This 
method can be used for standard induction motors during 
startups as well as machines that operate predominantly in the 
transient like wind generators or motor operated valves. 

ACKNOWLEDGMENTS 
The authors acknowledge the University of Cape Town 

Power Engineering Group for assistance with this project and 
the US Navy ONR for financial assistance. 

REFERENCES 
[1] G. B. Kliman et al., “Methods of motor current signature analysis,”Elect. 

Mach. Power Syst., vol. 20, no. 5, pp. 463–474, Sept. 1992. 
[2] W. Deleroi, “Broken bars in squirrel cage rotor of an induction motor—

Part1: Description by superimposed fault currents”, Arch. Elektrotech., 
vol. 67, pp. 91–99, 1984. 

[3] R. Hirvonen, “On-line condition monitoring of defects in squirrel cage 
motors,” in Proc. 1994 Int. Conf. Electrical Machines, vol. 2, Paris. 

[4] Benbouzid & M. Vieira, "Induction Motor Fault Detection and 
Localization Using Stator Current, Advanced Signal Processing 
Technique". IEEE Trans. Industrial Application 1995, Vol. 3, No. 1 

[5] S. L. Ho, W. L. Chan and H. W. Leung, "Application of Statistical 
Signal Processing for Condition Monitoring of Rotor Faults in Induction 
Motor". Electrical Machines and Drives, Sixth International Conference  
PP. 97 – 102, 1993. 

[6] G. B. Kliman, J. Stein, "Induction Motor Fault Detection Via Passive 
Current Monitoring a Brief Survey." PP. 49-65 

[7] W. T. Thomson, I. D. Stewart, "On-line Current Monitoring for Fault 
Diagnosis in Inverter Fed Induction Motor". Life Management of Power 
Plants, 1994., International Conference, PP. 66 – 73. 

[8] C. Hargis et al., “The detection of rotor defects in nduction motors,” in 
Proc. 1982 IEE Int. Conf. Electrical Machines, Design and Application, 
London, U.K., pp. 216–220. 

[9] Mohamed El Hachemi Benbouzid,” A Review of Induction Motors 
Signature Analysis as a Medium for Faults Detection “IEEE 
Transactions on Industrial Electronics, VOL. 47, NO. 5, October 2000 

[10] W. Deleroi" Squirrel Cage Motor with Broken Bar in the Rotor- Physical 
Phenomena and their Experimental Assessment", Proc. ICEM'82. 
Budapest, Hungary, 1982, pp. 767-770. 

[11] H. A. Toliyat et al., “Condition monitoring and fault diagnosis of 
electrical machines—A review,” in Conf. Rec. 1999 IEEE-IAS Annual. 
Meeting, vol. 1, Phoenix, AZ, pp. 197–204. 

[12] F. Filippetti et al., “AI techniques in induction machines diagnosis 
including the speed ripple effect,” IEEE Trans. Ind. Applicat., vol. 34, 
pp. 98–108, Jan./Feb. 1998. 

[13]  O. Rioul and M. Vettrli, "Wavelet and Signal Processing" IEEE SP 
Magazine, October 1991, PP.14-38 

[14] S. G. Mallat, "A Wavelet Tour of Signal Processing", Academic Press, 
1998. 

[15] M. Haji, H. A. Toliyat, “Pattern Recognition – A Technique for 
Induction Machines Rotor Fault Detections,” Proceedings of the IEEE 
IEMDC’ 01, Boston, MA, June 17-20, 2001. 

[16] Ziarani, A.K.; Konrad, A.” A nonlinear adaptive method of elimination 
of power line interference in ECG signals” “IEEE Transactions on 
Biomedical Engineering, Volume: 49, Issue: 6, June 2002 

[17] M. Karimi-Ghartemani and A. K. Ziarani, “Periodic orbit analysis of two 
dynamical systems for electrical engineering applications,” Journal of 
Engineering Mathematics, Vol. 45, No. 2,2003, pp. 135-154. 

[18] P.Pillay and Z.Xu, "Motor Current Signature Analysis", IEEE IAS 
Annual Meeting, Oct 1996.

0-7803-7883-0/03/$17.00 (C) 2003 IEEE


